

Most Updated and Latest Edition 2022

Covering all Recent Updates & Qs up to June 2022 Exams

Most Comprehensive Fully-Colored Book on Microbiology with an Innovative and Simplified Way to Study First Book having Integrated Approach with Various Clinical Subjects, like Pharmacology, Pathology, Surgery and Medicine

Microbiology Simplified

As per the New Pattern Exams (NEXT) with many Clinical Case-based Questions References and updates from Ananthanarayan & Paniker's 10/e, Jawetz 27/e, Arora 5/e, Harrison's 21/e, Mandell's 8/e

Papers/Questions Covered
INI-CET 2022 – 20
Recent Qs (Jan) 2022 - 2011
AIIMS June 2020 – 2002
Expected NEXT/Clinical Pattern Qs
Sample Video Qs
CBME-Based Subjective Qs with Chapter References

- Written and Compiled by Leading Faculty and Subject Expert of Microbiology
- Enriched with Recent/Latest Updates

Malathi Murugesan

CBS Publishers & Distributors Pvt. Ltd.

Malathi Murugesan

Microbiology Simplified

As per the New Pattern Exams (NEXT) with many Clinical Case-based Questions

References and updates from Ananthanarayan & Paniker's 10/e, Jawetz 27/e, Arora 5/e, Harrison's 20/e, Mandell's 8/e

4th Edition

Malathi Murugesan

MD (Microbiology), DTM&H (RCP London), PDGID Associate Consultant & Hospital Infection Control Officer Meenakshi Mission Hospital & Research Centre Madurai, Tamil Nadu

Dedicated to Education

CBS Publishers & Distributors Pvt Ltd

• New Delhi • Bengaluru • Chennai • Kochi • Kolkata • Lucknow

• Mumbai • Hyderabad • Nagpur • Patna • Pune • Vijayawada

Preface

Dear readers,

We all know that COVID-19 has changed our perspective of life completely. An invisible microbe that emerged as a pandemic in 2020 and still causing a surge in the number of new cases globally has turned the human life topsy-turvy. Even with the development of vaccines and ongoing research on treatment modalities, we haven't overcome this pandemic till date.

The knowledge on different microbes and evolution of their species and variants is essential. Microbiology deals with the evolution process, structure, pathogenesis, diagnosis, and treatment of human infections caused by bacteria, virus, parasites, and fungi. As you have completed your MBBS, it will be easier now to correlate the infectious disease condition with the microbial pathogenesis. An integrated clinical learning will help you to remember the features of a genus and species.

When it comes to NEET or INI CET or any new competitive exams that you are planning to face in forthcoming years, your main aim should be to crack the MCQs by using your sharp memory and presence of mind. Every reader who goes through MICRONS will become smart enough to clear these exams because this book will make it easier for the students to have a quicker revision.

I am grateful to the readers for their constant support to *MICRONS-Microbiology Simplified* and happy to share that the new 4th edition is updated with recent questions and an *exclusive chapter on COVID-19*.

As I always say, Confidence and Self-Motivation is the Key to Success.

Always ask this to yourself "If not me, then who else?"

All the best for your exams!

Keep sharing your feedback on my mail Id or Facebook page.

With love! Malathi Murugesan MBBS MD DTM&H PGDID drmalathi13@gmail.com

Dedicated to Education

Contents

Preface	v
Acknowledgments	<i>vii</i>
CBME-Based Subjective Questions with Chapter References	xi
Recent Updates—Coronavirus Disease-19	xv
Latest Exam Questions 2022–2019	xix
Sample Video Questions	lxix
Image-Based Concept Zone	lxxiii

UNIT 1 GENERAL MICROBIOLOGY

Chapter 1.	Introduction, History and Microscopes	3-10
Chapter 2.	Morphology and Physiology of Bacteria	11-25
Chapter 3.	Sterilization and Disinfection	26-38
Chapter 4.	Culture Media and Culture Methods	39-48
Chapter 5.	Bacterial Genetics, Resistance and Susceptibility Testing	49–59

UNIT 2 BACT

BACTERIOLOGY

Chapter 6.	Staphylococcus	63-72
Chapter 7.	Streptococci	73-84
Chapter 8.	Pneumococcus	85-89
Chapter 9.	Neisseria	90-95
Chapter 10.	Corynebacterium	96-102
Chapter 11.	Bacillus	103-108
Chapter 12.	Clostridium	109–118
Chapter 13.	Enterobacteriaceae	119-134
Chapter 14.	Vibrio	135-141
Chapter 15.	Pseudomonas, Acinetobacter and Burkholderia	142-146
Chapter 16.	Haemophilus, Francisella and Pasteurella	147-151
Chapter 17.	Brucella and Bordetella	152–155
Chapter 18.	Mycobacterium	156-166
Chapter 19.	Spirochaetes	167-175
Chapter 20.	Rickettsia and Chlamydia	176-186
Chapter 21.	Helicobacter and Campylobacter	187-189
Chapter 22.	Mycoplasma and Legionella	190–193
Chapter 23.	Miscellaneous Bacteria	194-202

UNIT 3 VIR

VIROLOGY

Chapter 24.	Introduction and General Properties of Viruses	205-213
Chapter 25.	Bacteriophages	214-217
Chapter 26.	Poxviruses	218-221
Chapter 27.	Herpesviruses	222-230
Chapter 28.	Adenovirus	231-232
Chapter 29.	Picornaviruses	233-238
Chapter 30.	Orthomyxoviruses	239-243
Chapter 31.	Paramyxovirus	244-249
Chapter 32.	Arthropod- and Rodent-Borne Viral Infections	250-256
Chapter 33.	Rhabdovirus	257-261
Chapter 34.	Hepatitis Virus	262-271
Chapter 35.	Human Immunodeficiency Virus	272-279
Chapter 36.	Miscellaneous Viruses	280-286

Contents

PARASITOLOGY

Chapter 37.	Introduction to Parasitology	289-295
Chapter 38.	Flagellates-I	296-299
Chapter 39.	Hemoflagellates	300-304
Chapter 40.	Leishmania	305-308
Chapter 41.	Apicomplexa	309-317
Chapter 42.	Toxoplasma, Ciliate Protozoa	318-321
Chapter 43.	Coccidian Intestinal Parasites	322-325
Chapter 44.	Helminthology Cestodes	326-332
Chapter 45.	Trematodes	333-338
Chapter 46.	Nematodes	339-347
Chapter 47.	Filarial Nematode	348-353

UNIT 5

UNIT 4

MYCOLOGY

Chapter 48.	Characteristics and Laboratory Diagnosis of Fungi	357-363
Chapter 49.	Superficial Mycoses	364-370
Chapter 50.	Endemic/Systemic Mycoses	371-375
Chapter 51.	Opportunistic Mycoses	376-383
Chapter 52.	Miscellaneous Fungi	384-386

UNIT 6 IMMUNOLOGY

Chapter 53.	Immunity	389-392
Chapter 54.	Structure and Functions of Immune System	393-400
Chapter 55.	Antigens	401-403
Chapter 56.	Antibodies	404-410
Chapter 57.	Complement System	411-415
Chapter 58.	Antigen-Antibody Reactions	416-421
Chapter 59.	Immune Response	422-426
Chapter 60.	Hypersensitivity	427-431
Chapter 61.	Immunodeficiency Diseases	432-435
Chapter 62.	Autoimmunity	436-437
Chapter 63.	Transplantation and Tumor Immunology	438-440
Chapter 64.	Immunohematology	441-444

- 447-450

UNIT 7 APPLIED MICROBIOLOGY

Chapter 65.

Applied Microbiology -----

UNIT 8 INFECTIOUS DISEASES

Chapter 66.	Introduction	453-456
Chapter 67.	Fever of Unknown Origin	457-458
Chapter 68.	Infections of Ear, Nose and Throat	459-466
Chapter 69.	Infections of Eye	467-470
Chapter 70.	Infection in Lower Respiratory Tract - Pneumonia	471-472
Chapter 71.	Gastrointestinal Infections	473-478
Chapter 72.	Cardiovascular Infection - Endocarditis	479-481
Chapter 73.	CNS Infections	482-484
Chapter 74.	Skin and Soft Tissue Infections	485-486
Chapter 75.	Infections of Bones and Joints	487-489
Chapter 76.	Sexually Transmitted Infections	490-491
Chapter 77.	Urinary Tract Infections	492-493
Chapter 78.	Infections Related to Obstetrics and Gynecology	494-496
Chapter 79.	Surgical Site and Related Infections	497-500
Chapter 80.	Infections in Special Hosts	501-503
Chapter 81.	Antimicrobial Chemotherapy - A Short Review	504-507
Chapter 82.	Multiple Choice Questions	508-510
Self-Assessme	nt	511-527

CBME-Based Subjective Questions with Chapter References

CBME-Based Subjective Questions with Chapter References*

Number	COMPETENCY The student should be able to		
MICROBIOLOGY			
	Topic: General Microbiology and Immunity		
MI 1.1	Describe the different causative agents of Infectious diseases, the methods used in their detection, and discuss the role of microbes in health and diseases	2,4	
MI 1.2	Perform and identify the different causative agents of Infectious diseases by Gram Stain, ZN stain and stool routine microscopy	2	
MI 1.3	Describe the epidemiological basis of common infectious diseases	66–80	
MI 1.4	Classify and describe the different methods of sterilization and disinfection. Discuss the application of the different methods in the laboratory, in clinical and surgical practice	3	
MI 1.5	Choose the most appropriate method of sterilization and disinfection to be used in specific situations in the laboratory, in clinical and surgical practice	3	
MI 1.6	Describe the mechanisms of drug resistance, and the methods of antimicrobial susceptibility testing and monitoring of antimicrobial therapy	5	
MI 1.7	Describe the immunological mechanisms in health	53	
MI 1.8	Describe the mechanisms of immunity and response of the host immune system to infections	53, 54	
MI 1.9	Discuss the immunological basis of vaccines and describe the Universal Immunization schedule	65	
MI 1.10	Describe the immunological mechanisms in immunological disorder (hypersensitivity, autoimmune disorders and immunodeficiency states) and discuss the laboratory methods used in detection.	61, 62	
MI 1.11	Describe the immunological mechanisms of transplantation and tumor immunity	63	
	Topic: CVS and Blood		
MI 2.1	Describe the etiologic agents in rheumatic fever and their diagnosis	7	
MI 2.2	Describe the classification, etio-pathogenesis, clinical features and discuss the diagnostic modalities of Infective endocarditis	72	
MI 2.3	Identify the microbial agents causing Rheumatic Heart Disease & infective Endocarditis 2, 72		
MI 2.4	List the common microbial agents causing anemia. Describe the morphology, mode of infection and discuss the pathogenesis, clinical course, diagnosis and prevention and treatment of the common microbial agents causing Anemia		
MI 2.5	Describe the etio-pathogenesis and discuss the clinical evolution and the laboratory diagnosis of kala azar, malaria, filariasis and other common parasites prevalent in India	40, 41	
MI 2.6	Identify the causative agent of malaria and filariasis	41, 47	
MI 2.7	Describe the epidemiology, the etio- pathogenesis, evolution complications, opportunistic infections, diagnosis, prevention and the principles of management of HIV	35	
Topic: Gastrointestinal and Hepatobiliary System			
MI 3 1	Enumerate the microbial agents causing diarrhea and dysentery. Describe the epidemiology, morphology, pathogenesis, clinical features and diagnostic modalities of these agents	71	
MI 3.2	Identify the common etiologic agents of diarrhea and dysentery	71, 13, 14, 21	
MI 3.3	Describe the enteric fever pathogens and discuss the evolution of the clinical course and the laboratory diagnosis of the diseases caused by them	13	
MI 3.4	Identify the different modalities for diagnosis of enteric fever. Choose the appropriate test related to the duration of illness	13	

* Important competency-based topics covered

Contd...

xi

RECENT UPDATES

Coronavirus Disease-19

BACKGROUND

Novel Coronavirus disease originated from Wuhan, China during December 2019. It was then renamed as Coronavirus disease-19 (COVID-19) and the virus was named as Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) on February 11, 2020.

EPIDEMIOLOGY OF COVID-19

CHARACTERISTICS OF SARS-COV-2

- Coronaviruses are enveloped positive-stranded RNA viruses.
- SARS-CoV-2 is an enveloped beta-coronavirus with genetic sequence similar to SARS-CoV-1 (80%).
- Closest RNA sequence similarity is to two bat coronaviruses, and it appears likely that bats are the primary source; whether COVID-19 virus is transmitted directly from bats or through some other mechanism (e.g., through an intermediate host) remains unknown.
- The viral envelope is coated by spike (S) glycoprotein, envelope (E) and membrane (M) proteins.
- S protein is the virulence factor that helps in host cell binding and entry into host cells.
- The virus binds the host cell through its target receptor. The S1 subunit of the S protein has the receptor binding domain which binds to the peptidase domain of angiotensin converting enzyme 2.
- The cellular protease TMPRSS2 also appears important for SARS-CoV-2 cell entry (Fig. 1).

Figure 1: SARS-CoV-2 virus structure (Courtesy: CDC PHIL library)

Recent Updates—Coronavirus Disease-19

.

REPLICATION CYCLE (FIG. 2)

The replication of SARS-CoV-2 virus in host cell is as follows:

Figure 2: Replication cycle

Ref: Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2BMJ 2020; 371 :m3862 doi:10.1136/bmj.m3862

MUTATION AND VARIANTS IN SARS-COV-2

Mutation:

- Substitution at a particular position in the protein (S:D614G) which means aspartic acid to glycine substitution at the 614 position of the spike (S) protein.
- There are several mutations that occur in RNA virus.
- Variants:

xvi

- In SARS-CoV-2, there has been variants reported across the world. Two terminologies are used:
- 1. Variants of concern-which means it is:
 - Highly transmissible and more infectious
 - More lethal
 - Can escape immunity due to previous infections
 - Can escape immunity due to vaccination
 - Can reduce the efficacy of drugs and monoclonal antibodies
 - Can reduce the sensitivity of PCR assays

2. Variants of interest—which means it is under investigation

C	Mutants/variants of concern	Properties
	D614G variant	 Identified from parent Wuhan virus (19B) in February 2020 D614G variant occurs due to single mutation in gene coding for spike protein Changes from aspartic acid to glycine hence, less bulky allowed it to bind better to ACE2 receptor More transmissible than original Wuhan virus Not more lethal

Contd...

Latest Exam Questions 2022–2019

INI-CET QUESTIONS – 2022

1. Choose the correct pathogen based on the following image of cell wall.

Courtesy: Wen-Xia FANG, Cheng JIN. The cell wall of *Aspergillus fumigatus*: composition, biosynthesis and function[J].MYCOSYSTEMA, 2018, 37(10): 1307-1316.

- a. Mycobacterium tuberculosis b. Rhinosporidium seeberi c. Aspergillus fumigatus d. Mycoplasma pneumoniae
- 2. A voluntary blood donor visits a blood donation camp. Which of the following test is not mandatory for blood screening?
 - a. HIV b. Malaria
 - c. Syphilis d. Dengue
- 3. A patient who is working in a wood factory presented with lesions in the skin, upon biopsy showed the following findings. What is the diagnosis?

- a. Sporotrichosis
- b. Mycetoma

XX

- c. Chromoblastomycosis
- d. Blastomycosis

- 4. Which of the following is not an AIDS defined illness?
 - a. Non-Hodgkin's lymphoma
 - b. Kaposi sarcoma
 - c. Malignant melanoma
 - d. Invasive cervical cancer
- 5. Which of the following bacteria comes under molliculate?
 - a. Ureaplasma urealyticum
 - b. Chlamydophila pneumoniae
 - c. Chlamydia trachomatis
 - d. Orientia tsutsugamushi
- 6. Choose the organism/s that are acid fast in nature.
 - a. Mycobacterium leprae
 - b. Nocardia
 - c. Actinomycetes
 - d. Cryptosporidium parvum
- 7. In a patient with HIV, chemoprophylaxis is given for opportunistic infection. Which of the following is the wrong indication with regard to chemoprophylaxis?
 - a. Pneumocystis prophylaxis mandatory, if the CD4 count is <200
 - b. Cryptococcus prophylaxis mandatory, if the CD4 count is ${<}100$
 - c. CMV prophylaxis mandatory, if the CD4 count is ${<}50$
 - d. Tuberculosis prophylaxis mandatory, if CD4 count is <1000

Latest Exam Questions 2022-2019

•

8. Identify the organism that has the following life cycle.

a. Enterobius vermicularis

b. Ancylostoma duodenale

c. Strongyloides stercoralis

d. Dracunculus medinensis

9. Which of the following is correct regarding the organism that excretes the egg given in the image below?

- a. The drug of choice is albendazole
- b. It is a leaf-shaped parasite
- c. Water plants is the source of infection
- d. Most of the patients are asymptomatic

- 10. Which of the following virus undergoes genetic reassortment as influenza virus?
 - a. Ebola virus
 - b. Rhabdo virus
 - c. Adeno virus
 - d. Rota-virus
- 11. Which of the following is wrongly matched between primary immune response (PIR) and secondary immune response (SIR)?
 - a. Antibody involved: PIR IgM; SIR- IgG
 - b. Lag period: PIR 4-7days; SIR 1-2 days
 - c. Antibody affinity: PIR High; SIR Low
 - d. Longevity: PIR Short lived; SIR Prolonged
- 12. If an antigen binds to MHC class I, it activates the following:
 - a. B cell
 - b. Cytotoxic T cell
 - c. Helper T cell
 - d. NK cell

XXi

50. Which of the following is true regarding trematodes?

- a. Fasciolopsis buski is seen in intrahepatic biliary radicles
- b. Schistosoma are monoecious
- c. Triclabendazole is the treatment of choice for all trematode infections
- d. Fasciola hepatica is acquired through contaminated water plants
- 51. An old age man undergone tooth extraction few days back. He now presents with mass in the submandibular region. There is no pain or fever. Upon drainage, foul smelling discharge with yellow granules were seen. On microscopic examination, Gram-positive filamentous rods were seen. What is the most likely organism causing this clinical condition?
 - a. Chromoblastomycosis b. Mucormycosis
 - c. Actinomyces israelii d. Histoplasmosis
- 52. A 35-year-old man presents to the emergency department with rice watery stools. In the last 12 hours, there was 7-8 episodes. Which of the following is disrupted in the intestine?
 - a. Hemidesmosomes b. Gap junctions
 - c. Zona occludens d. Zona adherens

53. A man who went into the forest for trekking and few days later, he presents with the following skin lesion (eschar). All of the following could be the etiologies; except:

- a. Anthrax
- b. KFD
- c. Scrub typhus
- d. Spider bite

ANSWERS WITH EXPLANATIONS

INI-CET QUESTIONS – 2022

1. Ans. (c) Aspergillus fumigatus

Ref: Ananthanarayan and Paniker's T.B. of Microbiology – 10th edition – page 619

The cell wall given in the image has Beta-glucan. Beta glucan is seen in Aspergillus, Candida, and Pneumocystis. Another clue is Chitin, which is unique for cell wall of fungi.

2. Ans. (d) Dengue

Ref: https://www.cdc.gov/bloodsafety/basics.html

- The screening tests before blood transfusion are:
- HIV
 Hepatitis C
- Hepatitis B

Dengue is a mosquito borne illness and hence, does not need screening by blood.

Syphilis

3. Ans. (c) Chromoblastomycosis

Ref: Ananthanarayan and Paniker's T.B. of Microbiology – 10th edition – page 605

The given image shows copper penny or mulberry bodies which is characteristic of Chromoblastomycosis. Chromoblastomycosis is caused by Dematiaceous fungi.

The infection occurs usually after trivial trauma.

4. Ans. (c) Malignant melanoma

Ref: Harrisons T.B. of Internal Medicine – 19th edition – page 1215

Among the given options, Non-Hodgkin's lymphoma is caused by Epstein-Barr virus. Kaposi sarcoma is caused by HHV8. Invasive cervical cancer is caused by HPV 16,18. All of these are opportunistic infections except malignant melanoma which is not associated with AIDS.

5. Ans. (a) Ureaplasma urealyticum

Ref: Jawetz T.B. of Medical Microbiology – 27th edition – page 31

Molliculate are group of bacteria that do not have cell wall and called L forms.

Species: Mycoplasma pneumoniae, Ureaplasma urealyticum and other species in the family.

6. Ans. a, b, d

Ref: Ananthanarayan and Paniker's T.B. of Microbiology – 10th edition – page 13

Organisms that are acid fast in nature are:

- Mycobacterium tuberculosis
- Mycobacterium leprae
- Nocardia
- Oocysts of coccidian parasites
- Bacterial spores
- Eggs of Taenia saginata
- Rhodococcus
- Legionella micdadei

7. Ans. (d) Tuberculosis prophylaxis mandatory, if CD4 count is <1000

Ref: https://www.cdc.gov/mmwr/preview/mmwrhtml/ rr5108a1.htm

CD4 count	Organisms
0–100	Disseminated MAC infection
	Histoplasmosis
	CMV retinitis
	CNS lymphoma
100–250	Pneumocystis
	Toxoplasmosis
	Cryptococcosis
	Coccidiodomycosis
	Cryptosporidiosis
250–500	Bacterial infections
	Tuberculosis
	Herpes simplex
	Herpes zoster
	Kaposi sarcoma

8. Ans. (c) Strongyloides stercoralis

Ref: T.B. of Medical Parasitology – S.C. Parija – 4th edition – page 271

In the given flowchart, the identification points are:

- Morphological forms: Filariform larvae and Rhabditiform larvae.
- Another clue is autoinfection.
- Route of entry is through skin penetration.

9. Ans. (d) Most of the patients are asymptomatic

Ref: T.B. of Medical Parasitology – S.C. Parija – 4th edition – pag 213

- The given image is Hymenolepis nana egg.
- H. nana is a cestode that is acquired by ingestion of eggs. The definitive hosts are humans, rats and mice. Intermediate host is nil.
- Drug of choice is praziquantel.
- The parasite is an intestinal cestode and called dwarf tapeworm.

10. Ans. (d) Rotavirus

Ref: Ananthanarayan and Paniker T.B. of Microbiology – 10th edition – page 434

Genetic reassortment can occur in segmented RNA viruses. BORA:

- Bunyaviridae
- Orthomyxoviridae
- Reoviridae
- Arenaviridae

Rotavirus comes under viruses with segmented RNA.

11. Ans. (c) Antibody affinity PIR: High; SIR – Low

Ref: Ananthanarayan and Paniker T.B. of Microbiology – 10th edition – page 148

Answers with Explanations

xxxix

Sample Video Questions

1. In a war conflict zone, 150 patients got acute watery diarrhea. On stool examination, the following motility pattern is seen. Which culture media is ideal for identifying the organism?

- a. DCA agarc. MacConkey agar
- b. TCBS agar
- d. Blood agar
- 2. A 28-year-old newly married female presented with complaints of intense itching per vagina and greenish discharge. On wet mount of vaginal discharge, the following organism is seen. What morphological stage is this?

- a. Cystc. Tachyzoites
- b. Trophozoitesd. Oocysts

3. Identify the following organism visualized by wet mount of vaginal discharge:

- a. Candida albicans
- b. Cryptococcus neoformans
- c. Trichomonas vaginalis
- d. Gardnerella vaginalis
- 4. Vector for this African eye worm is:

- a. Simulium
- b. Chrysops
- c. Anopheles
- d. Xenopsylla

10. Identify the organism:

b. Hookworm d. Wuchereria

For video, scan this QR Code

ANSWERS FOR VIDEO QUESTIONS

1. Ans. (b) TCBS agar

- Video shows typical darting motility of Vibrio cholerae
- Vibrio cholerae has polar flagella and exhibits fast motility
- Clinical features shown as acute watery diarrhea causing cholera outbreak in a camp
- Vibrio cholerae is a Gram-negative bacilli which grows in selective medium called Thiosulfate-citrate-bile salt - sucrose agar (TCBS). Colonies of V. cholerae are yellowish in color because of sucrose fermentation.

2. Ans. (b) Trophozoites

- A sexually active female with greenish discharge indicates Trichomoniasis
- · Video showing twitching motility of Trichomonas vaginalis
- Trichomonas vaginalis has only trophozoite stage; it does not have cystic stage.

3. Ans. (a) Candida albicans

- · Vaginal discharge shows yeast cells with pseudohyphae
- True yeast: Cryptococcus
- Yeast with pseudohyphae: Candida albicans
- Hyphae are seen in other fungi like dermatophytes, Aspergillus, Rhizopus, Mucor

4. Ans. (b) Chrysops

- Loiasis, called African eye worm by most people, is caused by the parasitic worm Loa loa.
- It is transmitted to humans by the repeated bites of deerflies of the genus Chrysops.
- These flies are seen in West and Central Africa.
- Infection with the parasite can also cause repeated episodes of itchy swellings of the body known as Calabar swellings.
- In some patients, visible movement of worm is seen inside the eye; but it won't cause much effects to the eye.

lxxi

Sample Video Questions

Image-Based Concept Zone Parasitology

1. Cyst of Entamoeba histolytica

- E. histolytica is an intestinal protozoan
- Mature cyst has four typical nuclei (Quadrinucleate)
- One nucleus is clearly visible here

DD: Cyst of Entamoeba coli-it has 8 nuclei

3. Trypanosoma brucei

gambiense

2. Cysts of Giardia lamblia

- Ellipsoidal in shape •
- Mature cyst has four nuclei •
- Identification is by correlation with clinical features • like malabsorption, steatorrhea and by seeing cysts in feces.
- 4. Amastigotes of Leishmania donovani

- · Image shows smear from bone marrow
- Many amastigotes are seen invading the REC and • macrophages nearby
- Amastigotes seen near macrophages suggest L. donovani
- It occurs in three forms: Long slender with flagellum, intermediate form and short stumpy form without flagellum.

• Peripheral blood film shows Trypanosoma brucei

- · Metacyclic trypomastigote is the infective form for man
- · Short stumpy form is the infective form for tsetse fly

Introduction, History and Microscopes

INTRODUCTION

General Microbiology

Medical microbiology is the study of microbial organisms that infect humans. Based on structures, replication and pathogenesis microbes are divided into Bacteria, Virus, Fungi and Parasites.

Types of Microorganisms

Bacteria

- Bacteria are simple and unicellular organisms
- They come under *prokaryotes*
- All the bacteria are covered by cell walls which are composed of *proteoglycans*
- They reproduce by a process called *binary fission* by which bacteria divide into two equal cells
- Most of the bacteria derive food by photosynthesis (on its own) and some obtain nutrition by inorganic substances
- Many bacteria have the capacity to mobilize with the help of flagella.

Archaea

- Prokaryotic cells
- Do not have peptidoglycan
- They are classified into three main groups namely: Methanogens, Extreme halophiles and Extreme thermophiles.

Fungi

- Belong to Eukaryotes
- Cell walls are made up of *chitin*
- Most of the typical fungi grow as mold.

Protozoa

- They are unicellular, *eukaryotic* microbes
- They can move with the help of pseudopodia, flagellum or cilia
- They can reproduce sexually or asexually.

Algae

• Algae are photosynthetic *eukaryotes* which have characteristic presence of cellulose.

Viruses

- They are smaller than other microbes and acellular organisms
- Virus particle has a core that is made up either of DNA or RNA

- This core is surrounded by a protein coat
- Viruses can reproduce only with the help of cellular environment of other organisms (intracellular).

Prokaryotes	Bacteria and Archaea
Eukaryotes	Fungi, Protozoa and Algae

SCIENTISTS AND THEIR DISCOVERIES

Louis Pasteur

- He is known as the *father of microbiology*.
- After Leeuwenhoek discovered the invisible world of microbes, the dispute about spontaneous generation theory started.
- Pasteur conducted an experiment and *disproved the theory of spontaneous generation.*
- He then *proposed Germ theory of disease* by stating that invisible microbes in the air causes infection.
- He introduced many techniques in sterilization namely:
- Steam sterilizer
- Hot air oven
- Autoclaving
- Pasteurization of milk
- His contributions in vaccine designing are:
 - Anthrax
- Cholera in fowls
- Rabies
- He introduced liquid media (nutrient broth) for the growth of microbes.

Figure 1: Father of microbiology – Louis Pasteur

Unit 1 • General Microbiology

Robert Koch

- He is known as *father of medical microbiology*
- His contributions in identification of microbial organisms are as follows:
 - Solid media (Agar) for the growth of organisms
 - Methods to isolate organisms from pure culture
 - Hanging drop method to test the motility of an organism
 - Staining techniques
- He discovered the following organisms:
 - Anthrax bacilli
 - TB bacilli
 - Cholera bacilli

Figure 2: Father of medical microbiology – Robert Koch

Remember

- Vaccination of Anthrax bacilli
- Organism per se Anthrax bacilli .
- Liquid media
- Louis Pasteur Robert Koch Louis Pasteur
- Solid media
- Robert Koch

Koch Postulates

- Bacterium should be constantly associated with the lesions • of the disease
- It should be possible to isolate the bacterium in pure culture from the lesions
- Inoculation of the pure culture into suitable lab animals should produce lesions of the disease
- It should be possible to reisolate the bacterium in pure culture from the lesions produced in the lab animals
- Specific antibodies to the bacterium should be demonstrable in the serum of the patients with the disease.

Molecular Koch Postulates

- Additional postulates added to original Koch's postulate by Stanley Falkow.
- The phenotype or property under investigation should be significantly associated with pathogenic strains of a species and not with non pathogenic strains.
- Specific *inactivation of the gene* or genes associated with the suspected virulence trait should lead to a measurable decrease in pathogenicity or virulence
- Reversion or replacement of the mutated gene with the wildtype gene should lead to restoration of pathogenicity or virulence.

Exception to Koch's Postulates

- Mycobacterium leprae cannot be cultured in vitro
- Treponema pallidum cannot be cultured in vitro
- Neisseria gonorrhea no animal model for experimental inoculation
- Partially satisfied Koch's postulates by Escherichia coli it showed bacterial pathogenicity in an in vitro model (Tissue cultures) rather than in an animal model.
- Rickettsia spp and Chlamydia spp It can be grown only in cell culture media and very difficult to grow in agar plates.

Remember

Koch's Phenomenon

- It is seen in tuberculosis.
- Koch observed that guinea pig that has already got infected with TB bacillus will produce a hypersensitivity reaction when it is injected with TB bacilli or protein - this is called Koch's phenomenon.

Organism Not satisfying the Koch's postulates	Organism Partially satisfying the Koch's postulates
Mycobacterium leprae	• Escherichia coli
 Treponema pallidum Neisseria gonorrhoege 	

Figure 3: Father of aseptic surgery – Joseph Lister

Remember

• •

- è Father of Microbiology
- Father of Medical Microbiology

Father of Chemotherapy

- Father of Aseptic Surgery
 - Joseph Lister – Paul Ehrlich

Louis Pasteur

Robert Koch

Table 1: Scientists and their contributions

Scientists	Contributions
Louis Pasteur (Father of Microbiology)	 Vaccine for rabies Vaccine for anthrax Technique of sterilization Disproved theory of spontaneous generation Proposed germ theory of disease Coined the term vaccine
	contd

MULTIPLE CHOICE QUESTIONS

History

1.	Germ theory of disease w	as pi	roposed by:	
			(Recent Pattern Nov15)	
	a. Louis Pasteur	b.	James Lind	13.
	c. Aristotle	d.	Pattenkoffer	
2.	Technique of sterilization	was	(Recent Pattern July 15)	
	a Bobert Koch	h	Edward Jenner	
	c. Louis Pasteur	d.	Lister	14
3.	Mycobacterium tubercul	osis	was discovered by:	17.
			(Recent Pattern Dec 13)	
	a. Louis Pasteur	b.	Robert Koch	
	c. Lister	d.	Jenner	
4.	Microscope was invented	by.		
	•		(Recent Pattern Aug 13)	
	a. Ronald Ross			
	b. Robert Koch			
	c. Antonie van Leeuwenh	loek		
	d. Louis Pasteur			
5.	Who discovered electron	mic	roscope?	
	a. Robert Koch	b.	Paul Ehrlich	
	c. Elie Metchnikoff	d.	Ernst Ruska	
Mic	roscopes			
6	Arrangement of lens from	1 eve	to source of light, in light	
0.	microscope:	1 0 J C	(Recent Pattern Dec 13)	
	a. Ocular lens: objective l	ens:	condenser lens	
	b. Subjective lens: ocular	lens	: condenser lens	15
	c. Condenser lens: object	ive l	ens: ocular lens	10.
	d. Subjective lens: conder	nser	lens: ocular lens	
7.	Light microscopy resolut	ion:	(PGI May 12)	
	a. 200 nm	b.	20 nm	
	c. 0.2 nm	d.	300 nm	
8.	Dark ground microscopy	is us	ed to see:	
	a. Refractile organism		(Recent Pattern Dec 14)	
	b. Flagella			
	c. Capsule			
	d. Fimbriae			
9.	Dye used for direct immu	nofl	uorescence:	
			(Recent Pattern Dec15)	
	a. India ink	b.	Nigrosine	
	c. Rhodamine	d.	Basic fuschin	
10.	Shadow casting is used in	:	(Recent Pattern Dec 16)	
	a. Light microscopy			
	b. Electron microscopy			
	c. Optical microscopy			
<u> </u>	d. Fluorescence microsco	ру		
11.	Bitringence polarization	micr	oscopy is used for:	
	171 11		(Kecent Pattern Dec 15)	
	a. Flagella	b.	Intracellular structures	
	c. Capsule	d.	spores	

- 12. Side chain theory for antibody production is proposed by (Recent Pattern 2017)

 by
 (Recent Pattern 2017)

 a. Robert Koch
 b. Paul Ehrlich

 c. Elie Metchnikoff
 d. Louis Pasteur
 - 3. Medium of travel in electron microscope
 - (Recent Pattern 2017)

a.	Air	b.	Water
c.	High vacuum	d.	Oil

14. Which method of diagnosis is shown here?

(AIIMS May 2018)

- a. Dark ground microscopy
- b. Phase contrast microscopy
- c. Flourescent microscopy
- d. Electron microscopy
- 5. Identify the condenser in the following microscope image: (AIIMS May 2018)

- a. Above the stage
- b. Below the stage
- c. Near the eyepiece
- d. Above the objective lenses

8

Chapter 1 • Introduction, History and Microscopes

ANSWERS AND EXPLANATIONS

1. Ans. (a) Louis Pasteur

Ref: Ananthanarayan and Paniker's Textbook of Microbiology, 10th ed, Page 3

• Louis Pasteur – Disproved the theory of spontaneous generation and postulated germ theory of disease.

2. Ans. (c) Louis Pasteur

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 3

 Pasteur is the one who introduced techniques of sterilisation like steam steriliser, hot air oven and autoclave

3. Ans. (b) Robert Koch

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 4

• Robert Koch discovered Mycobacterium tuberculosis and Vibrio cholerae

4. Ans. (c) Antonie van Leeuwenhoek

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 3

• Antonie Van Leeuwenhock – first time observed and reported bacteria with his simple hand made microscope

5. Ans. (d) Ernst Ruska

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 4

Ernst Ruska in 1934 developed the electron microscope

 to visualise viruses

6. Ans. (a) Ocular lens: objective lens: condenser lens

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 10

- Arrangement of lenses in bright field or light microscope is ocular lens in eye piece which is of 5X or 10X
- Objective lens which has low power (10X) , high power (45X) and oil immersion (100X) lenses
- Condenser lens is located in the diaphram which helps in focussing of lights from light rays
- Ocular lens \rightarrow Objective lenses \rightarrow Condenser lens

7. Ans. (d) 300 nm

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 11

- Resolving power of a microscope is the ability to differentiate two different objects as different
- It is limited by the wavelength of the light
- Limit of resolution of a light microscope is 300 nm

8. Ans. (b) Flagella

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 11

- Dark-field microscope is used to see very slender organisms like spirochaetes and to see the flagella
- While fimbriae can be demonstrated by hemagglutination

9. Ans. (c) Rhodamine

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 11

- Fluorescent dyes used in immunofluorescence are
 - Auramine
 - Rhodamine
 - Lissamine
 - FITC (M/c used) Fluorescein isothiocyanate

10. Ans. (b) Electron microscopy

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 12

- To visualize the organism under electron microscope two types of techniques are followed
 - Shadow casting
 - Negative staining with phosphotungstic acid

11. Ans. (b) Intracellular structures

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 12

Polarization microscope: To study the intracellular structures using differences in birefringence

12. Ans. (b) Paul Ehrlich

Ref: Essentials of Medical Microbiology – Apurba Sastry – Page 3

- Father of microbiology → Louis Pasteur
- Germ theory of disease, Nutrient broth, pasteurization of milk, autoclaving, hot air oven and steam sterilizer Louis Pasteur
- Father of antiseptic surgery \rightarrow Joseph Lister
- Introduction of solid media, pure culture techniques, anthrax bacilli, tubercle bacilli, cholera bacilli, Koch's phenomenon → **Robert Koch**
- Father of chemotherapy → Paul Ehrlich
- Acid fast nature of tubercle bacillus, toxin-antitoxin interaction called as Ehrlich phenomenon, side chain theory for antibody production
- Phagocytosis → Elie Metchnikoff

Streptococci

- Many species comes under family of Streptococci
- The species are classified based on certain properties as given below.

Table 1: Classification of Streptococci

Based on hemolysis in blood agar	 Alpha hemolytic - Viridans group Beta hemolytic Gamma (no hemolysis) – Enterococcus group
Beta hemolytic is classified based on the <i>carbohydrate</i> <i>antigen (Lancefield grouping)</i>	A to V (Except I and J) Group A – Eg: <i>Streptococcus</i> pyogenes
Group A Streptococci – classified based on <i>M protein</i> (Griffith typing)	80 types

$\begin{array}{c|c} Streptococcus\\ \hline \\ Based on hemolysis\\ \hline \\ (Partial hemolysis)\\ \hline \\ Alpha hemolytic streptococci\\ E.g.1. S. pneumoniae\\ E.g.2. S. viridans\\ \hline \\ \end{array}$

Figure 1: Classification of streptococcus based on hemolysis

Table 2: Different species of streptococci

Species	Lancefield group	Type of hemolysis	Laboratory tests
S. pyogenes	A	Beta	Bacitracin sensitive; PYR test positive; Ribose not fermented
S. agalactiae	В	Beta	CAMP test positive; hippurate hydrolysis
Viridans – S. mitis S. mutans S. salivarius S. sanguinis	Not typed	Alpha Ded	Optochin resistant
Enterococcus sp	D	No hemolysis- gamma	PYR positive; Growth in 6.5% NaCl
Non- enterococcus sp	D	No hemolysis -gamma	No growth in 6.5% NaCl

Figure 2: Strains of β-hemolytic streptococci

STREPTOCOCCUS PYOGENES (GAS)

- Gram-positive cocci
- Arrangement: In pairs and chains
- Key test for identification: Catalase test negative, Beta type of hemolysis, Bacitracin test sensitive.

Virulence Factors

- Capsule: Helps in the inhibition of phagocytosis
- Carbohydrate antigen: This antigen is responsible for cross reactivity leading to autoimmunity
- Protein antigens: (MTR)
 - M proteins Griffith typing; helpful in virulence
 - T proteins not associated with virulence
 - R proteins not associated with virulence
- Pili made up of M proteins and lipoteichoic acid

Toxin Secreted by Streptococcus Pyogenes

- Erythrogenic, Dick or scarlational toxin:
 - Intradermal injection into susceptible individuals
 - Produce an erythematous reaction (Dick test)
 - Effect of toxin is seen by induction of fever
 - Three types are there– A, B, C
 - A and C Phage coded; B Chromosomal
- Hemolysins Streptolysin O and S.
 - *Streptolysin O*: Antibody to this appears post infections; ASO titer helps to diagnose; oxygen labile
 - Streptolysin S: Responsible for hemolysis seen around streptococcal colonies on the surface of blood agar plates; oxygen stable
- Streptokinase Fibrinolysin It is responsible for breaking down of fibrin barrier and spread of infections
- Deoxyribonucleases (Streptodornase, DNAse) depolymerization of DNA; helps to liquefy the thick pus; four types A, B, C, D; type B is the most antigenic; Demonstration of anti DNAse B antibody – retrospective diagnosis of S.pyogenes infection – especially in skin infections
- Hyaluronidase helps in the spread of infection along the intercellular spaces

Table 3: Diseases caused by Streptococcus pyogenes

Suppurative diseases Nonsuppurative diseases • Pharyngitis – most common • Acute rheumatic fever cause is S. pyogenes in Poststreptococcal children glomerulonephritis Scarlet fever Skin and soft tissue infections: Impetigo Pyoderma Cellulitis Necrotizing fasciitis • Toxic shock syndrome • Puerperal sepsis • Abscesses

Diseases caused by Streptococcus Pyogenes

Necrotizing Fasciitis

- Also called as hemolytic streptococcal gangrene
- Caused by M types 1 and 3 forming pyrogenic exotoxin A
- Because of extensive necroses: it is called as flesh eating bacteria
- Vancomycin is the DOC

Acute Rheumatic Fever

- It is a complication or post sequel of acute pharyngitis
- Occurs after 2-3 weeks of infection
- This is mainly an immunological mediated injury because of cross reactivity
- M protein present in *S. pyogenes* cross reacts with the antigens in the heart and joint tissues leading to injury
- Most important strains that cause RF are M types 5,18 and 24

Acute Glomerulonephritis

- It is a sequela of impetigo or sometimes pharyngitis
- Post-impetigo nephritogenic strains commonly involved are M types 49, 52, 53, 57, 58, 59, 60, 61
- Postpharyngitis nephritogenic strains are M types 3,4,12,21,25

Table 4: Antigenic cross reactivity

S.pyogenes	Human
Hyaluronic acid in capsule	Human synovial fluid
Cell wall proteins	Myocardium
Group A carbohydrates	Cardiac valves
Cytoplasmic membrane antigens	Vascular intima
Peptidoglycans	Skin antigens

Lab Diagnosis of *Streptococcus Pyogenes* (GAS) Infection

• Gram staining - shows Gram-positive cocci in pairs and chains

Figure 3: Gram-positive cocci in chains (Courtesy: CDC)

- Culture needs to be done in blood agar for identification of type of hemolysis *Streptococcus pyogenes* belongs to beta type of hemolysis;
- Key test is Bacitracin disk (0.04U) test all strains of S.pyogenes are sensitive to bacitracin.

74

A High Uield

Intrinsic Resistance to Enterococci:

- β-lactams (particularly cephalosporins and penicillinase resistant penicillins)
- Low concentrations of aminoglycosides

Table 6: Vancomycin resistant enterococci

- Clindamycin
- Fluoroquinolones
- Cotrimaxazole

A High Uield

Acquired Resistance to Enterococci:

- High concentration of β-lactams (alteration of PBPs of production of β-lactamase)
- Glycopeptides like Vancomycin and teicoplanin
- High concentration of aminoglycosides
- Tetracycline
- Erythromycin
- Fluoroquinolones
- Rifampin
- Chloramphenicol
- Fusidic acid

-					
Characteristics	Van A	Van B	Van C	Van D	Van E
Vancomycin MIC µg/mL	64 to >1000	4 to 1024	2 to 32	128	16
Teicoplanin MIC μg/mL	16–512	<0.5	<0.5	4	0.5
Most frequent species	E. faecalis E. faecium	E. faecalis E. faecium	E. casseliflavus E. gallinarum	E. faecium	E. faecalis
Genetic determinant	Acquired	Acquired	Intrinsic	Acquired	Acquired
Transferable	Yes	Yes	No	No	No

Treatment of Enterococcal Infections

- Ideal management needs mandatory antimicrobial susceptibility testing
- Combination group of antimicrobials should be started

Table 7: Treatment of Enterococcal infections

Endovascular infections	Ampicillin + Aminoglycoside (or) Ampicillin + Ceftriaxone
Non-endovascular bacteremia	Ampicillin alone or with aminoglycosides
Meningitis	Ampicillin + aminoglycoside/ceftriaxone
UTI	Fosfomycin DealCalea
VRE	High dose daptomycin +/- aminoglycoside (or) Linezolid (or) Quinupristin/Dalfopristin

MISCELLANEOUS STREPTOCOCCI

Group C Streptococci	 Mostly it causes infections in animals <i>S. equisimilis</i> is the most common human infection causing agent Causes pharyngitis and tonsillitis; also causes deep infections <i>S. equisimilis is the source of Streptokinase – which is helpful for thrombolysis in Myocardial infarction</i>
Nonenterococcal Group D Streptococci	 Most common organism is <i>S. bovis</i> Normal commensal in fecal flora Also causes UTI, SABE DOC – Penicillin
Group F Streptococci	 This group of Streptococci poorly grows in blood agar; it needs special incubation Proper incubation with CO₂ is needed – which gives pinpoint colonies in the agar media Hence it is called as '<i>minute streptococci</i>'

78

MULTIPLE CHOICE QUESTIONS

1. C-carbohydrate in Streptococcus haemolyticus is	12.	W
important for- (Recent Pattern Dec 2014)		vir
a. Lancefield classification		a.
b. Phagocytic inhibition		c.
c. Toxin production	13.	Cr
d. Hemolysis		
2. All are medically important streptococci except-		a.
(Recent Pattern Nov 2013)		b.
a. Strep pyogenes b. Strep agalactiae		c.
c. Strep equisimilus d. Strep salivarius		d.
3. CAMP test is positive for- (<i>Recent Pattern July 2015</i>)	14.	W
a. Group A streptococcus b. Group B streptococcus		
c. Group C streptococcus d. Group D streptococcus		a.
4. Griffith typing is done for- (Recent Pattern July 2016)		с.
a. Staphylococcus b. Streptococcus	15.	Sti
c. Meningococcus d. Gonococcus		
5. Group B beta hemolytic streptococci is-		a.
(Recent Pattern Dec 2012)		c.
a. Strep pneumonia b. Strep pyogenes	16.	Sti
c. Strep agalactiae d. Enterococcus		fol
6. Causative agent of acute rheumatic fever-		a.
(Recent Pattern July 2016)		c.
a. Group-A β-hemolytic streptococcus		d.
b. Group-B β -hemolytic streptococcus	17.	Sti
c. Group-C β -hemolytic streptococcus		
d. Group-D β -hemolytic streptococcus		a.
7. A child presents with sepsis. Bacteria isolated showed		b.
beta hemolysis on blood agar, resistance to bacitracin,		c.
and a positive CAMP test. The most probable organism		d.
causing infection is- (All India 2010)		e.
a. Streptococcus pyogenes	18.	Al
b. Streptococcus agalactiae		
c. Enterococcus		a.
d. Streptococcus pneumonia		b.
8. Bacitracin sensitivity is used to differentiate		с.
(Recent Pattern 2015)	10	d.
a. Group A <i>Streptococcus</i> from staphylococcus	19.	VII
b. Group A Streptococcus from other beta nemolytic		
		a.
c. Group A <i>Streptococcus</i> from gamma nemolytic strepto-	00	C.
	20.	-VVI
a. Group A <i>Streptococcus</i> from alpha hemolytic strepto-		rea
COCCI		а. ь
9. Thick pus of Streptococci is converted thin by enzyme-		D.
(Recent Pattern July 2010)		С. Л
a. DNAse D. Stieptokinase	21	u.
C. KNASE U. Coa peptidase	21.	30
hoings (Descrit Detterm Dec 2010)		•
o A b D		а. С
	9 9	М
U. U. U. U. U. II. Strento concerns a chore not horonicity by all	44.	1410
(Decort Determ Like 2017)		<i>РУ</i> 2
a M protein b Durotovin		с.
c Dili d Strentolycin O		с.
u. Sueptoryshi O		

12.	Which of the following factor is mainly responsible for			
	virulence in Streptococcu	S-	(Recent Pattern Nov 2014)	
	a. Carbohydrate	b.	Streptokinase	
	c. Streptodornase	d.	M protein	
13.	Crystal violet blood agai	r is	used for which bacteria-	
			(Recent Pattern Dec 2016)	
	a. Corynebacterium dipht	heri	ae	
	b. <i>Staphylococcus aureus</i>			
	c. β -hemolytic <i>streptococo</i>	cus		
	d. Meningococcus			
14.	Which toxin of Streptococ	cus	causes hemolysis-	
			(<i>PGI Nov 2014</i>)	
	a. Streptolysin O	b.	Streptolysin S	
	c. Streptodornase	d.	Hyaluronidase	
15.	Streptococcal cell wall pol	lysa	ccharide cross reacts with-	
			(Recent Pattern Dec 2016)	
	a. Myocardial muscle	b.	Cardiac valve	
	c. Endocardium	d.	Synovial fluid	
16.	Streptococcal toxic sho	CK	syndrome is due to the	
	following virulence factor	-	(Recent Pattern Dec 2014)	
	a. M protein	b.	Pyrogenic exotoxin	
	c. Streptolysin O			
17	d. Carbonydrate cell wall	h. a	nd atmisteriolly valated to	
17.	Streptorysin O functional	iy a	(DCL New 2014)	
	a Tatanalysin		(PGI NOV 2014)	
	a. Tetanoiysin			
	o. Strontolysin			
	d Clostridium porfringon	e to	vin	
	a Listeriolysin	5 10.		
18	All are true about Strento	000	rue excent.	
10.	An are true about strepto		(AIIMS May 2010, 2011)	
	a Streptodornase cleaves	DN	(IIIIII 0 IIII 2010, 2011)	
	h Streptolysin Q is active	in re	educed state	
	c Streptokinase is produc	red f	from serotype A. C. K	
	d. Pyrogenic toxin A is pla	smi	d mediated	
19.	Virulence factor of Group	A be	ta hemolytic Streptococci-	
			(Recent Pattern Dec 2014)	
	a. Protein M	b.	Protein T	
	c. Protein R	d.	Lipoteichoic acid	
20.	Which of the following	Str	eptococcal antigen cross	
	reacts with synovial fluid?		(Recent Pattern 2008)	
	a. Carbohydrate [Group A]		
	b. Cell wall protein	-		
	c. Capsular hyaluronic ac	id		
	d. Peptidoglycan			
21.	Scarlet fever is caused due	e to		
		(R	ecent Pattern August 2013)	
	a. Streptococci	b.	Staphylococci	
	c. Klebsiella	d.	Proteus	
22.	Most common age grou	ıp a	affected by Streptococcus	
	pyogenes-		(Recent Pattern Dec 2016)	
	a. <5 years	b.	5-15 years	
	c. 20-25 years	d.	30-40 years	

42. False about Gram-positive cocci is-

(Recent Pattern 2008)

- a. Staphylococcus saprophyticus causes UTI in females
- b. Most enterococci are sensitive to penicillin
- c. Nonpathogenic strains are coagulase negative
- d. Neonatal meningitis causing streptococci hydrolyses hippurate

43. Heating at 60°C for 30 minutes would isolate-

(Recent Pattern Dec 2014)

b. Bacitracin resistant

- a. Staphylococci b. Enterococci
- c. Micrococci d. Streptococci
- 44. Which of the following is/are feature of streptococcus agalactiae rather than staphylococcus aureus?
 - (PGI May 2018)
 - a. Catalase positive
 - c. Coagulase negative d. α hemolysis
 - e. β hemolysis

45. The following test is helpful in identification of: (AIIMS May 2018)

a. Staph aureusb. Strep pyogenesc. Clostridium botulinumd. Bacillus

ANSWERS AND EXPLANATIONS

1. Ans. (a) Lancefield classification

Ref: Ananthanarayan and Paniker's Textbook of Microbiology - 10th ed - Page 211

- Hemolytic Streptococci were classified by Lancefield serologically into groups based on the nature of a carbohydrate (C) antigen on their cell wall.
- These are known as Lancefield groups. A-H and K-V are twenty of them that have been identified and named so far.

2. Ans. (d) Strep salivarius

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 211 and 220.

- *S. salivarius* belongs to viridians group Streptococci. They are normal residents of the mouth.
- *S. pyogenes, S. agalactiae* and *S. equisimilis* are medically important Streptococci.

3. Ans. (b) Group B streptococcus

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 219

- CAMP test differentiates Group B Streptococci (GBS) (CAMP test positive) from other beta hemolytic Streptococci (Negative).
- An accentuated zone of hemolysis when *S. agalactiae* is inovulated perpendicular to a streak of *S. aureus* (Staphylococcus plazens streak producing beta lysin) grown on blood agar.
- Listeria monocytogenes is also CAMP test positive.

4. Ans. (b) Streptococcus

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 211

- Griffith typing is used for further classification of Streptococcus pyogenes, belonging to Lancefield group A.
- Based on M proteins on cell surface, they are subdivided into M types. Till now, about 80 types of *S. pyogenes* have been identified.

5. Ans. (c) Strep agalactiae

Ref: Ananthanarayan and Paniker's Textbook of Microbiology - 10th ed - Page 211

- S. agalactiae is group B beta hemolytic Streptococci.
- *S. pyogenes,* which is also beta hemolytic belongs to group A.

6. Ans. (a) Group-A β-hemolytic streptococcus

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 215

S. pyogenes is group A beta hemolyic Streptococcus which causes acute rheumatic fever and poststreptococcal glomerulonephritis as nonsuppurative diseases.

7. Ans. (b) Streptococcus agalactiae

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 211

• Beta hemolysis is produced both by *S. pyogenes* and *S.agalactiae. S.pyogenes* is sensitive to bacitracin

Haemophilus, Francisella and Pasteurella

HAEMOPHILUS

Haemophilus Influenzae

- Small, Gram negative, nonmotile bacilli
- It has characteristic growth requirements
- It needs two accessory growth factors called X and V
- It is aerobic and grows only in chocolate agar.

Table 1: Differences between factor V and factor X

FACTOR V	FACTOR X
It is not clotting factor five	It is not factor ten
Factor V – codes for NAD	Factor X codes for hemin
Heat labile	Heat stable

Satellitism

- *H. influenzae* depends on factor V and X for its growth
- When *S. aureus* is streaked across a plate in a straight line on blood agar that was inoculated with *H. influenzae* culture or specimen colonies grow well near the midline and fades toward the periphery due to availability of factor V that is produced in staphylococcus growth
- This phenomenon is called a satellitism.

Figure 1: Satellitism (Courtesy: CDC/ Dr. Mike Miller)

Antigenic Nature

- Three major antigens are:
- Capsular polysaccharide
- Outer membrane proteins
- Lipooligosaccharides

- Capsular polysaccharide is the most important virulence factor
- **Based on the capsule:** Pitman classified *H. influenzae* into six types: a to f
- **Type b** *H. influenzae* is unique in chemical structure by having pentose sugars while others have hexose sugars.
- **Hib antigen induces IgM, IgG and IgA** antibodies in human body; hence this antigen is being used for vaccination.
- Other strains who donot have any capsule antigens are called as nontypable strains

Pathogenicity

Table 2: Invasive and noninvasive infections

Invasive infections	Noninvasive infections
 <i>H. influenzae</i> acts a primary pathogen and causes invasive infections Mostly seen in children 	 Infections are caused secondary to some other infections Usually seen in adults
 Caused by capsulated strains The most important is meningitis 	 Caused by noncapsulated or nontypable strains Causes otitis media,
 It also causes laryngo epiglottitis, conjunctivitis, bacteremia, pneumonia, arthritis, endocarditis and 	sinusitis, exacerbations of chronic bronchitis

Clinical Features

pericarditis

- Meningitis is the most-common manifestation seen in children less than 2 years of age
- Fevers and altered CNS manifestations are seen
- The most common complication is subdural effusion.
- Epiglottitis is a life-threatening infections that is caused in 2–7 years old
- Cellulitis is also caused especially in head and neck
- It causes pneumonia in infants.

Table 3: Diseases caused by H. influenzae in specific age group

H. influenzae in age group	Disease
Infants	Pneumonia
< 2years	Meningitis
2-7 years	Epiglottitis

Laboratory Diagnosis

- Specimens are usually CSF in meningitis and sputum in pneumonia
- Culture is done in:
- Chocolate agar
- Satellitism demonstration in blood agar
- Levinthal's medium shows clear transparent medium with translucent colonies
- Filde's peptic digest agar
- Serological tests: Latex agglutination test in CSF and urine.

Treatment

- DOC: Ceftriaxone or cefotaxime
- Administration of glucocorticoids to patients with Hib meningitis reduces the incidence of neurological sequelae
- Immunoprophylaxis:
 - Two conjugate vaccines are available
 - All children should be immunized with Hib conjugate with first dose within 2 months of age (HibPRP vaccine)
 - There is no vaccine available for nontypable strains
 - Chemoprophylaxis for contacts Rifampicin

Remember

- Childhood otitis media:
- Nontypable H. influeanzae (Most common)
- Streptococcus pneumoniae
- Moraxella catarrhalis

Haemophilus Ducreyi

- It is the causative agent for chancroid
- Gram-negative bacilli that needs only Factor X
- Infection is acquired through sexual route
- Incubation period is 4–7 days
- An initial papular lesion develops which then becomes pustule and ruptures formed ulcers; these ulcers are painful

Painful ulcers – Chancroid	Haemophilus ducreyi
Painless ulcers - Chancre	Treponema pallidum

🖉 #igh **U**ield

- Probable diagnosis of chancroid are made under following conditions:
 - One or more painful genital ulcers
 - No evidence of *Treponema pallidum* as seen by dark field examination
 - No evidence of syphilis done by serological tests (7 days after ulcer onset)
 - Clinical evidence of chancroid
 - Negative test for Herpes

Treatment

- Any one can be taken from the following drugs:
 - Single dose of 1 g of azithromycin
 - Ceftriaxone IM single dose
 - Ciprofloxacin bd for 3 days

Table 4: Important points in all species of Haemophilus

Haemophilus influenzae (Pfeiffer's bacillus)• Gram negative, capsulated, pleomorphic bacilli • Required factor X and V for growth • Factor X – hemin/porphyrin • Factor V – NAD/NADP • Does not grow on blood agar; grows only in chocolate agar • Culture media – Levinthal's medium • Satellitism – due to high concentration of factor V in Staph aureus – released in the medium – helps in the growth of H. influenzae • Major virulence factor – Capsulated polysaccharide • Invasive – meningitis – Most commonly by capsulated stains of group b – (Hib) – in <2 years of age • Most common cause of acute epiglottitis • Noninvasive – Otitis media and sinusitis – caused by noncapsulated – nontypeable strainsHaemophilus aegyptius• Also knows as Koch's Weeks bacillus • Causes Brazilian purpuric fever • Pink eye – ConjunctivitisHaemophilus ducreyi• Bipolar staining • School of fish / Rail road track appearance • Chocolate agar enriched with isovitale X and fetal calf serum with Vancomycin • Causes Chancroid or soft sore – painful and non indurated • DOC – single dose azithromycin		
Haemophilus parainfluenzae • Requires only Factor V Haemophilus aegyptius • Also knows as Koch's Weeks bacillus • Causes Brazilian purpuric fever • Pink eye – Conjunctivitis Haemophilus ducreyi • Bipolar staining • School of fish / Rail road track appearance • Chocolate agar enriched with isovitale X and fetal calf serum with Vancomycin • Causes Chancroid or soft sore – painful and non indurated • DOC – single dose azithromycin	Haemophilus influenzae (Pfeiffer's bacillus)	 Gram negative, capsulated, pleomorphic bacilli Required factor X and V for growth Factor X – hemin/porphyrin Factor V – NAD/NADP Does not grow on blood agar; grows only in chocolate agar Culture media – Levinthal's medium Satellitism – due to high concentration of factor V in <i>Staph aureus</i> – released in the medium – helps in the growth of <i>H. influenzae</i> Major virulence factor – Capsulated polysaccharide Invasive – meningitis – Most commonly by capsulated stains of group b – (Hib) – in <2 years of age Most common cause of acute epiglottitis Noninvasive – Otitis media and sinusitis – caused by noncapsulated – nontypeable strains
 Also knows as Koch's Weeks bacillus <i>Causes Brazilian purpuric fever</i> Pink eye – Conjunctivitis Bipolar staining School of fish / Rail road track appearance Chocolate agar enriched with isovitale X and fetal calf serum with Vancomycin Causes <i>Chancroid or soft sore</i> – painful and non indurated DOC – single dose azithromycin 	Haemophilus parainfluenzae	Requires only Factor V
 Bipolar staining School of fish / Rail road track appearance Chocolate agar enriched with isovitale X and fetal calf serum with Vancomycin Causes <i>Chancroid or soft sore</i> – painful and non indurated DOC – single dose azithromycin 	Haemophilus aegyptius	 Also knows as Koch's Weeks bacillus <i>Causes Brazilian purpuric fever</i> Pink eye – Conjunctivitis
	Haemophilus ducreyi	 Bipolar staining School of fish / Rail road track appearance Chocolate agar enriched with isovitale X and fetal calf serum with Vancomycin Causes <i>Chancroid or soft sore</i> – painful and non indurated DOC – single dose azithromycin

Table 5: Growth factors in Haemophilus species

Species	Growth factors
Haemophilus influenzae, H. aegyptius, H. haemolyticus	Factor X and V
Haemophilus parainfluenzae, H. parahemolyticus, H. paraphrophilus	Factor V
H. ducreyi, H. aphrophilus	Factor X

MULTIPLE CHOICE QUESTIONS

a. Requires factor X and	d V for growth	a. <i>H. ducreyi</i>	b. <i>T. pallidium</i>	
b. Rarely presents as n	neningitis in children less than 2	c. Gonococcus	d. HSV	
c Cancular polypontido protoin is recoonsible for		10. School of fish appearance is characteristic		
	de protein is responsible for	a Bordotalla portussi	(<i>Keceni Pulle</i>	
d M C invasive disease	of <i>H</i> influenza is meningitis	a. Doructena pertussi b. Versinia enterocoli	tica	
2 The major antigenic de	terminant of H influenza is	c Haemonhilus ducr	inca ovi	
2. The major antigeme ue	(Recent Pattern Dec 2014)	d Legionella	cyı	
a M protein	(necent i unern Dec 2014)	11 Pasteurella multocida	a is transferred hv	
h Cansular polysaccha	ride		(Recent Patter	
c Catalase	inte	a Aerosols	h Animals	
d. Coagulase		c. Sexual	d. Transplacent	
3. Agar media used for H.	influenza -	12. Most common mode	of transmission of Pa	
	(Recent Pattern Dec 2015)	tocida is:	(Recent Patte	
a. Blood agar	b. Chocolate agar	a. Animal bites or scr	atches	
c. Tryptose agar	d. BYCE agar	b. Aerosols or dust		
4. Satellitism is seen in cu	ltures of:	c. Contaminated tissue		
	(Recent Pattern Dec 2016)	d. Human to human		
a. Hemophilus	b. Streptococcus	13. True statement about	t genital ulcer: (P	
c. Klebsiella	d. Proteus	a. Donovanosis- Pain	ful and multiple lesion	
5. Not caused by non typa	ble Hib: (AIIMS Nov 2014)	b. Granuloma inguin	ale is donovanosis	
a. Meningitis	b. Otitis media	c. Haemophilus ducr	eyi causes chancroid	
c. Puerperal sepsis	d. Exacerbation of COPD	d. Systemic feature co	ommon in primary sypł	
6. True about H. influenza	a: (Recent Pattern Dec 2012)	H. ducreyi infection	1	
a. Grown on sheep bloc	od agar and CO ₂	e. Primary syphilis-Pa	ainful and indurated pa	
b. It is not capsulated		14. A patient is presentin	g with multiple painf	
c. Invasive strain is most common		discharging inguinal	lymphadenopathy.	
d. Gram positive		following finding is su	aggestive of this diseas	
7. Brazilian purpuric feve	r is caused by:		(Р	
	(Recent Pattern Dec 2016)	a. Demonstration of s	school of fish appearan	
a. Bordetella pertussis		b. Culture of H. ducr	eyi from an aspirate o	
b. Hemophilus aegyptic	rus	lymph nodes		
c. Hemophilus ducreyi		c. Microscopic identi	fication of Donovan bo	
d. Hemophilus parainfl	uenzae	smear		
8. Which of the following	hemophilus doesn't require Fac-	d. Evidence of Trepo	onema pallidum infect	
tor V:	(Recent Pattern Dec 2015)	field examination of	of ulcer exudate	
a. <i>H. parainfluenzae</i>	b. <i>H. influenza</i>	e. Herpes simplex vir	us in the ulcer exudate	
c. H. ducreyi	d. H. aegypticus			

1. About H. influenza all true, except:

(AIIMS Nov 2010)	9. Chancroid is caused by:	(Recent Pattern Dec 2014)
	a. <i>H. ducreyi</i>	b. <i>T. pallidium</i>
hildren less than 2	c. Gonococcus	d. HSV
	10. School of fish appearance	is characteristic of:
s responsible for		(Recent Pattern July 2016)
-	a. Bordetella pertussis	
<i>i</i> is meningitis	b. Yersinia enterocolitica	
I. influenza is:	c. Haemophilus ducreyi	
Pattern Dec 2014)	d. Legionella	
	11. Pasteurella multocida is ti	cansferred by:
		(Recent Pattern June 2014)
	a. Aerosols	b. Animals
	c. Sexual	d. Transplacental
	12. Most common mode of tra	ansmission of Pasturella mul-
Pattern Dec 2015)	tocida is:	(Recent Pattern Dec 2016)
ate agar	a. Animal bites or scratche	es
gar	b. Aerosols or dust	
	c. Contaminated tissue	
Pattern Dec 2016)	d. Human to human	
coccus	13. True statement about gen	ital ulcer: (PGI Nov 2017)
5	a. Donovanosis- Painful a	nd multiple lesion
(AIIMS Nov 2014)	b. Granuloma inguinale is	donovanosis
nedia	c. Haemophilus ducreyi c	auses chancroid
bation of COPD	d. Systemic feature commo	on in primary syphilis and
Pattern Dec 2012)	<i>H. ducreyi</i> infection	
	e. Primary syphilis-Painfu	l and indurated papule
2	14. A patient is presenting with	th multiple painful ulcers and
	discharging inguinal lym	phadenopathy. Which of the
	following finding is sugges	stive of this disease:
		(PGI Nov 2017)
Pattern Dec 2016)	a. Demonstration of schoo	ol of fish appearance of bacilli
	b. Culture of H. ducreyi fi	com an aspirate of suppurative
	lymph nodes	
	c. Microscopic identificati	on of Donovan bodies in tissue
	smear	
oesn't require Fac-	d. Evidence of Treponem	a pallidum infection by dark-
Pattern Dec 2015)	field examination of ulc	er exudate

ANSWERS AND EXPLANATIONS

1. Ans. (c) Capsular polypeptide protein is responsible for virulence

Ref: Ananthanarayan and Paniker's Textbook of Microbiology - 10th ed - Page 334

• There are three main surface antigens: (a) The major antigenic determinant of capsulated strains is the capsular polysaccharides based on which H. influenzae strains have been classified into six capsular types - a to f. Type b contains pentose sugars ribose and ribitol instead of hexoses and hexosamines as in the other five serotypes. Its called Polyribosylribitol phosphate antigen. (b) Outer membrane protein antigens. (c) Lipooligosaccharides (LOS).

2. Ans. (b) Capsular polysaccharide

Ref: Ananthanarayan and Paniker's Textbook of Microbiology - 10th ed - Page 334

• Already explained in Q.1

3. Ans. (b) Chocolate agar

Ref: Ananthanarayan and Paniker's Textbook of Microbiology - 10th ed - Page 336

• Chocolate agar is made by heating blood agar due to which the V factor is released from within the erythrocytes and it becomes the best agar media for growing H.influenzae.

150

•

•

•

Figure 1: Bacteriophage

Bacteriophages are the viruses that infect bacteria

Discovered by Twort and d' Herelle

MORPHOLOGY

Bacteriophages

• Tail is made of core with contractile sheath and prongs and tail fibers.

LIFE CYCLE

1. Virulent or Lytic cycle

2. Temperate or Lysogeny cycle

Virulent or Lytic Cycle

A virulent phage uses the cellular apparatus of its bacterial host for multiplication, typically resulting in cell lysis (for obligatory lytic phages) and release of progeny virions

Temperate Cycle or Lysogeny Cycle

Temperate phages have alternative replication cycles: A productive, lytic infection or a reductive infection, in which the phage remains latent in the host, establishing lysogeny.

Figure 2: Lytic and lysogenic cycle of bacteriophage

Introduction to Parasitology

INTRODUCTION

- A parasite is an organism that lives on another organism for nutrition
- Types of parasites:
 - Ectoparasites: The Parasites that live on the outer surface of the host E.g. Lice—this condition is called as *infestation*.
 - **Endoparasites:** Parasites that live within the host, -e.g. Plasmodium— this condition is called as *infection*.

Table 1: Categories of parasites

Obligate parasites	These parasites cannot exist without host e.g. <i>Toxoplasma</i>
Facultative parasites	These parasites can live freely also e.g. <i>Naegleria</i>
Accidental parasites	They attack human as unusual host, e.g. <i>Echinococcus</i>
Aberrant parasites	Some parasites when entering the host (called as paratenic host)—enters a site where they cannot live or develop further—called as aberrant, e.g. Toxocara causing larva migrans

- Organisms that gives shelter and nutrition to parasite are called as hosts
- Types of hosts:
 - **Definitive host:** Host that harbors adult parasite; Host where *sexual reproduction* occurs
 - Intermediate host: Host that has the *asexual forms* of parasites
- Parasites are broadly classified as:
 - Protozoa
 - Helminths

PROTOZOOLOGY

- All protozoa are unicellular *eukaryotes*
- Single cell performs all the functions
- Most of the protozoa are < 50 μm size *except Balantidium coli which is* >100 μm
- All the protozoan nucleus are vesicular except B. coli
- Stages of protozoa are trophozoites and cyst.

Intestinal Amoebae

- Group of Amoeba that attacks the intestine with unique morphological features of naked cytoplasm and lobose pseudopodium comes under intestinal Amoeba
- **Based on the pathogenicity:** Amoebae are classified into pathogenic and nonpathogenic Amoebae

High Uield

- How to differentiate pathogenic and nonpathogenic Amoeba:
 - By zymodeme pattern
 - Zymodeme: It is a group of Amoeba strains that share the same electrophoretic pattern and mobility for different enzymes
 - Enzymes used are:
 - L–malate
 - NADP⁺ oxidoreductase
 - Glucose phosphate isomerase
 - Hexokinase
 - Phosphoglucomutase
 - Based on these–Amoeba which come under seven populations namely 2, 6, 7, 11, 12, 13, 14 are pathogenic (total zymodemes = 24)

Pathogenic Amoeba	Entamoeba histolytica
Nonpathogenic Amoeba	E. dispar, E.coli, E.hartmanni, E. moshkovskii, E. gingivalis, E. polecki

ENTAMOEBA HISTOLYTICA

- Lives in *large intestine (Caecum)* of man
 - Three morphological forms:
 - Trophozoite
 - Precyst
 - Cyst
- Definitive host: Human beings
- Infective form: Mature quadrinucleate cyst
- Source of infection: Contaminated food by ingestion (fecal oral route), anal sexual transmission, through *vectors like cockroaches* and flies.

- Intestinal Amoebaisis— the *most common type is asymptomatic cyst passage.*
- Symptomatic amoebic colitis can present as lower abdominal pain, mild diarrhea, malaise, weight loss.
- Fecal material is full blown with bad odor; no blood or scanty blood is seen.
- Sometimes patients may go for **toxic megacolon** leading to bowel dilation.

Complications

- The most common form of extra intestinal amoebiasis is *Amoebic liver abscess (ALA);* patients have characteristic fever with right upper quadrant pain. Some has pleural effusion. In case of endemicity and PUO are seen, Amoebic liver abscess must be ruled out.
- The most common complication of ALA is pulmonary amoebiasis (Pleuropulmonary involvement). Manifestations seen are sterile effusions, or spread from liver due to rupture.
- Genital and cerebral involvement also can occur in extreme cases.

Figure 4: HPE in intestinal amoebiasis showing many trophozoites (Courtesy: CDC/Dr Mae Melvin)

Diagnosis by Wet Mount

- Saline preparation: Motile trophozoites seen
- **Iodine preparation:** Trophozoites (motility can not be seen) and cysts seen

Culture of E. Histolytica

- **Polyxenic culture:** Means culture is done in the presence of a bacteria—Boeck and Drbohlav egg serum medium (first medium used for culture of *E. histolytica*)
- Axenic culture-bacteria free culture: Its uses are
- Pathogenicity of Amoeba can not be studied
- In vitro anti Amoeba drug susceptibility
- Antigen preparation

Medium used for isolation of E. histolytica are:

- Boeck and Drbohlav medium
- Balamuth's medium
- Diamond's medium
- Philip's medium
- Jones medium

Invasive form	Trophozoite
Infective form	Cyst

Table 2: Identification of the morphological forms

Trophozoite	Cyst
 Invasive and growing stage It is motile with the help of pseudopodium Nucleus is eccentric in position Karyosome is central in position 	 Infective form Immature cyst has glycogen mass and chromatoid bodies Mature cyst is quadrinucleate

- Nuclear membrane has fine chromatin granules
- It has ingested RBCs (called as erythrophagocytosis)

Serological Test

- Mainly used to diagnose invasive amoebiasis-extra intestinal
- Indirect hemagglutination test
- ELISA-most sensitive and specific test: Detects stool antigen (*Copro antigen*)-antigen positive means recent infection
- Serum showing antibody *titer of 1:128* is diagnostic of ALA
- But antibody detection is not helpful to diagnose recent or past infection

Additional Lab Features

- Helps to differentiate from bacillary dysentery
- **Stool microscopy:** Few pus cells, RBCs agglutinated, Charcot Leyden crystals are present
- Blood smear: No/mild leucocytosis
- WHO recommendation for diagnosis of intestinal amoebiasisspecific tests needs to be done; Hence *stool microscopy is not confirmative.*

Treatment

- Amoebic dysentery: Metronidazole, emetine hydrochloride
- ALA: Metronidazole, Dihydroemetine, chloroquine
- Asymptomatic cyst passers: Metronidazole, diloxanide furoate, tetracycline
- Metronidazole is the DOC for ameobic liver abscess.

Hemoflagellates

Table 1: Important Hemoflagellates

Leishmania	 Leishmania donovani Leishmania tropica Leishmania mexicana 	
	 Leishmania braziliensis 	
Trypanosoma	• Trypanosoma cruzi	
	Trypanosoma brucei gambiense	
	Trypanosoma brucei rhodesiense	

FEATURES OF HEMOFLAGELLATES

They all have a kinetoplast-which is a DNA carrying organelle

- They are pleomorphic-variety of stages are seen morphologi-• cally
- They live in blood and tissue
- Presence of undulating membrane

Table 2: Stages of Hemoflagellates

Amastigotes and Promastigotes	Leishmania
Amastigote	Trypanosoma cruzi
Epimastigotes and Trypomastigotes	Trypanosoma brucei and
	cruzi

TRYPANOSOMA

- Flagellate that infects humans and are found in blood and lymph nodes
- They are elongated in shape with a central nucleus and kinetoplast-which contains DNA and mitochondria
- An undulating membrane originates from the kinetoplast
- A single flagellum is seen at the anterior end-organism is motile

Trypanosoma c ruzi	Chagas disease (American trypanosomiasis)
Trypanosoma brucei	Sleeping sickness (African trypanosomiasis)

Figure 1: Life cycle of Trypanosoma cruzi (Courtesy: CDC/ Alexander J. da Silva, PhD, Melanie Moser)

TRYPANOSOMA CRUZI

- Zoonotic disease-seen in South America
- Not seen in India
- Three main developmental forms are:
 - Amastigotes
 - Trypomastigotes
 - Epimastigotes
- *Definitive host:* Humans and other vertebrates
- Intermediate host: Reduviid bugs

Table 3: Location of morphological forms

Amastigotes	Reticulo endothelial system, muscles, mononuclear phagocytes
Non multiplying trypomastigotes	Peripheral blood
Multiplying trypomastigotes	Reduviid bug
Epimastigotes	Reduviid bug

- Infective form to man is metacyclic trypomastigotes
- Apart from vector transmission, Trypanosoma is transmitted by:
 - Blood transfusion
 - Transplacental transfusion
 - Organ transplantation
 - Laboratory accidental inoculation

Clinical Features

- Chaga's disease is most commonly seen in infants and children
- At the bite area-a localized edema and erythema occurs named as *Chagoma*
- Followed by local lymphadenopathy
- In *Acute Chaga's disease*-when the site of inoculation is in conjunctiva-it leads to unilateral painless edema of the eye named as *Romana's sign*
- Complications of acute disease are:
 - Myocarditis
 - Meningoencephalitis
- In Chronic Chaga's disease-it causes: (Mega disease)
 - Cardiomyopathy-heart block
 - Mega colon
 - Megaoesophagus
 - Colopathy
 - Sudden death occurs due to ventricular fibrillation

Diagnosis

- Wet mount of anticoagulated blood-shows motile trypomastigotes
- Thick or thin blood smear preparation is done-to see the morphology clearly
- Blood culture done in NNN medium
- The only confirmatory method to diagnose chronic chagas disease is xenodiagnosis (Using bugs); Serological methods also help to diagnose chronic chagas disease
- Animal inoculation-intraperitoneally into mice

Figure 2: Amastigotes of *Trypanosoma cruzi* (*Courtesy:* CDC/Dr AJ Sulzer)

Treatment

- Nifurtimox
- Benznidazole
- Gentian violet

TRYPANOSOMA BRUCEI

- **Trypanosoma brucei has two subspecies:** gambiense and rhodesiense
- Seen in Africa; Not in India
- Morphological forms are trypomastigotes and epimastigotes (No amastigotes)

Trypomastigote	Humans and other vertebrates
Epimastigote	Tsetse fly

- Definitive host: Humans and other vertebrates
- Intermediate host: Tsetse fly (Glossina)
- Infective form: Metacyclic trypomastigote

Clinical Features

Table 4: Clinical Features of different subspecies of T.brucei

T.	brucei gambiense	T.brucei rhodesiense
•	Causes West African trypanosomiasis	 Causes East African trypanosomiasis
•	Winterbottom sign is seen- cervical lymphadenopathy	 Less common lymphadenopathy

- After the bite from the fly a chancre develops at the site-then leads to hemolymphatic spread followed by CNS spread
- CNS stage leads to sleeping sickness

Table 5: Differentiating features of West African and East African trypanosomiasis Image: State Sta

Features	West African trypanosomiasis	East African trypanosomiasis
Causative agent	T. brucei.gambiense	T. brucei.rhodesiense
Vector	Tsetse flies	Tsetse flies
Reservoir	Humans	Antelope and cattle
Type of illness	Chronic CNS disease	Acute CNS disease
Lymphadenopathy	Prominent	Minimal
Parasitemia	Low	High

301

Endemic/Systemic Mycoses

CHARACTERISTICS

- Most of the infections are caused by soil fungi
- Systemic infections are caused by dimorphic fungi.

Blastomyces dermatitidis

Paracoccidioides brasiliensis

Coccidioides immitis

Histoplasma capsulatum

BLASTOMYCOSIS

- Causative agent: Blastomyces dermatitidis
- Telemorph stage (sexual stage): Ajellomyces dermatitidis
- **Region:** North America (*North American blastomycosis*)
- Source of infection is soil
- Mode of infection is inhalation fungal spores enters the body through inhalation from the soil and then goes to lungs. Alveolar macrophages and polymorphonuclear leukocytes are most needed for phagocytosis and killing of inhaled conidia.
- Conidia upon entering inside the body, at body temperature (37°C) it gets converted into thick walled yeast which are difficult to kill by phagocytosis.
- This conidia to yeast phase conversion leads to expression of protein called as *BAD-1 (virulence factor)*
- It causes acute pulmonary infection (resembles that of TB/ histoplasmosis)
- *Pulmonary* presentation may be asymptomatic; sometimes consolidation and abscess can occur
- Fungus then spreads to the blood and to various organs (Disseminated blastomycosis)
- In *cutaneous blastomycosis*, a papule occurs followed by nodule develops leading to ulcerative lesions; Site is usually skin of face or hands; Two types of skin diseases are seen:
 - Verrucous blastomycosisUlcerative blastomycosis
- It also causes *osteomyelitis,* which usually affects vertebrae, sacrum, pelvis, skull and ribs.
- CNS blastomycosis presents as brain abscess.

Laboratory Diagnosis

- Body tissue/Culture at 37°C shows Yeast phase single broad bud with double contoured wall
- Culture at 25°C (Room temperature) shows Septate hyphae with round to oval conidia

Figure 1: Cutaneous lesions of Blastomycosis (Courtesy: CDC/ Dr. Lucille K. Georg)

• Antigen detection in urine is more sensitive than in serum.

Treatment

Table 1: Treatment of blastomycosis

Patient condition	Type of disease	Treatment
Immunocompetent patient/life	Pulmonary	Lipid AmB or Itraconazole
threatening disease	Disseminated CNS	Lipid AmB or fluconazole
	Disseminated Non - CNS	Lipid AmB or itraconazole
Immunocompetent patient/ non-life threatening disease	Pulmonary or disseminated non CNS	Itraconazole or fluconazole or ketoconazole
Immuno- compromised	All infections	Lipid AmB or AmB deoxycholate

PARACOCCIDIOIDOMYCOSIS

- Causative agent: Paracoccidioides brasiliensis
- Region: South America (South American blastomycosis)
- Source of infection is soil
- Mode of infection is inhalation
- **Fungal spores are inhaled:** Primary pulmonary infection spreads through blood to *mucosa* of nose, mouth, GIT, skin, lymphatics

Chapter 50 • Endemic/Systemic Mycoses

- *H.capsulatum.var.duboisii* responsible for *African histoplasmosis*
- Source of infection is soil, rotting trees, birds
- Mode of infection is inhalation of microconidia
- Inhalation of spores pulmonary entry

Clinical Features

- In immunocompetent individuals with low level of exposure infections are usually mild and self-limiting
- Most of the adults in endemic area have 50-80% positive skin tests suggest that they had mild infections.
- Heavy exposure leads to flu like illness with CXR showing pneumonitis with hilar or mediastinal lymphadenopathy.
- **Classical histoplasmosis** asymptomatic heal with just a miliary calcification
- DD: Tuberculosis
- **Progressive Disseminated histoplasmosis (PDH)** occurs only in immunocompromised individuals which affects *Reticuloendothelial system* (intracellular infection) and it is highly fatal

Risk factors for PDH are:

- AIDS with CD4 counts less than 200/uL
- Extremes of age
- Immunosuppressive drug therapy
- Inflammatory diseases
- Lymphadenopathy, hepatosplenomegaly, fever, anaemia occurs
- African histoplasmosis affects skin, subcutaneous tissues and bones; *lungs infection* and dissemination is *very rare*.
- Chronic cavitary histoplasmosis (resembles TB) is seen in smokers.
- In healed histoplasmosis the calcified mediastinal nodes or lung parenchyma erodes the airways and causes hemoptysis. This condition is called as *broncholithiasis*.

Laboratory Diagnosis

- Gold standard for diagnosis is fungal culture
- Cultures are positive in 75% cases of PDH and chronic pulmonary histoplasmosis

- Specimens from tissues shows yeast cells which are seen within phagocytic cells (intracellular)
- Growth at 37°C produces yeast cells
- Room temperature Spores with tubercles (finger like projections)
- Detection of histoplasma antigen in body fluids helps in diagnosis of PDH and acute diffuse pulmonary histopladmosis.
- Histoplasmin skin test helps in endemic area to know the disease burden.

Figure 4: Tuberculate spores (Courtesy: CDC)

Treatment

Table 4: Treatment of histoplasmosis

omegaly, fever, anaemia	Type of histoplasmosis	Treatment
skin, subcutaneous tissues ssemination is <i>very rare.</i> (resembles TB) is seen in	Acute pulmonary illness with diffuse infiltrates	Lipid amphotericin B ± glucocorticoids for 1-2 weeks Followed by Itraconazole for 12 weeks
cified mediastinal nodes or ays and causes hemoptysis. olithiasis .	Chronic/Cavitary pulmonary	Itraconazole bd for at least 12 months
magel culture	Progressive disseminated	Lipid amphotericin B for 1-2 weeks followed by Itraconazole for 12 weeks
uses of PDH and chronic	Central nervous system	Lipid amphotericin B for 4-6 weeks
	involved	followed by Itraconazole for 12 months

Unit 5 • Mycology

MULTIPLE CHOICE QUESTIONS

- 1. Which of the following is not an endemic mycosis: (Recent Pattern Dec 2013) a. Histoplasmosis b. Blastomycosis c. Cryptococcosis d. Candidiasis 2. Darling disease is caused by (Recent Pattern Dec 2012) a. Histoplasma b. Candida c. Cryptococcus d. Rhizopus 3. "Tuberculate spores" are characteristic feature of (Recent Pattern Dec 2014) b. Histoplasma a. Candida c. Coccidioidomycosis d. Cryptococcus 4. Fungus that infects reticuloendothelial cells is: (Recent Pattern July 2016) a. Cryptococcus b. Candida c. Aspergillus d. Histoplasma 5. Valley fever or desert rheumatism is caused by (Recent Pattern Dec 2013) a. Sporothrix b. Coccidioides c. Phialophora d. Histoplasma
- 6. Apatient with HIV develops diarrhean fecal examination shows Isospora belli. He was given treatment with TMP-SMX. Diarrhea subsided but fever persisted. Bone marrow examination showed the following picture with an intracellular fungi. Which of the following is wrong statement:

- a. It cannot be grown in SDA
- b. Spores are infective form
- c. It is intracellular budding yeast
- d. It can cause systemic disease

ANSWERS AND EXPLANATIONS

1. Ans. (d) Candidiasis

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 609

- Blastomyces dermatitidis
- Paracoccidioides brasiliensis
- Coccidioides immitis
- Histoplasma capsulatum
- Cryptococcus sp

2. Ans. (a) Histoplasma

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 609

- Histoplasmosis Causative agent: *Histoplasma capsulatum*
 - Two types: H.capsulatum.var.capsulatum, H.capsulatum.var.duboisii
 - Disease identified by Darling hence called as Darling's disease

3. Ans. (b) Histoplasma

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 610

• Lab diagnosis of Histoplasmosis:

 Tissues – yeast cells occurs within phagocytic cells (intracellular)

- 37°C yeast cells
- Room temperature Spores with tubercles (finger like projections)

4. Ans. (d) Histoplasma

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 610

- Classical histoplasmosis asymptomatic heal with just a miliary calcification
- Disseminated histoplasmosis occurs in few affects *Reticuloendothelial system* (intracellular infection) – highly fatal
- Lymphadenopathy, hepatosplenomegaly, fever, anemia occurs

5. Ans. (b) Coccidioides

Ref: Ananthanarayan and Paniker's Textbook of Microbiology – 10th ed – Page 611

- Coccidioidomycosis Causative agent: Coccidioides immitis
- Region: USA called as Rift valley fever or Desert Rheumatism

Opportunistic Mycoses

- Aspergillosis
- Penicilliosis
- Zygomycosis
- Candidiasis
- Cryptococcosis
- Pneumocystis jirovecii

ASPERGILLOSIS

- Aspergillosis is a clinical term used to describe all diseases that are caused by species of aspergillus;
- The species that grows at 37°C can cause invasive infections and others can cause only allergic manifestation.
- Most common species are: Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger and Aspergillus terreus.
- Aspergillus is seen ubiquitously in all the environments especially in decomposing plant materials and in bedding.
- Incubation period of invasive aspergillosis after inhalation is 2 to 90 days.
- Main important risk factors for aspergillosis are:
 - Profound neutropenia
 - Glucocorticoid usage

Clinical Features

- Clinical diseases caused by Aspergillus are:
 - ABPA Allergic Bronchopulmonary Aspergillosis Type I (M/c) and Type III hypersensitivity reactions that occurs after inhalation of spores - spores enters inside lungs and grows within the lumen of bronchioles - occludes them
 - Aspergilloma Fungus grows within and occurs as a *fungal ball*
 - Invasive aspergillosis Pneumonia occurs then dissemination starts to involve all organs – occurs in immunocompromised individuals, and those who are taking chronic steroids.
 - Otomycosis, mycotic keratitis, sinusitis
 - Cerebral aspergillosis
 - Cutaneous aspergillosis
 - Endocarditis

Laboratory Diagnosis

- Microscopy Septate hyphae with acute angle branching at $45^\circ\mathrm{C}$
- Morphology of each species differs and identification is mainly by the conidial arrangement

Table1:Microscopic appearance of various species ofAspergillus

Species	Microscopic appearance
Aspergillus fumigatus	Uniseriate, Conidia covers only upper one third of vesicle,
Aspergillus flavus	Uniseriate and Biseriate, covers entire vesicle
Aspergillus niger	Biseriate, covers entire vesicle – Black colored

Figure 1: Acute angled hyphae of Aspergillus (Courtesy: CDC)

- Serological test: Antibodies can be demonstrated by ELISA, counter current immunoelectrophoresis and immunodiffusion
- Serological tests are most helpful in *allergic aspergillosis*
- Intradermal injection of Aspergillus antigen Immediate reaction (Type I hypersensitivity) and Arthus type reaction (Type III reaction)
- Beta-D-glucan assay helps in invasive aspergillosis

HIGH YIELDING FACTS TO BE REMEMBERED IN MYCOLOGY Examples for dimorphic fungi Blastomyces dermatitidis (BPH - CPS) • Paracoccidiodes brasiliensis Histoplasma capsulatum Coccidioides immitis Penicilliosis marneffi • Sporothrix schenckii Darling disease Histoplasmosis Tuberculate spores are seen in Histoplasmosis Coccidioides Arthrospores seen in Coccidiodomycosis Valley fever Captain wheel formation seen in • Paracoccidiodomycosis Genus that comes under dermatophytes are Trichophyton Microsporum Epidermophyton Only species in Epidermophyton is • E.floccosum Tinea versicolor is caused by It is not caused by dermatophytes; it is caused by Malassezia furfur Germ tube formation seen in Candida albicans Candida dublinensis Pseudohyphae is absent in which candida • Candida glabrata species Chlamydospores are seen in Candida albicans Reynolds Braude phenomenon is seen in Candida albicans CHROM agar is useful for Speciation of Candida Acute angled dichotomous branching septate Aspergillus sp hyphae seen in Broad aseptate hyphae seen in • Mucor, Rhizopus Cryptococcus neoformans Capsulated fungus Rose Gardener's disease is caused by Sporothrix schenckii Potassium iodide is used in the treatment of Sporothrix schenckii which fungi Sclerotic bodies are seen in Chromoblastomycosis Pigmented fungi are called as Dematacious fungi Botryomycosis is caused by • Not fungi ; it is caused by Staph aureus and other bacteria Entomophthromycoses is caused by Conidiobolus coronatus Basidiobolus ranarum Non cultivable fungi Rhinosporidium seeberi Dapsone is used in treatment of which fungi • Rhinosporidium seeberi • Aquatic protista – DRIP CLADE Which kingdom does Rhinosporidium seeberi belongs to Fungi that has trophozoites and cystic stage is Pneumocystis jirovecii TMP-SMX drug is given for which fungi Pneumocystis jirovecii ABPA is an example of Type I and III hypersensitivity Penicillium marneffei Pigmented pencillium species that causes infections in AIDS patients Most common fungal infection in diabetics and Zygomycosis steroid intake patients Which bird and Which tree is associated with • Bird – Pigeon

• Tree - Eucalyptus

Unit 5 • Mycology

386

Cryptococcal infection

MICRONS Microbiology Simplified

Salient Features

- Recent updates on SARS-CoV2 and COVID-19 vaccination
- Recent NEET PG and INI-CET questions of 2020, 2021 and 2022 with answers and references
- Chapter references for the concepts and topics under CBME curriculum (NMC)
- All the chapters and the given concepts are apt for the preparation of NEXT examination
- A separate section on clinical aspects of infection and infectious diseases based on the recent CBME curriculum
- Accurate answers and proper references from the standard books
- The first book to cover sample video questions
- · Each chapter in clinical section is reviewed by the subject experts
- Simple and easy-to-understand content on microbiology
- Fully colored presentation with plenty of Image-Based conceptual learning and Flowcharts.

About the Author

Malathi Murugesan, is currently working as an Associate Consultant & HIC officer in Meenakshi Missions Hospital & Research Centre, Madurai, Tamil Nadu. Earlier, she worked as an Assistant Professor and Hospital Infection Control Officer, Department of Clinical Microbiology in Christian Medical College & Hospital, Vellore till May 2022.

She has completed her undergraduation from Government Theni Medical College, Tamil Nadu and postgraduation MD (Microbiology) from Chengalpattu Medical College, Tamil Nadu. She successfully cleared Diploma in Tropical Medicine & Hygiene (DTM&H) from Royal College of Physicians, London. The author has completed PG Diploma in Infectious Disease (PGDID) as well.

She has presented many posters and has received best poster award in a national conference. There are around 15 publications to her credit in national and international journals. She has contributed to AIIMS-CBS Instant revision series, and is author of AIIMS, KONCPT-20 Authors, and editor of CBS Textbook of Microbiology for nursing students. Last but not least, she has contributed to a chapter in API Textbook of Medicine and many more chapters in other titles of repute.

Students' Reviews

Shoaib Ahmed Khan Netaii Subhash Chandra Bose Medical College, Jabalpur,

It contains simplified language, which is easy to understand, points to remember are very good features, pictures of the organisms and other techniques are much understandable. Bacteriology topics have been explained very well because its language is simplified and easy to understand. Picture-based questions and questions of competition keep the topics at my fingertips.

Rahul Manoharlal Sodhai

The WOW factor about this book is its MCQs and the way the answers of all MCQs are explained. Secondly, the subject, Microbiology which is too vast to remember, this book made it so simple. It's like a Bible for me during university exams, best book for last moment revision. The book covers all the important points and makes revising Microbiology easier.

Subash K Madras Medical College, Chennai, Ta

This book has an integrated approach of covering numerous points from many sources of books with best pictorial representation flowcharts which will be useful for understanding the concept for competitive exams and the previous year's questions at the end of each topic makes it easier to practice and to know the weightage of that topic.

Saurav Darbhanga Medical College, Da

Simple and nice presentation. Best part of book is its MCQs, which helped me in quick revision of important points of that particular chapter.

Akash Tyagi

The book carries all the latest MCQs, asked in PG entrance examination, which make the readers aware of the current trend of questions and the explanations are brief and at their best.

CBS Publishers & Distributors Pvt. Ltd.

4819/XI, Prahlad Street, 24 Ansari Road, Daryaganj, New Delhi 110 002, India E-mail: feedback@cbspd.com, Website: www.cbspd.com New Delhi | Bengaluru | Chennai | Kochi | Kolkata | Lucknow | Mumbai | Pune Hyderabad | Nagpur | Patna | Vijayawada
