Box Contents

ADVANCED CONCEPTS

BOX 1-1	Mendelian Laws, 6	BOX 13-2	The Single-Subunit RNA Polymerases, 443
BOX 3-1	The Uniqueness of Molecular Shapes and the Concept of Selective Stickiness, 61	BOX 15-1	CCA-Adding Enzymes: Synthesizing RNA withou a Template, 513
BOX 6-1	Ramachandran Plot: Permitted Combinations of	BOX 15-2	Selenocysteine, 520
	Main-Chain Torsion Angles ϕ and ψ , 124	BOX 15-3	uORFs and IRESs: Exceptions That Prove
BOX 6-2	Glossary of Terms, 130		the Rule, 533
BOX 6-3	The Antibody Molecule as an Illustration of Protein Domains, 133	BOX 15-4	GTP-Binding Proteins, Conformational Switching, and the Fidelity and Ordering of the Events of
BOX 9-3	ATP Control of Protein Function: Loading a Sliding Clamp, 282		Translation, 546
			Expanding the Genetic Code, 589
BOX 9-5	E. coli DNA Replication Is Regulated by DnaA·ATP Levels and SeqA, 294	BOX 18-4	Concentration, Affinity, and Cooperative Binding, 641
BOX 10-3	Quantitation of DNA Damage and Its Effects on	BOX 19-5	Is There a Histone Code?, 691
	Cellular Survival and Mutagenesis, 323	BOX 20-1	Amino Acid Biosynthetic Operons Are Controlled
BOX 10-6	The Y Family of DNA Polymerases, 336		by Attenuation, 707
BOX 11-1	How to Resolve a Recombination Intermediate with Two Holliday Junctions, 350	BOX 21-2	Review of Cytoskeleton: Asymmetry and Growth, 741
BOX 12-2	The Xer Recombinase Catalyzes the	BOX 21-3	Overview of <i>Drosophila</i> Development, 748
	Monomerization of Bacterial Chromosomes and of Many Bacterial Plasmids, 392	BOX 21-6	Gradient Thresholds, 757
		BOX 21-8	Homeotic Genes of <i>Drosophila</i> Are Organized in Special Chromosome Clusters, 764
BOX 12-4	Mechanism of Transposition Target Immunity, 413		

KEY EXPERIMENTS

BOX 1-2	Genes Are Linked to Chromosomes, 10	BOX 8-2	Nucleosomes and Superhelical Density, 230
BOX 2-1	Chargaff's Rules, 26	BOX 8-3	Determining Nucleosome Position in the
BOX 2-2	Evidence That Genes Control Amino Acid Sequences		Cell, 245
	in Proteins, 31	BOX 9-4	The Identification of Origins of Replication and
BOX 4-1	DNA Has 10.5 bp per Turn of the Helix in Solution:		Replicators, 290
	The Mica Experiment, 84	BOX 12-3	Maize Elements and the Discovery of
BOX 4-2	How Spots on an X-Ray Film Reveal the Structure		Transposons, 408
	of DNA, 88	BOX 14-1	Adenovirus and the Discovery of Splicing, 471
BOX 4-3	Proving that DNA Has a Helical Periodicity of \sim 10.5 bp per Turn from the Topological Properties of DNA Rings, 103	BOX 14-2	Converting Group I Introns into Ribozymes, 479
		BOX 14-3	Identification of Docking Site and Selector Sequences, 490
BOX 6-4	Specified by Its Amino Acid Sequence (Anfinsen Experiment), 135	BOX 18-1	Activator Bypass Experiments, 624
		BOX 18-2	Jacob, Monod, and the Ideas behind Gene Regulation, 628
BOX 7-2 BOX 8-1	bequeiting, 105	BOX 18-6	Evolution of the λ Switch, 645
			Genetic Approaches That Identified Genes Involved
			in the Lytic/Lysogenic Choice, 649

xxxiv **Box Contents**

BOX 20-2 BOX 21-4	Evolution of a Regulatory Circuit, 683 Discovery of miRNAs and RNAi, 722 Activator Synergy, 752 CAL CONNECTIONS An RNA Switch Controls Protein Synthesis by	BOX 22-1	cis-Regulatory Sequences in Animal Development and Evolution, 759 Bistability and Hysteresis, 782 Application of Site-Specific Recombination to	
	Murine Leukemia Virus, 112 Anticancer and Antiviral Agents Target DNA Replication, 268		Genetic Engineering, 386 Defects in Pre-mRNA Splicing Cause Human Disease, 497	
BOX 10-1 BOX 10-2 BOX 10-4 BOX 10-5 BOX 11-2	Aging, Cancer, and the Telomere Hypothesis, 307 Expansion of Triple Repeats Causes Disease, 316 The Ames Test, 321 Linking Nucleotide Excision Repair and Translesion Synthesis to a Genetic Disorder in Humans, 330 Nonhomologous End Joining, 332 The Product of the Tumor Suppressor Gene BRCA2 Interacts with Rad51 Protein and Controls Genome Stability, 367 Proteins Associated with Premature Aging and Cancer Promote an Alternative Pathway for Holliday Junction Processing, 368	BOX 15-5 BOX 15-7 BOX 18-3 BOX 19-3 BOX 19-6 BOX 20-3 BOX 21-1	Deaminases and HIV, 503 Antibiotics Arrest Cell Division by Blocking Specific Steps in Translation, 552 A Frontline Drug in Tuberculosis Therapy Targets SsrA Tagging, 565 Blocking Virulence by Silencing Pathways of Intercellular Communication, 635 Histone Modifications, Transcription Elongation, and Leukemia, 670 Transcriptional Repression and Human Disease, 696 microRNAs and Human Disease, 727 Formation of iPS Cells, 734 Stem Cell Niche, 755	
TECHNIQUES				
BOX 5-2	Creating an RNA Mimetic of the Green Fluorescent	BOX 13-1	Consensus Sequences, 436	

BOX 5-2	Creating an RNA Mimetic of the Green Fluorescent Protein by Directed Evolution, 115	BOX 13-1 Consensus Sequences, 436 BOX 15-6 Ribosome and Polysome Profiling, 561
	Forensics and the Polymerase Chain Reaction, 160 Incorporation Assays Can Be Used to Measure Nucleic Acid and Protein	BOX 19-1 The Two-Hybrid Assay, 664 BOX 19-2 The ChIP-Chip and ChIP-Seq Assays Are the Best Method for Identifying Enhancers, 666
	Synthesis, 261	, 0