xii	Hand	book of Engineering Mathematics	s Formulae	9
7.	Space	e Coordinate Geometry	95–106	10.
	7.1	Coordinates 95		
	7.2	Transformation of Cartesian		
		Coordinates 96		
	7.3	Derivation of ω Matrices 97		
	7.4	Points in Space 98		
	7.5	Plane in Space 99		
	7.6	Two and Three Planes in Space	101	
	7.7	Straight Line in Space 102		
		Straight Lines and Planes in Spa		
	7.9	General Equation of Surfaces of	the	
		Second Degree 104		
	7.10	Typical Surfaces of the Second		
		Degree 105		
8.	Diffe	rential Calculus	107–118	
	8.1	Functions 107		
	8.2	Limit and Continuity 108		
	8.3	Derivative of a Function 109		
	8.4	First Derivatives 110		
	8.5	First Derivatives (Functions) 11	1	
	8.6	Table of Higher Derivatives of		
		Functions 112		
	8.7	Theorems of Differential		
		Calculus 113		
		Differentials and Derivatives 1	14	
		Analysis of a Function 115		
		Direction Derivatives 117		
	8.11	Differential Geometry of a Plan	e	
Curve 117				
9. Sequences and Series 119–132				

- 9.1 Concept and Definitions 119
- 9.2 Tests of Convergence and Operations of Constant Terms 121
- 9.3 Series of Constant Terms 122
- 9.4 Special Series of Constant Terms 123
- 9.5 Test of Convergence and Operations of Function Series 125
- 9.6 Test of Convergence and Operations of Power Series 126
- 9.7 Infinite Binomial Series 127
- 9.8 Power Series 128
- 9.9 Representation of Functions by Power Series 129
- 9.10 Representation of Transcendent Functions by Series 130
- 9.11 Finite and Infinite Products 131

10.	Integral	Calcu	lus
-----	----------	-------	-----

10.1 Indefinite Integral—Concepts 133

133-158

- 10.2 General Relations [u = f(x)] 134
- 10.3 Relations of Differentiable Functions [u = f(x), v = g(x)] 135
- 10.4 Table: Indefinite Integrals—Algebraic Functions 136
- 10.5 Table of Indefinite Integrals— Transcendent Functions 137
- 10.6 Indefinite Integrals—Typical Algebraic Substitutions 138
- 10.7 Indefinite Integrals—Typical Transcendent Substitutions 139
- 10.8 Definite Integrals of Functions 140
- 10.9 Definite Integrals 141
- 10.10 Double Integrals 142
- 10.11 Triple Integrals 143
- 10.12 Definite Integrals of Plane Geometry 144
- 10.13 Definite Integrals of Space Geometry 145
- 10.14 Properties of Plane Areas Using Double Integrals 147
- 10.15 Table: Properties of Plane Areas 148
- 10.16 Table: Properties of Plane Areas (Circle...) 149
- 10.17 Table: Properties of Plane Areas (Ellipse...) 150
- 10.18 Properties of Solids Using Triple Integrals 152
- 10.19 Table: Properties of Solids (Bars...) 153
- 10.20 Table: Properties of Solids (Cube...) 154
- 10.21 Table: Properties of Solids (Sphere...) 156
- 10.22 Improper Integrals 157

11. Vector Analysis

159-172

- 11.1 Concept and Definitions 159
- 11.2 Vector Summation 160
- 11.3 Scalar and Vector Products 161
- 11.4 Triple Products 161
- 11.5 Vector Differential Calculus 162
- 11.6 Transformation of Unit Vectors 163
- 11.7 Orthogonal Curvilinear Coordinates 164
- 11.8 Differential Operators–Special Cases 165
- 11.9 Vector Integral Calculus 167
- 11.10 Line and Surface Integrals 168
- 11.11 Integral Theorems 169
- 11.12 Vector Algebra 170

12. Functions of Complex Variables 173–178

- 12.1 Complex Numbers 173
- 12.2 Exponential and Trigonometric Functions (z = x + iy) 174
- 12.3 Logarithmic and Hyperbolic Functions (z = x + iy) 175
- 12.4 Inverse Functions of Trigonometric Functions 176

13. Fourier Series

179–192

- 13.1 Concept of a Fourier Series 179
- 13.2 Some Important Properties of Inverse Laplace Transforms 184
- 13.3 Development of Series 185
- 13.4 Special Forms 187
- 13.5 Even and Odd Functions 188
- 13.6 Fourier Coefficients for Rectangular Periodic Functions 189
- 13.7 Fourier Coefficients for Triangular Periodic Functions 190
- 13.8 Fourier Coefficients for Curvilinear Periodic Functions 191

14. Higher Transcendent Functions 193–202

- 14.1 Integral Functions—Analytical Expressions 193
- 14.2 Integral Functions—Tables 194
- 14.3 Gamma, Pi, and Beta Functions 195
- 14.4 Gamma Function—Tables 196
- 14.5 Elliptic Integrals 198
- 14.6 Elliptic Functions 199
- 14.7 Elliptic Integrals, Normal Form, Tables 200
- 14.8 Other Elliptic Integrals, Normal Form 201
- 14.9 Elliptic Integrals, Complete Form, Tables 201

15. Ordinary Differential Equations 203–235

- 15.1 General Concept 203
- 15.2 Types of Differential Equations 204
- 15.3 Special First Order Differential Equations 205
- 15.4 Linear Differential Equations of First Order 205
- 15.5 Second-order Differential Equations, Special Cases 206
- 15.6 *n*th-order Differential Equation, Special Case 207
- 15.7 Exact Differential Equation 207

- 15.8 *n*th-order Differential Equations, Constant Coefficients 207
- 15.9 Second-order Differential Equation 208
- 15.10 Second-order Differential Equation y'' + py' + qy = f(x) 208
- 15.11 Fourth-order Differential Equation 209
- 15.12 Fourth-order Differential Equation $y^{iv} ay = f(x)$ 209
- 15.13 Euler's Differential Equation of Order *n* 210
- 15.14 Second Order Euler's Differential Equation 211
- 15.15 Solution by Power Series 211
- 15.16 Hypergeometric Differential Equation 212
- 15.17 Cofluent Hypergeometric Differential Equation (x = 0.50 1.00) 213
- 15.18 Legendre Polynomials $P_n(x)$ 213
- 15.19 Chebyshev Polynomials $T_n(x)$ 214
- 15.20 Laguerre Polynomials $L_n(x)$ 215
- 15.21 Hermite Polynomials $H_n(x)$ 215
- 15.22 Legendre Polynomials 216
- 15.23 Legendre Polynomials 217
- 15.24 Bessel's Differential Equation 219
- 15.25 Properties of Bessel Function 220
- 15.26 Representation of $J_n(x)$ 221
- 15.27 Representation of $Y_n(x)$ 222
- 15.28 Modified Bessel's Differential Equation 223
- 15.29 Properties of Modified Bessel Functions 224
- 15.30 Representation of $I_n(x)$ 225
- 15.31 Representation of $K_n(x)$ 226
- 15.32 Ber, Bei, Ker, Kei Differential Equation 227
- 15.33 $\operatorname{Ber}_{n'}\operatorname{Bei}_{n}$, $\operatorname{Ker}_{n'}\operatorname{Kei}_{n}$ Differential Equation 228
- 15.34 Representation of Ber (*x*) and Bei (*x*) 229
- 15.35 Representation of Ker (x) and Kei (x) 231
- 15.36 Infinite Series Involving Bessel Functions 232
- 15.37 Definite Integrals Involving Bessel Functions 232

16. Partial Differential Equations 236–240

- 16.1 General Concept 236
- 16.2 Laplace's Differential Equation in Two Dimensions 238
- 16.3 Laplace's Differential Equation in Three Dimensions 239

xiv	Handbook of	of Engineering	Mathematics	Formulae
-----	-------------	----------------	-------------	----------

16.4 The wave	Equation	239
---------------	----------	-----

- 16.5 Helmholtz's Differential Equation in Two Dimensions 239
- 16.6 Helmholtz's Differential Equation in Three Dimensions 240
- 16.7 Diffusion Equation of One **Dimension 240**
- 16.8 Diffusion Equation of Two Dimension 240
- 16.9 Diffusion Equation of Three Dimension 240

17. Laplace Transforms

- 17.1 Laplace transforms—Properties 241
- 17.2 Operation of Laplace transform 242
- 17.3 z-Transform 254
- 17.4 Fourier Series 256
- 17.5 Bessel Function 258
- 17.6 Legendre Polynomials 259
- 17.7 Laguerre Polynomials 260
- 17.8 Hermite Polynomials 260
- 17.9 Orthogonality 261
- 17.10 Dirac Delta Function 261

18. Numerical Methods

263 - 274

241 - 262

- 18.1 Basic Concepts 263
- 18.2 Approximations (Based on Series Expansion) 263
- 18.3 Numerical Solution of Algebraic Equations 264
- 18.4 Numerical Solution of Systems of Linear Equations 265
- 18.5 Finite Differences, Formulas 267
- 18.6 Finite Differences, Tables 268
- 18.7 Interpolation, General Spacing 268
- 18.8 Interpolation, Equal Spacing 269
- 18.9 Numerical Integration, Difference Polynomials 270
- 18.10 Numerical Integration, Orthogonal Polynomials 271
- 18.11 Numerical Coefficients, Orthogonal Polynomials 272
- 18.12 Numerical Methods in Linear Legebra 274
- 18.13 Cholesky's Method 274

19. Probability

275 - 280

- 19.1 Probability 275
- 19.2 Probability Distribution 277
- 19.3 Limit Theorems 280

20.	Statistics
-----	------------

20.1 Mean and Variance of Distribution 281

281-297

- 20.2 Measures of Central Tendency: Statistical Constants 281
- 20.3 Probability 283
- 20.4 Binomial Distribution 284
- 20.5 Mean of Binomially Distributed Variable 284
- 20.6 Normal Distribution 284
- 20.7 Poisson Distribution 285
- 20.8 Least Squares Regression 285
- 20.9 Summary of Probability Distributions 286
- 20.10 Measures of Dispersion, Skewness, and Kurtosis 288
- 20.11 Discrete Probability Distribution 289
- 20.12 Continuous Probability Distributions 290
- 20.13 Ordinates $\phi_N(T)$ of the Standard Normal Curve 291
- 20.14 Areas $\phi_N(T)$ Under the Standard Normal Curve 292
- 20.15 Binomial Coefficients 293
- 20.16 Correlation and Regression 294
- 20.17 Sampling and Test of Significance 295

21. Tables of Indefinite Integrals 298-358

- 21.1 Basic Concepts 298
- 359-361
- 22.1 AND Gate 359
- 22.2 OR Gate 359

22. Digital Logic

22.3 NOT Gate 359

23. Linear Programming

- 22.4 NAND Gate 360
- 22.5 Exclusive OR Gate 360
- 22.6 Exclusive NOR Gate 360
- 22.7 DeMorgan's Theorem 361

362-364

23.1 Linear Programming 362 23.2 Definitions 362

365-418

- Appendix A (Numerical Tables) 365
- Appendix B (Conversion Tables) 388
- Appendix C (Glossary of Symbols) 392
- Appendix D (Tables of Physical Constants) 397
- Appendix E 399

Appendices

Appendix F 413

Appendix G 417