Contents

Preface	v
1. Fundamentals of Electrical Engineering—Circuit Theory Concepts	1–34
1.1 Introduction 1	
1.1.1 Electric Charge and Electric Current 1	
1.1.2 Direction of Current 2	
1.1.3 Coulomb's Law 3	
1.2 Electromotive Force and Potential Difference 3	
1.3 Ohm's Laws 5	
1.4 Basic Parameters of Circuit (R-L-C) 6	
1.4.1 Resistance 6	
1.4.2 Inductance 9	
1.4.3 Capacitance 12	
1.4.4 Capacitance in Series 13	
1.4.5 Capacitors in Parallel 14	
1.4.6 Capacitance of a Parallel Plate Capacitor 14	
1.4.7 Capacitance of Concentric Spheres 15	
1.4.8 Capacitance of Two Coaxial Cylinders 16	
1.5 Electromagnetic Induction 17	
1.6 Laws of Electromagnetic Induction 17	
1.7 Kirchhoff's Laws 18	
1.8 Ampere's Law 19	
1.9 Sources 20	
1.9.1 Source Transformation 21	
2. Electrical Circuit Analysis	3594
2.1 Circuit Concepts 35	
2.1.1 Concept of Network/Circuit 35	
2.2 Network Terminology 35	
2.3 Classification of Electrical Networks 37	
2.4 Basic Circuit Elements 38	
2.5 Energy Sources 39	
2.6 Current Division Rule 41	
2.7 Voltage Division Rule 41	
2.8 Source Transformation 41	
2.8.1 Transformation of Voltage Source to Current Source 42	
2.8.2 Transformation of Current Source to Voltage Source 42	

- 2.9 Kirchhoff's Law's 46
 - 2.9.1 Kirchhoff's Current Law (KCL) or First Law 46
 - 2.9.2 Kirchhoffs Voltage Law (KVL) or Second Law 47
- 2.10 Loop Analysis or Mesh Analysis 47
- 2.11 Nodal Analysis 49
- 2.12 Star-delta Transformation 512.12.1 Network Reduction By Delta-Star and Star-Delta Transformation 52

3. AC Fundamentals

- 3.1 Introduction 95
 - 3.1.1 AC Quantity 95
- 3.2 Types of AC Waveforms 95
- 3.3 Advantages of Sinusoidal Waveforms 96
- 3.4 Generation of Alternating Quantity 963.4.1 Equations of the Alternating Voltages and Currents 97
- 3.5 Important Definitions Related to AC Quantity 98
- 3.6 Important Values of Alternating Quantities 101
- 3.7 Root Mean Square (RMS) or Effective Values, Average Value, Form- Factor and Peak Factor of Alternating Current and Alternating Voltage for Sinusoidal Waveform 101
- 3.8 RMS Value or Effective Value, Form Factor for Half-wave Voltage and Current 104
- 3.9 RMS Value, Average Value, Form Factor and Peak Factor for Square Wave of Voltage and Current 105
- 3.10 RMS Value, Average Value, Form Factor, Peak Factor of Triangular Wave for Current and Voltage 106
- 3.11 Concept of Phasor 109
 - 3.11.1 Phasor Diagram Using RMS Values 110
 - 3.11.2 Phase and Phase Angle 110
 - 3.11.3 Phase Difference 110
 - 3.11.4 Conventions for Drawing Phasor Diagrams 112
- 3.12 Addition and Subtraction of Alternating Quantities 113

4. Steady State Analysis of Single Phase AC Circuits

- 4.1 Introduction 128
- 4.2 AC Circuit 128
 - 4.2.1 AC Circuit Containing Pure Resistor Only 128
 - 4.2.2 AC Circuit Containing Pure Inductor Only 131
 - 4.2.3 AC Circuit Containing Pure Capacitance Only 133
- 4.3 AC Series Circuit 136
 - 4.3.1 AC Circuit Containing Resistance and Inductance in Series 136
 - 4.3.2 Apparent Power, Real Power and Reactive Power 139
 - 4.3.3 AC Circuit Containing Resistance and Capacitance in Series 140
- 4.4 AC Circuit Containing Resistance, Inductance and Capacitance in Series (R-L-C Series) 144
 - 4.4.1 Impedance Triangle 145
 - 4.4.2 Power and Power Triangle 146
- 4.5 AC Parallel Circuit 147
- 4.6 Method of Solving AC Parallel Circuit 148
 - 4.6.1 By Phasor Diagram Method 148
 - 4.6.2 By Phasor Algebra 149

95–127

128–194

- 4.6.3 Impedance Method 150
- 4.6.4 Admittance Method 151
- 4.7 Resonance in R-l-C Circuits 154
 - 4.7.1 Introduction 154
 - 4.7.2 Series or Voltage Resonance 155
 - 4.7.3 Graphical Representation of Resonance in An R-L-C Series Circuits 156
 - 4.7.4 Resonance Curve 156
 - 4.7.5 Determination of Bandwidth and Edge Frequencies 157
 - 4.7.6 Quality Factor of a Series Resonant Circuit 158
 - 4.7.7 Parallel or Current Resonance 159
 - 4.7.8 Q-factor or Current Magnification Factor for Parallel Resonance Circuit 161

5. DC Network Theorems

195–272

- 5.1 Introduction 195
- 5.2 Superposition Theorem 195

5.2.1 Steps to Solve Problems on Superposition Theorem 195

- 5.3 Thevenin's Theorem 199
 - 5.3.1 Steps for Solving Problems 200
 - 5.3.2 Applications 201
 - 5.3.3 Advantages 201
 - 5.3.4 Disadvantages 201
- 5.4 Norton's Theorem 207
 - 5.4.1 Steps for Solving Problems on Norton's Theorem 207
- 5.5 Maximum Power Transfer Theorem 211
 - 5.5.1 Proof of Maximum Power Transfer Theorem 211
 - 5.5.2 Steps for Solving Problems on Maximum Power Transfer Theorems 212
- 5.6 Reciprocity Theorem 212

6. AC Network Theorems

- 6.1 Introduction 273
- 6.2 Star-Delta and Delta-Star Transformations 273
 - 6.2.1 Delta to Star Conversion 274
 - 6.2.2 Star to Delta Conversion 275
- 6.3 Source Transformations 275
- 6.4 Network Terminology 277
 - 6.4.1 Loop and Mesh 277
 - 6.4.2 Node and Junction 277
 - 6.4.3 Sign Convension 277
- 6.5 Kirchhoff's Laws 277
 - 6.5.1 Super-Node Analysis 278
 - 6.5.2 Super-Mesh Analysis 279
- 6.6 Superposition Theorem 280
 - 6.6.1 Applications of Superposition Theorem 280
 - 6.6.2 Limitations of Superposition Theorem 280
- 6.7 Thevenin's and Norton's Theorems 280
 - 6.7.1 Procedure to Obtain V_{th} and Z_{th} or I_N and Z_n 281
 - 6.7.2 Applications of Thevenin's and Norton's Theorems 282
 - 6.7.3 Limitations 282
 - 6.7.4 Application of Millman's Theorem 285
 - 6.7.5 Limitations of Milliman's Theorem 285
- 6.8 Maximum Power Transfer Theorem 285

273–316

7.	Thre	e Phase AC Circuit	317-341		
	7.1	Introduction 317			
		Three Phase Electric System 317			
		7.2.1 Comparison of Single Phase and Three Phase Systems 318			
	73	Balanced or Unbalanced Load 318			
		Generation of 3-[] EMFs 319			
		Phase Voltage, Phase Current, Line Voltage and Line Current 319			
		Star (Y) Connected System 320			
	7.0	7.6.1 Power in 3-[] AC System 320			
	77	Delta ([]) Connection System 321			
		Measurement of Power in 3-] AC Circuit 322			
		7.8.1 One Wattmeter Method 322			
		7.8.2 Two Wattmeter Method 322			
		7.8.3 Three Wattmeter Method 326			
8.	Tran	isients	342–358		
	8.1	Introduction 342			
	8.2	Types of Transients 342			
	8.3	Important Differential Equations 343			
	8.4	Transients in R-L Circuit (DC) 344			
	8.5	Short Circuit Current 346			
	8.6	Time Constant 347			
	8.7	Transients in R-L Circuits (AC) 347			
	8.8	Transients in R-C Series Circuits (DC) 349			
	8.9	Transients in R-C Series Circuits (AC) 351			
	8.10	Double Energy Transients 352			
9.	Med	asuring Instruments	359-371		
		Introduction 359			
		Classification 359			
		Operation of Indicating Instruments 360			
		Types of Measuring Instruments 360			
		9.4.1 Permanent Magnet Moving Coil Instrument (PMMC) 361			
		9.4.2 Dynamometer Type Instrument 363			
		9.4.3 Dynamometer Type Wattmeter 363			
	9.5	Extension of Range of Moving Coil Instrument 365			
		Moving Iron Instrument 367			
10.	Mag	gnetic Circuits	372-392		
	-	Introduction 372			
		Magnetic Circuit Concept 372			
		Magnetic Circuit with DC Excitations 375			
		Analogy between Electric and Magnetic Circuits 377			
		Magnetic Circuit Calculation 379			
		Electromagnetism 379			
		Nature of Induced EMF 380			
		10.7.1 Magnetic Leakage and Fringing 381			
11	11. Single Phase Transformer 393–430				
	11.1 Introduction 393				

11.2 Transformer as a Device 393

- 11.3 Classification of Transformer 394
- 11.4 Principle of Operation of Transformer 395
- 11.5 EMF Equation of Transformer 396
- 11.6 Transformation Ratio (K) 397
- 11.7 Ideal Tranformer 398
- 11.8 Practical Transformer 398
- 11.9 Practical Transformer on No-Load 399
- 11.10 Transformer on Load 399
- 11.11 Equivalent Circuit Diagram 402
- 11.12 Losses in Transformer 405
- 11.13 Transformer Efficiency 407
 - 11.13.1 Condition for Maximum Power Efficiency 408
 - 11.13.2 Voltage Regulartion of a Transformer 408
 - 11.13.3 Efficiency from Transformer Tests 410
 - 11.13.4 Calculation of Efficiency from OC and SC Test 411
- 11.14 Auto Transformer 412

12. DC Machines

- 12.1 Introduction 431
- 12.2 Concept of Electro-Mechanical Energy Conversion 431
- 12.3 Types of DC Machines 431
 - 12.3.1 Separately Excited DC Machine 432
 - 12.3.2 Self Excited DC Machine 432
- 12.4 Construction of DC Machine 434
 - 12.4.1 Yoke 435
 - 12.4.2 Pole Core and Pole Shoes 435
 - 12.4.3 Field Coils 435
 - 12.4.4 Armature Core 436
 - 12.4.5 Armature Winding 437
 - 12.4.6 Commutator 437
 - 12.4.7 Brush Assembly and Brush Gear 437
 - 12.4.8 Bearings 437
- 12.5 Working of DC Generator 437
- 12.6 EMF Equation of DC Generator 439
- 12.7 Important Relations for Various Types of DC Generators 441
 - 12.7.1 Separately Excited DC Generator 441
 - 12.7.2 Shunt Wound DC Generator 442
 - 12.7.3 Series Wound DC Generator 442
 - 12.7.4 Compound Wound DC Generator 443
- 12.8 Working Principle of DC Motor 446
 - 12.8.1 Significance of Back EMF in DC Motor 446
 - 12.8.2 Important Relations for Different Types of DC Motors 447
- 12.9 Torque Developed in a Motor 451
- 12.10 Characteristics of DC Motors 453
 - 12.10.1 Characteristics of DC Shunt Motor 453
 - 12.10.2 Characteristics of DC Series Motor 454
 - 12.10.3 Characteristics of DC Compound Motors 455

431-460

13. Induction Motors

- 13.1 Three Phase Induction Motor 461
- 13.2 Construction of 3-[] Induction Motor 462
- 13.3 Operation of 3-[] Induction Motor 462
- 13.4 Slip Speed, Slip, Synchronous Speed 463
 13.4.1 Rotor Frequency (*f*_r) 463
 13.4.2 Rotor Current, Rotor Power Factor 463
- 13.5 Power Stages in 3-[] Induction Motor 464
- 13.6 Electromagnetic Torque Expression for 3-[] Induction Motor 465
- 13.7 Torque Slip and Torque-Speed Characteristics of 3-[] Induction Motor 465
- 13.8 Need of a Starter for 3-[] Induction Motor and Starting Method of 3-[] Induction Motor 466
 - 13.8.1 DOL (Direct Online Starter) 467
 - 13.8.2 Reduced Voltage Starting 467
 - 13.8.3 Auto-Transformer Starting 468
 - 13.8.4 Star-Delta Method of Starting 468
- 13.9 Some Important Formulae 469
- 13.10 Single Phase Induction Motor 476
- 13.11 Construction of a Single Phase Induction Motor 476
- 13.12 Working Principle of Single Phase Induction Motor 476
- 13.13 Why Single Phase Induction Motor is not Self-Starting 477
 - 13.13.1 Double Revolving Field Theory 477
 - 13.13.2 Single Phase Induction Motor is Self-Starting 478
- 13.14 Types of Single Phase Induction Motor or Phase Spliting Method of Starting 478
 - 13.14.1 Split Phase Induction Motor 479
 - 13.14.2 Capacitor Start Induction Motor 480
 - 13.14.3 Capacitor Start Capacitor Run Motor 480
 - 13.14.4 Shaded Pole Motor 482

14. Three Phase Synchronous Machines

- 14.1 Introduction 48414.2 Construction of an Alternator 484
 - 14.3 Principle of Operation of an Alternator 485
 - 14.4 Frequency of Induced EMF 486
 - 14.5 Synchronous Motor 487
 - 14.6 Operating Principle 487
 - 14.7 Method of Starting a Synchronous Motor 489
 - 14.8 V-Curves 489
 - 14.9 Application of Three Phase Synchronous Motor 489
- 14.10 Disadvantages of Synchronous Motors 489

Index

484-490