

| Contents for the treatment of black spots or pigmentation |        |  |
|-----------------------------------------------------------|--------|--|
| Composition                                               | Wt (%) |  |
| Pterocarpus santalivus                                    | 10%    |  |
| Symplucos recemosa                                        | 10%    |  |
| Santalum Album                                            | 10%    |  |
| Inula racemosa                                            | 10%    |  |
| Nelumbo nucifera                                          | 10%    |  |
| Berberis aristata                                         | 10%    |  |
| Myristica fragrans                                        | 10%    |  |
| Termanalia Arjuna                                         | 10%    |  |
| Multani                                                   | 10%    |  |
| Khapariya                                                 | 10%    |  |

| Contents for th | e treatment of | sperm | production |
|-----------------|----------------|-------|------------|
|-----------------|----------------|-------|------------|

| Each capsule contains | Wt/unit |
|-----------------------|---------|
| (Cressa Cretica)      | 200 mg  |
| Mineral Pitch         | 200 mg  |
| Mucuna Prurita        | 200 mg  |
| Withania Somnifera    | 100 mg  |
| Asparagus Racemonus   | 100 mg  |
| Zinc                  | 100 mg  |
| Boitite               | 50 mg   |
| Iron                  | 50 mg   |
|                       |         |

## Contents for the treatment of hypertension

| Each capsule contains   | Wt (%) |
|-------------------------|--------|
| Rauwolfia serpentina    | 150 mg |
| Convolvulus pluricaulis | 100 mg |
| Santalum album          | 50 mg  |
| Symplocos racemosus     | 50 mg  |
| Tinospora cordifolia    | 50 mg  |
| Terminalia Chembulla    | 25 mg  |
| Piper Longum            | 100 mg |
| Termanalia Arjuna       | 25 mg  |
| Hyoscymus niger         | 25 mg  |
|                         |        |



## **Biological Activity Evaluation**

Bitterness values, astringency, swelling factor, form index, hemolytic index, etc.

## **Toxicological Evaluation**

Pesticide residues, heavy metals, microbial contamination like total viable aerobic count, pathogens like *E. coli*, Salmonella, *P. aeruginosa*, *S. aureus*, Enterobacteria, etc.

#### Aflatoxins

The presence of aflatoxins can be determined by chromatographic methods using standard aflatoxins  $B_1$ ,  $B_2$ ,  $G_1$ ,  $G_2$  mixtures. Aflatoxin is a product of the microbial strain *Aspergillus flavus*.

## **Radioactive Contaminants**

## Therapeutic Evaluation

#### Classical evaluation as per Ayurvedic literatures

Classical therapeutical attributes like Rasna, Guna, Virya, Vipaka and Karma classical formulations, doses, storage conditions.

The quality of the raw materials can be tested according to the following format: Name of the drug (English, Regional names, Exact botanical nomenclature) Part of the plant used Area of collection Distribution details Season of Crop Time and year of collection Pesticide and insecticides Condition of the drug (fresh or dry) Form of the drug (powdered or intact or cuttings like, etc.)

## CONCLUSION

The subject of herbal drug standardization is massively wide and deep. There is so much to know and so much seemingly contradictory theories on the subject of herbal medicines and its relationship with human physiology and mental function.

For the purpose of research work on standardization of herbal formulations and nutraceuticals a profound knowledge of the important herbs found in India and widely used in Ayurvedic formulation is of utmost importance.

India can emerge as the major country and play the lead role in production of standardized, therapeutically effective Ayurvedic formulation. India needs to explore the medicinally important plants. This can be achieved only if the herbal products are evaluated and analyzed using sophisticated modern techniques of standardization, such as UV-visible, TLC, HPLC, HPTLC, GC-MS, spectrofluorimetric and other methods.

Herbal Formulations 33



| •       |               | · · ·               |       |
|---------|---------------|---------------------|-------|
| Sr. No. | Drug name     | Latin name          | Qty.  |
| 6.      | Manjistha     | Rubia Cordifolia    | 20 mg |
| 7.      | Chaturjaat    |                     | 20 mg |
| 8.      | Trifla        |                     | 20 mg |
| 9.      | Katu          |                     | 15 mg |
| 10.     | Shatawari     | Asparagus Racemosus | 50 mg |
| 11.     | Akarkara      | Anacyclus Pyrethrum | 30 mg |
| 12.     | Jaiphal       | Myristica Fragrans  | 22 mg |
| 13.     | Vidarikand    | Pueraria Tuberosa   | 35 mg |
| 14.     | Shilajeet     | Asphaltum           | 15 mg |
| 15.     | Musli Safed   | Asparagus Ascendens | 25 mg |
| 16.     | Preservatives |                     |       |
|         |               |                     |       |

## **Risizyme Syrup**

Leveraging on our enriched domain experience, we are engaged in offering a huge gamut of Risizyme syrup. This syrup is highly recommended by famous doctors, medical personnel and health care workers. These products are highly effective in giving immediate relief from digestive problems like indigestion, gastritis and flatulence. The recommended dosage in adult is 10 ml twice a day and in children it is 5 ml twice a day.

#### Composition: Each 10 ml contains

| Sr. No. | Drug name     | Latin name           | Qty.   |
|---------|---------------|----------------------|--------|
| 1.      | Yastimadhu    | Glycrhizza Glabra    | 425 mg |
| 2.      | Saunf         | Foeniculum Vulgare   | 200 mg |
| 3.      | Harataki      | Terminalia Chebula   | 175 mg |
| 4.      | Pitpapra      | Fumaria Parviflora   | 110 mg |
| 5.      | Jeera         | Cyumin Cummi         | 100 mg |
| 6.      | Pipali        | Piper Longum         | 50 mg  |
| 7.      | Badi Elaichi  | Amomum Subulatum     | 100 mg |
| 8.      | Tulsi         | Ocimum Sanctum       | 50 mg  |
| 9.      | Ajwain        | Trachyspermum Ammi   | 95 mg  |
| 10.     | Saunth        | Zingiber Officinale  | 105 mg |
| 11.     | Kali Marich   | Piper Nigrum         | 55 mg  |
| 12.     | Dalchini      | Cinnamomum Zeylanica | 50 mg  |
| 13.     | Punarnava     | Boerrhavia Diffusa   | 100 mg |
| 14.     | Pudina        | Mentha Spicata       | 60 mg  |
| 15.     | Saindha Namak |                      | 10 mg  |
| 16.     | Kala Namak    |                      | 20 mg  |







# Energy Kilojoules/ Kilocalories

Energy has traditionally been expressed as calories or kilocalories. More recently, the units of energy have been changed to kilojoules. There are 4.2 kilojoules in

1 kilocalorie. For convenience, both units are shown on the chart. Someone having 2000 kilocalories each day would be having 8400 kilojoules, also known as 8.4 megajoules. The energy value of a food **Food charts list:** beverages cereals, biscuits, cakes, deserts egg and cheese dishes fats and oils fish and seafoods fruit meat and meat products milk and milk products nuts sauces and condiments soups (as served) sugars, jams and spreads sweets vegetables.

indicates its value to the body as a fuel. This may be less than the heat value obtained experimentally by 'burning' the food outside the body in what is called a 'bomb calorimeter'. After a food is ingested, some of its energy may be 'lost' during digestion and metabolism. Although the energy value of some foods has been found by combustion in a bomb calorimeter, more usually the amounts of the macronutrients—fat, protein, **carbohydrate** and alcohol (ethanol) - in a food are taken into account when assessing the total energy value of the food. The energy value for each macronutrient must be known, and an allowance made for body losses. The first system for giving energy values to the macronutrients was described by Dr WO Atwater in 1899. Modified, the '**Atwater factors**' are:

|              | Kilojoules per gram | Kilocalories per gram |
|--------------|---------------------|-----------------------|
| Fat          | 37                  | 9                     |
| Alcohol      | 29                  | 7                     |
| Protein      | 17                  | 4                     |
| Carbohydrate | 16                  | 4                     |

The energy value of a particular food is calculated from a knowledge of macronutrient composition and the modified Atwater factors for these macronutrients. The energy values shown in the chart have been obtained with this approach.

Fat is the most energy-dense macronutrient, followed by alcohol, protein and carbohydrate. For example, one double Scotch has about twice as many kilocalories as a glass of soft drink; a glass of full-cream milk has about twice the kilocalories as a glass of soft drink or of skimmed milk. Dietary fibre or roughage is not usually ascribed an energy value for humans, but it is now recognized that some dietary fibre components are used as fuels by the microflora (bacteria) of the gut, especially in the large intestine. Some of the products of dietary fibre digestion may provide energy for the gut lining and some may