second order determinant, which is called the minor of the element a_{ii} . It is denoted by M_{ii} . Therefore, in a determinant of order 3, we may get 9 minors corresponding to the 9 elements of the determinant.

For example, in determinant (1)

example, in determinant (1)
Minor of
$$a_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} = M_{21}$$

and Minor of $a_{32} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} = M_{32}$

If we expand the determinant along the first row, then

$$\Delta = (-1)^{1+1} a_{11} M_{11} + (-1)^{1+2} a_{12} M_{12} + (-1)^{1+3} a_{13} M_{13}$$

= $a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13}$

Similarly, along second column, we can write

$$\Delta = -a_{12}M_{12} + a_{22}M_{22} - a_{32}M_{32}$$

1.11.2 COFACTOR

If we multiply the minor M_{ij} by $(-1)^{i+j}$. Then resulting value is called cofactor of the element a_{ij} . If A_{ij} is the cofactor of a_{ij} , then we write

Cofactor of
$$a_{ij} = A_{ij} = (-1)^{i+j} M_{ij}$$

Cofactor of $a_{21} = A_{21} = (-1)^{2+1} M_{21} = -\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$
Cofactor of $a_{32} = A_{32} = (-1)^{3+2} M_{32} = -\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$

Hence, cofactor of $a_{ij} = (-1)^{i+j}$ determinant obtained by leaving row and column passing through that element. Therefore, we can write

	$\Delta = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$
	$\Delta = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$
	$\Delta = a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33}$
and	$a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0$
	$a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} = 0$

1.12 SINGULAR AND NON-SINGULAR MATRIX

Definition. A matrix whose determinant value is zero, is said to be singular matrix. If the matrix is not singular, then it is said to be non-singular.

For example : If
$$A = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}$$
, then its determinant value.
 $|A| = \begin{vmatrix} 2 & 3 \\ 6 & 9 \end{vmatrix} = 2 \times 9 - 3 \times 6 = 18 - 18 = 0$

Thus the matrix A is singular.

1.13 TRANSPOSE OF A MATRIX

Consider a matrix $A = [a_{ij}]_{m \times n}$. Then a matrix which is obtained by interchanging the rows and columns of A is called the transpose of A. It is denoted by A' or A^{T} .

10

Applying
$$R_2 \rightarrow R_2 - 3R_1$$
, we get

$$\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -3 & 1 \end{bmatrix} A$$
Again applying $R_1 \rightarrow R_1 - 2R_2$, we get

$$\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -2\\ -3 & 1 \end{bmatrix} A$$

$$\Rightarrow \qquad I_2 = BA$$

$$\Rightarrow \qquad A^{-1} = B = \begin{bmatrix} 7 & -2\\ -3 & 1 \end{bmatrix}.$$
(ii) We write

$$A = I_2 A$$
or

$$\begin{bmatrix} 1 & 2\\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow R_2 - 2R_1$, we get

$$\begin{bmatrix} 1 & 2\\ 0 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -2 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow -\frac{1}{5}R_2$, we get

$$\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$
Applying $R_1 \rightarrow R_1 - 2R_2$, we get

$$\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$

$$\Rightarrow \qquad I_2 = BA$$

$$\Rightarrow \qquad A^{-1} = B = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$

$$\Rightarrow \qquad I_2 = BA$$

$$\Rightarrow \qquad A^{-1} = B = \begin{bmatrix} 1/5 & 2/5\\ 2/5 & -1/5 \end{bmatrix} A$$
Dy using elementary row-transformation.
SOLUTION. We write

$$A = I_3A$$
or

$$\begin{bmatrix} 1 & 2 & 1\\ 3 & 2 & 3\\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow R_2 - 3R_1, R_3 \rightarrow R_3 - R_1$, we get

$$\begin{bmatrix} 1 & 2 & 1\\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 & 0\\ -1 & 0 & 1 \end{bmatrix} A$$

REMARK

• A function $f(\mathbf{x})$ is said to be strictly concave if $-f(\mathbf{x})$ is strictly convex.

RELATED THEOREMS

THEOREM 1. The hyperplane is a convex set. IMEERUT-20071 **PROOF.** Let $X = [\mathbf{x} : \mathbf{cx} = \mathbf{z}]$ be a hyperplane and $\mathbf{x}_1, \mathbf{x}_2 \in X$ then, $cx_1 = z$ and $cx_2 = z$ (By definition) $\mathbf{x}_3 = \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2, 0 \le \lambda \le 1$ Now, if Then, $c\mathbf{x}_3 = \lambda c \cdot \mathbf{x}_1 + (1 - \lambda) c\mathbf{x}_2$ $=\lambda z + (1-\lambda)z$ $\boldsymbol{x}_3 = \lambda \boldsymbol{x}_1 + (1 - \lambda) \boldsymbol{x}_2 \in X$ \Rightarrow $\Rightarrow \mathbf{x}_3$ is also a point in X Hence, X is a convex set. **THEOREM 2.** The closed half spaces $H_1 = \{x : cx \ge z\}$ and $H_2 = \{x : cx \le z\}$ are convex sets. **PROOF.** Let $\mathbf{x}_1 \in H_1$ and $\mathbf{x}_2 \in H_2$. Then by definition of H_1 , we can write $\mathbf{cx}_1 \ge z : \mathbf{cx}_2 \ge z$ Now, if $0 \le \lambda \le 1$, then we have $\boldsymbol{c}[\lambda \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{x}_2] = \lambda \boldsymbol{c} \cdot \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{c}\boldsymbol{x}_2$ $\geq \lambda z + (1 - \lambda)z = z$ Therefore, $\mathbf{x}_1, \mathbf{x}_2 \in H_1$ and $0 \le \lambda \le 1$ implies $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in H_1$ Hence, H_1 is a convex set Similarly, we may prove that H_2 is a convex set. **C** REMARK • In a similar way (as above) we may prove that the open half spaces $\{x : cx > z\}$ and $\{x : cx < z\}$ are convex sets. **THEOREM 3.** Intersection of two convex sets is also a convex set. [MEERUT-2007, 08, 12,15] **PROOF.** Let X_1 and X_2 be two convex sets. We have to prove that $X_1 \cap X_2$ is also convex. If $\mathbf{x}_1 \in X_1 \cap X_2 \Rightarrow \mathbf{x}_1 \in X_1$ and $\mathbf{x}_1 \in X_2$ $\boldsymbol{x}_2 \in X_1 \cap X_2 \Rightarrow \boldsymbol{x}_2 \in X_1 \text{ and } \boldsymbol{x}_2 \in X_2$ Now, by definition of convex sets $\boldsymbol{x}_1, \boldsymbol{x}_2 \in X_1 \implies \lambda \boldsymbol{x}_1 + (1 - \lambda) \boldsymbol{x}_2 \in X_1 ; 0 \le \lambda \le 1$ $\boldsymbol{x}_1, \boldsymbol{x}_2 \in X_2 \implies \lambda \boldsymbol{x}_1 + (1 - \lambda) \boldsymbol{x}_2 \in X_2 ; 0 \le \lambda \le 1$ Therefore, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in X_1$ and $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in X_2$ $\Rightarrow \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in X_1 \cap X_2$ Hence, $X_1 \cap X_2$ is a convex set. THEOREM 4. Finite intersection of convex sets is also a convex set. **PROOF.** Let $X_1, X_2, ..., X_n$ be *n* convex sets. We have to prove that $X = X_1 \cap X_2 \cap ... \cap X_n$ is also convex. Let $\mathbf{x}_1 \in X_1 \cap X_2 \cap ... \cap X_n \implies \mathbf{x}_1 \in X_i \forall i = 1, 2, ..., n$ $\boldsymbol{x}_2 \in X_1 \cap X_2 \cap ... \cap X_n \implies \boldsymbol{x}_2 \in X_i \forall i = 1, 2, ..., n$

20

Glossary

- Non-degenerate Basic solution: If none of the basic variable is zero. Then, basic solution is called non-degenerate.
- Degenerate Basic solution: If at least one of the basic variable is zero, then a basic solution is called degenerate.
- Feasible Basic solution: If all the basic variables are non-negative, then a basic solution is called feasible.
- Hypersphere: In *n*-dimensional space, a hypersphere, with centre *a* and radius r(>0)is the set of points

 $X = \{x : |x - a| = r\}$

The equation of hypersphere in E^n (or R^n) is given by $\Sigma(x_i - a_i)^2 = r^2$.

- Hyperplane: It is defined as the set of points $(x_1, x_2, ..., x_n)$ satisfying $c_1x_1 + c_2x_2 + ... +$ $c_n x_n = z$, (not all $c_i = 0$) for prescribed values of c_1, c_2, \ldots, c_n and z.
- Convex set: A set of points is said to be convex if for any two points in the set, the line segment joining these points is also in the set, i.e., a set is said to be convex if convex combination of any two points in the set is also

REVIEW QUESTIONS

- **1.** What do you mean by an extreme point of a convex set?
- 2. Write a short note on convex set and their applications to linear programming problem.
- 3. Obtain the convex hull of the boundary of a circle.
- 4. Prove that the convex hull of a finite number

MULTIPLE CHOICE QUESTIONS (CHOOSE THE MOST APPROPRIATE ONE)

- **1.** The number of vertices of any non empty closed bounded convex set can not be:
 - (a) finite (b) not finite
 - (c) infinite (d) None of these
- **2.** The closed half spaces in E_n or E^n is a: (a) open convex set
 - (b) unbounded convex set
 - (c) closed convex set
 - (d) no convex set
- **3.** The set of all feasible solution (if not empty) of a L.P.P. is a:
 - (a) non convex set (b) poly convex set
 - (d) none of these (c) convex set
- 4. The union of two convex sets may or may not be a:

in the set.

 $f{\lambda x}$

- Convex Hull: The set of all convex combinations of sets of points from the set X of points is called convex hull, *i.e.*, the intersection of all convex sets containing X in *n*-dimensional space is called the convex hull of X. Hence, the convex hull of a set $X \subseteq E^n$ is the smallest convex set containing X.
- Convex function: A function f(x) is said to be strictly convex at \boldsymbol{x} if for any two other distinct points \mathbf{x}_1 and \mathbf{x}_2

$$\int_{1}^{1} + (1 - \lambda)x_{2} \{ \langle \lambda f(x_{1}) + (1 - \lambda)f(x_{2}) \} \\ 0 < \lambda < 1$$

- Convex Polyhedron: The set of all convex combinations of finite number of points is said to be the convex polyhedron generated by these points.
- Extreme Point: A point x in a convex set C is an extreme point of C if it does not lie on the line segment of any two points, different from \boldsymbol{x} in the set, *i.e.*, it can not be expressed as a convex combinations of any two distinct points \boldsymbol{x}_1 and \boldsymbol{x}_2 in *C*.

of points is a convex set.

- 5. Define: Hyperplane, Convex set
- **6.** What is meant by convex polyhedron.
- 7. Explain the procedure of generating extreme points solutions to a linear programming problem pointing out the assumption made. if any?
 - (b) Convex set (a) Non convex set
 - (c) Poly convex set (d) None of these
- 5. Every extreme point of a convex set is:
 - (a) boundary value of the set
 - (b) boundary point of the set

 - (c) both (a) and (b) (d) none of these
- 6. A hyper plane is:

(c) concave

- (a) convex
 - (b) feasible(d) none of these
- **7.** Let S and T are two convex sets in E^n , then S + T, S - T and $\alpha S + \beta T$, where α and β are scalars, are called:
 - (b) convex sets (a) non convex
 - (c) convex point (d) none of these