then
$$A+B = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 1 & 4 \\ 7 & 8 & 9 \end{bmatrix} + \begin{bmatrix} 1 & 3 & 5 \\ 5 & 0 & 1 \\ 3 & 2 & 12 \end{bmatrix}$$
$$= \begin{bmatrix} 1+1 & 2+3 & 3+5 \\ 5+5 & 1+0 & 4+1 \\ 7+3 & 8+2 & 9+12 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 8 \\ 10 & 1 & 5 \\ 10 & 10 & 21 \end{bmatrix}$$

REMARK

• If the orders of the matrices are different, then they are not conformable for addition.

1.4.2 SUBSTRACTION OF MATRICES

Suppose *A* and *B* are two matrices of same order, then the substraction of *A* and *B*, *i.e.*, *A*–*B* is obtained by substracting each element of *B* from the corresponding element of *A*. If *A* and *B* are of order $m \times n$, then A - B will be of order $m \times n$.

Let	$A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$
then	$A - B = [a_{ij} - b_{ij}]_{m \times n}$
For example: If	$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 5 & 2 \\ 3 & -2 & 2 \\ 5 & 7 & 8 \end{bmatrix}$
then	$A - B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{bmatrix} - \begin{bmatrix} 0 & 5 & 2 \\ 3 & -2 & 2 \\ 5 & 7 & 8 \end{bmatrix}$
	$ = \begin{bmatrix} 1-0 & 2-5 & 3-2 \\ 3-3 & 4-(-2) & 5-2 \\ 5-5 & 6-7 & 7-8 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 \\ 0 & 6 & 3 \\ 0 & -1 & -1 \end{bmatrix} $

REMARK

• If the order of matrices are different, then they are not conformable for substraction.

1.4.3 MULTIPLICATION OF A MATRIX BY A SCALAR

Suppose *A* is a matrix of order $m \times n$ and *k* is a scalar, then the multiplication of *A* by *k*, *i.e.* kA is obtained by multiplying each element of *A* by *k*.

Let
$$A = [a_{ij}]_{m \times n} \forall 1 \le i \le m \text{ and } 1 \le j \le n, \text{ then } kA = [ka_{ij}]_{m \times n}$$

For example : If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ and $k = 3,$
then $3A = 3 \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
 $= \begin{bmatrix} 3 \times 1 & 3 \times 2 & 3 \times 3 \\ 3 \times 4 & 3 \times 5 & 3 \times 6 \\ 3 \times 7 & 3 \times 8 & 3 \times 9 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \\ 21 & 24 & 27 \end{bmatrix}$

SOME MATHEMATICAL PRELIMINARIES AND CONVEX SETS

$$= a[a_{ij}]_{m \times n} + b[a_{ij}]_{m \times n}$$

$$= aA + bA$$
Hence
$$(a + b)A = aA + bA$$
(iii) If A is a matrix of order m × n and a, b are two scalars, then a(bA) = (ab)A
Proof. Let A = $[a_{ij}]_{m \times n}$, then
$$a(bA) = a(b[a_{ij}]_{m \times n})$$

$$= [a(ba_{ij})]_{m \times n}$$
(By scalar multiplication)
$$= [(ab)a_{ij}]_{m \times n}$$
(\because Numbers are associative)
$$= (ab)[a_{ij}]_{m \times n}$$
(iv) If A is a matrix of order m × n and k is any scalar, then $(-k)A = -(kA) = k(-A)$
Proof. Let $A = [a_{ij}]_{m \times n}$, then
$$[-k]a_{ij}]_{m \times n}$$

$$= -[ka_{ij}]_{m \times n}$$
(By scalar multiplication)
$$= [-ka_{ij}]_{m \times n}$$

$$= -(kA)$$
Now
$$(-k)A = (-k)[a_{ij}]_{m \times n}$$

$$= [(-k)a_{ij}]_{m \times n}$$

$$= [k(-a_{ij})]_{m \times n}$$

$$= k(-A)$$
Hence
$$(-k)A = -(kA) = k(-A).$$

1.7 MULTIPLICATION OF MATRICES

Let *A* and *B* be two matrices of order $m \times n$ and $n \times p$ respectively. Then a matrix *C* of order $m \times p$ is obtained by multiplying each row of *A* to each column of *B*.

Suppose $A = [a_{ij}]_{m \times n}$, $B = [b_{jk}]_{n \times p}$, then $C = [c_{ik}]_{m \times p}$ is known as the multiplication of A and B if

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$
$$C = AB$$

and hence we can write

second order determinant, which is called the minor of the element a_{ij} . It is denoted by M_{ij} . Therefore, in a determinant of order 3, we may get 9 minors corresponding to the 9 elements of the determinant.

ī.

For example, in determinant (1)

Minor of
$$a_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} = M_{21}$$

Minor of $a_{32} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} = M_{32}$

ī.

and

If we expand the determinant along the first row, then

$$\Delta = (-1)^{1+1} a_{11} M_{11} + (-1)^{1+2} a_{12} M_{12} + (-1)^{1+3} a_{13} M_{13}$$

= $a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13}$

Similarly, along second column, we can write

$$\Delta = -a_{12}M_{12} + a_{22}M_{22} - a_{32}M_{32}$$

1.11.2 COFACTOR

If we multiply the minor M_{ij} by $(-1)^{i+j}$. Then resulting value is called cofactor of the element a_{ij} . If A_{ij} is the cofactor of a_{ij} , then we write

Cofactor of
$$a_{ij} = A_{ij} = (-1)^{i+j} M_{ij}$$

Cofactor of $a_{21} = A_{21} = (-1)^{2+1} M_{21} = -\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$
Cofactor of $a_{32} = A_{32} = (-1)^{3+2} M_{32} = -\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$

Hence, cofactor of $a_{ij} = (-1)^{i+j}$ determinant obtained by leaving row and column passing through that element. Therefore, we can write

$$\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$
$$\Delta = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$$
$$\Delta = a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33}$$
and
$$a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0$$
$$a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} = 0$$

1.12 SINGULAR AND NON-SINGULAR MATRIX

Definition. A matrix whose determinant value is zero, is said to be singular matrix. If the matrix is not singular, then it is said to be non-singular.

For example : If $A = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}$, then its determinant value. $|A| = \begin{vmatrix} 2 & 3 \\ 6 & 9 \end{vmatrix} = 2 \times 9 - 3 \times 6 = 18 - 18 = 0$

Thus the matrix A is singular.

1.13 TRANSPOSE OF A MATRIX

Consider a matrix $A = [a_{ij}]_{m \times n}$. Then a matrix which is obtained by interchanging the rows and columns of A is called the transpose of A. It is denoted by A' or A^T .

Applying
$$R_2 \rightarrow R_2 - 3R_1$$
, we get

$$\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -3 & 1 \end{bmatrix} A$$
Again applying $R_1 \rightarrow R_1 - 2R_2$, we get

$$\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -2\\ -3 & 1 \end{bmatrix} A$$

$$\Rightarrow \qquad I_2 = BA$$

$$\Rightarrow \qquad A^{-1} = B = \begin{bmatrix} 7 & -2\\ -3 & 1 \end{bmatrix}.$$
(ii) We write

$$A = I_2 A$$
or

$$\begin{bmatrix} 1 & 2\\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow R_2 - 2R_1$, we get

$$\begin{bmatrix} 1 & 2\\ 0 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -2 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow -\frac{1}{5}R_2$, we get

$$\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2/5 & -1/5\\ 2/5 & -1/5 \end{bmatrix} A$$
Applying $R_1 \rightarrow R_1 - 2R_2$, we get

$$\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$

$$\Rightarrow \qquad I_2 = BA$$

$$\Rightarrow \qquad A^{-1} = B = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$

$$\Rightarrow \qquad I_2 = BA$$

$$\Rightarrow \qquad A^{-1} = B = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$
EXAMPLE 2. Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1\\ 3 & 2 & 3\\ 1 & 1 & 2 \end{bmatrix}$$
by using elementary row-transformation.
SOLUTION. We write

$$A = I_3A$$
or

$$\begin{bmatrix} 1 & 2 & 1\\ 3 & 2 & 3\\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow R_2 - 3R_1, R_3 \rightarrow R_3 - R_1$, we get

$$\begin{bmatrix} 1 & 2 & 1\\ 0 & -4 & 0\\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 & 0\\ -1 & 0 & 1 \end{bmatrix} A$$

For example:

1. A line $a_1x_1 + a_2x_2 = b$ represents a line in two dimensions which may be considered as a set of these points (x_1, x_2) . Therefore, set of points can be written as

$$S = \{(x_1, x_2) : a_1 x_1 + a_2 x_2 = b\}$$

2. If we consider the set of points lying inside a circle of unit radius with centre at the origin in two dimensional space. Clearly, the points (x_1, x_2) of this set satisfy the inequality

$$x_1^2 + x_2^2 <$$

Therefore, set of points is given by

$$S = \{(x_1, x_2) : x_1^2 + x_2^2 < 1\}$$

1.21.2 Hypersphere

In *n*-dimensional space, a hypersphere, with centre *a* and radius r(> 0) is the set of points $X = \{x : |x - a| = r\}.$

The equation of hypersphere in E^n (or R^n) is given by $\Sigma(x_i - a_i)^2 = r^2$

REMARKS

- The set of points inside the hypersphere is the set $X = \{x : |x a| < r\}$
- The set of points lying inside the hypersphere with centre *a* and radius ∈ > 0 is said to be ∈-neighbourhood about the point *a*.

1.21.3 LINES AND LINE SEGMENTS

Let x_1, x_2 be two distinct points in *n*-dimensional space E^n , then the line through the points x_1 and x_2 is defined to be the set of points given by

$$X = \{x : x = \lambda x_1 + (1 - \lambda)x_2, \text{ for } \lambda \in \mathbf{R}\}$$

and the line segment joining two points x_1 and x_2 in E^n is defined to be the set of points given by

$$X = \{x : x = \lambda x_1 + (1 - \lambda) x_2, 0 \le \lambda \le 1\}$$

1.21.4 Hyperplane

It is defined as the set of points $(x_1, x_2, ..., x_n)$ satisfying

 $c_1x_1 + c_2x_2 + \dots + c_nx_n = z$, (not all $c_i = 0$) for prescribed values of c_1, c_2, \dots, c_n and z

We clearly observe that a hyperplane divides the whole space into three mutually disjoint sets as given below:

$$X_1 = \{x : \mathbf{cx} > \mathbf{z}\} = \{(x_1, x_2, \dots, x_n) : c_1 x_1 + c_2 x_2 + \dots + c_n x_n > z\}$$

$$X_2 = \{x : \mathbf{cx} = \mathbf{z}\} = \{(x_1, x_2, \dots, x_n) : c_1 x_1 + c_2 x_2 + \dots + c_n x_n = z\}$$

$$X_3 = \{x : \mathbf{cx} < \mathbf{z}\} = \{(x_1, x_2, \dots, x_n) : c_1 x_1 + c_2 x_2 + \dots + c_n x_n < z\}$$

Here the set X_1 and X_3 are known as open-half spaces and the sets $\{x : cx \le z\}$ and $\{x : cx \ge z\}$ are known as closed-half spaces.

REMARKS

- For optimum value of *z*, the hyperplane cx = z is called optimal hyperplane.
- The vector \boldsymbol{c} is known as vector normal to the hyperplane
- The value $\pm \frac{c}{|c|}$ are called unit normals.
- The hyperplanes are always closed sets.

Some Mathematical Preliminaries and Convex Sets

 $= \lambda [2u_1 + 3u_2] + (1 - \lambda) [2v_1 + 3v_2]$ $= \lambda \cdot 7 + (1 - \lambda) \cdot 7$ (By (1)) = 7 $\boldsymbol{w} \in S$

0

Hence, S is a convex set.

 \Rightarrow

EXAMPLE 2. Show that the set
$$S = \{(x_1, x_2, x_3) : 2x_1 - x_2 + x_3 \le 4\} \subset \mathbb{R}^3$$
 is convex.

[MEERUT-2005, 12, 15] Let $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{y} = (y_1, y_2, y_3)$ be any two points of the given set S. Then SOLUTION. by definition of S, we can write $2x_1 - x_2 + x_3 \le 4$ and $2y_1 - y_2 + y_3 \le 4$...(2) Let $\boldsymbol{w} = (w_1, w_2, w_3)$ be a point such that $\boldsymbol{w} = \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{v}, \ 0 \le \lambda \le 1$ which implies that $(w_1, w_2, w_3) = \lambda(x_1, x_2, x_3) + (1 - \lambda)(y_1, y_2, y_3)$ $= (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2, \lambda x_3 + (1 - \lambda)y_3)$ $w_1 = \lambda x_1 + (1 - \lambda) y_1$ \Rightarrow $w_2 = \lambda x_2 + (1 - \lambda) y_2$ $w_3 = \lambda x_3 + (1 - \lambda) y_3$ and Consider $2w_1 - w_2 + w_3$ $= \lambda(2x_1 - x_2 + x_3) + (1 - \lambda)(2y_1 - y_2 + y_3)$ $\leq 4\lambda + 4(1 - \lambda)$ (By (1)) < 4 Thus, $w = (w_1, w_2, w_3) \in S$ Hence, S is convex. **EXAMPLE 3.** Examine the convexity of the set $S = \{(x_1, x_2) \in \mathbb{R}^2 : 4x_1 + 3x_2 \le 6, x_1 + x_2 \ge 1\}$ [MEERUT-1997, 2009; DELHI-2009; ASSAM-2011; PATNA-2013] We have $S = \{(x_1, x_2) \in \mathbb{R}^2 : 4x_1 + 3x_2 \le 6, x_1 + x_2 \ge 1\}$ SOLUTION. Let $u = (x_1, x_2) \in S$ and $v = (y_1, y_2) \in S$. Then, $4x_1 + 3x_2 \le 6$, $x_1 + x_2 \ge 1$ and $4y_1 + 3y_2 \le 6$, $y_1 + y_2 \ge 1$...(1) Let $\boldsymbol{w} = (w_1, w_2)$ be a point on the line segment joining the points u and v, then $\boldsymbol{w} = \lambda \boldsymbol{u} + (1 - \lambda) \boldsymbol{v}$ $(w_1, w_2) = (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2)$ \Rightarrow $w_1 = \lambda x_1 + (1 - \lambda)y_1$ and $w_2 = \lambda x_2 + (1 - \lambda)y_2$ \Rightarrow Consider, $4w_1 + 3w_2 = \lambda(4x_1 + 3x_2) + (1 - \lambda)(4y_1 + 3y_2)$ $\leq \lambda \cdot 6 + (1 - \lambda) \cdot 6$ (By (1)) \Rightarrow $4w_1 + 3w_2 \le 6$...(2) $w_1 + w_2 = \lambda(x_1 + x_2) + (1 - \lambda)(y_1 + y_2)$

Also,

 \Rightarrow

$$\geq \lambda \cdot 1 + (1 - \lambda) \cdot 1$$
 (Again by (1))

 $w_1 + w_2 \ge 1$...(3)

Hence, from (2) and (3) we conclude that *S* is a convex set.