KIDNEY

GLOMERULUS

PATHOLOGIC RESPONSES OF THE GLOMERULUS TO INJURY

Site of glomerular deposits	Type of glomerulonephritis
Subepithelial deposits	 PSGN Membranous GN RPGN Heymann Nephritis
Subendothelial deposits	Lupus nephritisMPGN-I
Membranous deposits	MPGN II
Mesangial deposits	IgA nephropathyHSP

Terminologies used in kidney biopsy		
Terminology	Description	
Diffuse	Involving >50% of the glomeruli in the kidney ^Q	
Global	Involving the glomerulus completely ^Q	
Focal	Involving <50% of the glomeruli in the kidney	
Segmental	Affecting a part of each glomerulus ^Q	
Capillary loop Mesangial	Affecting predominantly capillary or mesangial regions ^Q	

Bowman's capsule- Lined by flattened cells (parietal epithelial cells)

Capillaries – Visceral epithelial cells having foot process (podocytes)

Every capillary has basement membrane lined by endothelial cells

All the capillaries are supported by mesangial matrix

NEPHRON MUTATION

- Most common mutation
- Coded by NPHS-1
- Minimal change like presentation
- Respond to steroids

PODOCIN

- Coded by NPHS-2
- FSGS like presentation
- Does not respond to steroids

Actin mutation also causes FSGS (a Actinin)

NEPHROTIC SYNDROME

MINIMAL CHANGE DISEASE

Albumin is released as it is negatively charged and smaller in size

- Cytokines also cause flattened podocytes Effacement seen in electron microscopy
- No change in light microscopy and Immunofluorescence

- Morphology:
 - Light microscopy: Glomeruli appear normal^Q.
 - Immunofluorescence microscopy: No Ig/ complement deposits.
 - Electron microscopy: Diffuse effacement of foot processes of podocytes ("podocytopathy")^Q.
 - No electron-dense deposits^Q
 - Proximal tubules cells get laden with lipid and protein due to tubular reabsorption of lipoproteins: Lipoid nephrosis^Q.

FOCAL SEGMENTED GLOMERULAR SCLEROSIS

Due to Podocytes injury

Caused by

- HIV
- Obesitu
- Reflex
- Renal ablation
- · Sickle cell anemia

DAMAGED PODOCYTES SCLEROSIS

HIVAN

- HIV associated nephropathy
- Collapsing nephropathy
- Proliferation of podocytes causes damage to other structures

Morphology:

- Light microscopy
 - Collapse of capillary loops in sclerotic areas

<50% of glomeruli- Focal segmented

Minimal change disease

Podocytopathies

FSGS

- Deposition of plasma proteins along capillary wall (hyalinosis)
- Immunofluorescence microscopy
 - IgM + C3 deposition in sclerotic areas and/or in mesangium.
- Electron microscopy
 - **Diffuse effacement** of foot processes of podocytes.
 - Focal detachment of the epithelial cells.
 - Denudation of the underlying GBM.

MEMBRANOUS NEPHROPATHY

- Immune complex mediated
- Antigen Phospholipid A2

ON LIGHT MICROSCOPY

- Thickened BM
 PAS/Silver stain
- SPIKES AND DOME PATTERN

Morphology:

- Light microscopy: Uniform, diffuse thickening of the glomerular capillary wall.^Q
- Immunofluorescence microscopy:
 Granular/Lumpy bumpy^Q electron dense immune complexes deposits
- Electron microscopy: Granular deposits (Ig + complement)
 - Effacement of podocyte foot processes Q
- On Silver methenamine stain: Prominent "spikes" and "domes" of silver-staining matrix.

ON ELECTRON MICROSCOPY

IMMUNOFLUORESCENCE

- Fluoro isothicyanate (green color)
- Granular immunofluorescence

IGA NEPHROPATHY (BERGER'S DISEASE)

- Affects 25–40 years age group
- Due to excess of IgA or not able to metabolise IgA
- Occurs after upper respiratory or lower respiratory infection

ON LIGHT MICROSCOPY

Mesangial proliferation is seen

IN IMMUNOFLUORESCENCE

- Granular immunofluorescence (IgA, IgG, C3)
- IgA activates alternative complement pathway (C3)

ON ELECTRON MICROSCOPY

- Deposits increased mesangium
 - Presents with isolated hematuria
 - Coeliac/liver disease patients have excess of IgA causing predeposition
- More prone to get IgA nephropathy

TREATMENT

- Transplantation
- Reoccurs after transplantation

POST STREPTOCOCCAL GLOMERULONEPHRITIS

- Immune complex mediated
- Caused by B hemolytic streptococci

• ANTIGEN- STREPTOCOCCAL PROGENITOR EXOTOXIN B - SPE B

- · Within 6 weeks heals by itself
- Complement deposition (C1, C3, C4)

RAPIDLY PROGRESSIVE GLOMERULONEPHRITIS

Hallmark: BASEMENT MEMBRANE DAMAGE

CRESCENT - Fibrinogen, inflammatory cells, parietal cells Very big crescent can interact visceral epithelial cells

Entity	Type I (20%)	Type II (25%)	Type III (55%)
Mechanism	Anti-GBM antibody	Immune complex	Pauci-immune, c-ANCA/p-ANCA mediated
Etiology	Renal limited Goodpasture syndrome (Serum antibodies against alpha 3 NC1 domain of collagen – IV)	 Postinfectious Poststreptococcal glomerulonephritis^Q Bacterial endocarditis^Q Noninfectious SLE^Q, HSP^Q Mixed cryoglobulinemia^Q Primary renal disease MPGN^Q IgA nephropathy^Q 	 ANCA-associated Idiopathic Granulomatosis with polyangiitis (Wegener granulomatosis)^Q Microscopic polyangiitis^Q Hypersensitivity vasculitis^Q
Grossly	Kidneys are enlarged and pale, often with petechial hemorrhages on the cortical surfaces. (FLEA-BITTEN KIDNEY) $^{\rm Q}$		
Light m/e	 Focal and segment 	ents are Hallmark ^Q . Ental necrosis ^Q , endothelial and mesand Segmental glomerular necrosis is a feat Crescents—formed by Proliferation of pa Infiltration by WE Fibrin strands. ^Q Crescents obliterate space and compress the tuft, hence More the number of poorer the prognosis ^Q rulonephritis	ture characteristic ^Q . Arietal cells ^Q BCs ^Q the urinary he glomerular crescents -
Immunofluorescence m/e	Type I RPGN (line		No deposition of immune reactants ^q No deposits seen (Pauci-immune)
Electron m/e	Runtures in the GR	M ^Q may be present, Type II shows imn	une complex denocite

DIFFERENTIATE BETWEEN TYPES OF RPGN

LIGHT MICROSCOPY	All crescents		
ELECTRON MICROSCOPY	All will show basemen	t membrane damage	
IMMUNOFLUORESCENCE	1	11	III
	Linear	Granular	No IM

MEMBRANOPROLIFERATIVE GLOMERULONEPHRITIS

ON SILVER STAIN

Basement membrane is broken
 Tram - Track appearance

MPGN TYPE 2

- Known as C3 GLOMERULONEPHRITIS

 DENSE DEPOSIT DISEASE

 COMPLEMENTOPATHIES
- C3 convertase breakdown C3 to C3a and C3b

• C3 convertase is then broken down by Factor H and Factor I C3 NeF

C3Ne F blocks the action of Factor H and I Which causes more breakdown of C3 to C3a and C 3b C3 will be decreased

Deposition of dense material in laminate densa of BM (ribbon like)

SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)

ISN/RPS (2003) classification of lupus nephritis
Class 1	Minimal mesangial LN
Class II	Mesangial proliferative LN
Class III	Focal LN (<50% of glomeruli) III (A): active lesions III (A/C): active and chronic lesions III (C): chronic lesions
Class IV	Diffuse LN (50% of glomeruli) Diffuse segmental (IV-S) or global (IV-G) LN IV (A): active lesions IV (A/C): active and chronic lesions IV (C): chronic lesions
Class V	Membranous LN
Class VI	Advanced sclerosing LN (90% globally sclerosed glomeruli without residual activity)
Adapted from weening jj, D'Agati VD, Schwartz MM	

BREAST

STRUCTURE OF BREAST

- Breast include:
 - Two major structures (ducts and lobules),
 - Two types of epithelial cells (luminal and myoepithelial),
 - Two types of stroma (interlobular and intralobular).
- Ducts and lobule are lined by inner luminal cells and outer myoepithelial cells.
- Each lobule is made up of acini and surrounded by intralobular stroma and interlobular stroma.

Proliferation of luminal and myoepithelial cells — Hyperplasia Seen in Pregnancy and puberty

Hypertrophy → Lactating

Loss of Myoepithelial cells Malignancy

Only luminal cells proliferate — Ductal carcinoma insitu Myoepithelial cells are intact

If at any point, MEC disappear → Invasive carcinoma

STAINS OF MEC

- P63
- Calponin

- \$100
- Smooth muscle actin

TUMORS OF THE BREAST

FIBROADENOMA

- Most common benign tumor of the female breast.
- Two-thirds of fibroadenomas harbor driver mutations in MED12.
- Arises from intralobular stroma
- · Always benign, limited to intralobular stroma

- Tumors are well-circumscribed, rubbery, grayish white nodules that bulge above the surrounding tissue and often contain slit-like spaces lined by epithelium
- FNAC:
 - Intact duct
 - Proliferation of stroma
 - Spindle shaped ducts
 - Antler horn pattern

Proliferation of stroma and spindle shaped ducts

Antler horn pattern seen in FNAC