


Reducing Agents

1. Lithium aluminiu	n hydride (LiAl	lH₄)				
	Group Reduced to					
aldehyde	—СНО	\longrightarrow	-CH ₂ OH	primary alcohol		
ketone	>co	\longrightarrow	>снон —сн₂он	secondary alcohol		
acid	-COOH	\longrightarrow	-CH ₂ OH	primary alcohol		
ester	—COOR	\longrightarrow	$-CH_2OH + ROH$	mixture of primary		
				alcohol and alcohol		
acid chloride			-CH ₂ OH	primary alcohol		
amide			-CH ₂ NH ₂	primary amine		
cyanide			$-CH_2NH_2$	primary amine		
acid anhydride			-CH ₂ OH	primary alcohol		
aldoxime/ketoxim				primary amine		
nitro alkane		\longrightarrow		primary amine		
nitro benzene	-	\longrightarrow	ArNH=NHA	azo benzen		
primary/secondar	5		DII	1. 11		
halide		\longrightarrow		corresponding alkane		
tertiary halide				corresponding alkene		
Azoxy benzene				alkanes		
3° Alkyl halides	R ₋ C—X	\rightarrow	RCH_2X/R_2CHX	alkenes		
3° Alkyl halides $R_3C \longrightarrow R_2 \longrightarrow R_2 \longrightarrow C=CH_2$ alkenes LiAlH ₄ does not reduce either a double bond or a triple bond.						
Reduction by $LiAlH_4$ proceeds via reduction by hydride ion						
LiAlH ₄ \longrightarrow Li ⁺ H ⁻ + AlH ₃						
$Li^+ H^- \longrightarrow$						
			Н			
>C=O + Li ⁺	$\longrightarrow C^+ - OI$	_iH^+	\rightarrow C—OLi —H ₂ C	\rightarrow >CHOH		
$>C=O + Li^{+} \longrightarrow >C^{+} - OLi \xrightarrow{H^{+}} >C^{-} - OLi \xrightarrow{H_{2}O} >CHOH$ Reduction of either a double bond or a triple bond proceeds <i>via</i> electrophilic addition.						
 Sodium borohydride (NaBH₄) 						
Its reducing properties are like those of LiAlH ₄ , except it does not reduce nitro alkanes,						
RNO_2 ; nitro arenes, ArNO ₂ ; carboxylic acids, RCOOH and esters RCOOR						
Grou	,		Reduced to			
primary/secondaı halide	5		RH	corresponding alkane		
aldehyde	—CHO	\longrightarrow	-CH ₂ OH	primary alcohol		
ketone	>co	\longrightarrow	>снон	secondary alcohol		
acid chloride			-CH ₂ OH	primary alcohol		
3. Catalytic reduction	3. Catalytic reduction by H_2 and Ni at 300°C					
It is carried reducing the compound by hydrogen in the presence of Ni at 300 °C						
Group Reduced to						
alkene	>c=c<	\longrightarrow		alkane		
alkyne	—C≡C—	\longrightarrow	$-CH_2-CH_2-$	alkane		
aldehyde	-CHO	\longrightarrow	-CH ₂ OH	primary alcohol		
-				-		

Topic 4

Tests and Group Tests, Rules and Reagents

Reagents and Solutions

i. **Tollen's reagent:** An ammoniacal solution of silver nitrate is termed Tollen's reagent. It is prepared by adding sodium hydroxide drop by drop to $AgNO_3$ solution followed by adding excess of ammonia, as a result a clear solution is obtained. It behaves as Ag_2O in the solution.

AgNO₃ + NaOH + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ OH⁻ + NaNO₃ Aldehydes reduce Tollen's reagent to form metallic silver (Ag), as a grey precipitate. RCHO + Ag₂O \longrightarrow RCOOH + 2Ag

ii. **Fehling solution:** It is an alkaline solution containing a complex of copper tartarate, which is reduced by aldehydes to Cu_2O , a brick red coloured powder. The solution is prepared at the time of use only by mixing equal volumes of Fehling solution A (an aqueous solution of $CuSO_4$) and B (an aqueous solution of NaOH and sodium potassium tartarate or Rochelle salt) that result in the formation of a deep blue coloured clear solution.

Fehling solution (A)

Aqueous CuSO₄ solution

Fehling solution (B) 2NaOH + CH(OH)COONa |

CH(OH)COOK (Rochelle salt)

Copper chelate compound behaves as CuO in aqueous solution.

b. RCHO + 2CuO \longrightarrow RCOOH + Cu₂O

On warming Fehling solution, with an aldehyde, a brick red powder of Cu_2O , or a thin film of metallic Cu is formed. Nuclear substituted aromatic aldehydes do not reduce Fehling solution conclusively.

55.	 5. Aliphatic aldehydes reduces Fehling's solution but benzaldehyde does not because (a) of a bulky ring and —CHO is the hinderer (b) of resonance, the oxidation of —CHO is difficult (c) —CHO group is in a cyclic structure (d) all of the above reasons 				
	(d) all of the above reasons	6			
56.	Fehling solution is used in the detection of				
	(a) a ketonic group	(b) an alcoholic group			
	(c) an aldehydic group	(d) an acid group			
57.	HCHO and CH ₃ CHO can be distinguished	d by the use of			
	(a) Schiff's reagent	(b) Tollen's reagent			
	(c) Fehling solution	(d) a haloform reaction			
58.	he reagent of choice for the selective reduction of a ketone in presence of an ester				
	(a) LiAl ₄	(b) NaBH ₄			
	(c) H ₂ and Pd	(d) sodium in ethanol			
59.	The red precipitate obtained on heating Fehling solution with acetaldehyde consists of				
	(a) Cu	(b) CuO			
	(c) $Cu + CuO + Cu_2O$	(d) Cu ₂ O			
60.	Schiff's reagent is				
(a) magenta solution decolourised by H_2SO_3					
	(b) magenta decolourise by SO_2 gas				
	(c) ammonical COCl ₂ solution				
	(d) ammonical MnSO ₄ solution				
61.	Acetaldehyde and acetone can be distingu	ushed by treating			
	(a) NaHSO ₃	(b) NaCN			
	(c) NaI + I_2	(d) $Ag(NH_3)_2^+$			
62.	62. The reaction of Tollen's reagent with acetaldehyde gives				
	(a) CH ₃ OH	(b) CH ₃ COOAg			
	(c) silver mirror	(d) HCHO			
63.	Magenta is				
	(a) alkaline phenolphthalein				
	(b) red litmus				
	(c) p-rosaniline hydrochloride or fuchsin	e			
	(d) methyl red				
64.	64. C_2H_5CHO and CH_3COCH_3 can be distinguished by testing with				
	(a) phenyl hydrazine	(b) Hydroxyl amine			
	(c) Fehling solution	(d) sodium bisulphite			
65. C_6H_5CHO and CH_3CHO can be distinguished by					
	(a) Iodoform test	(b) 2,4-DNP test			
	(c) NH ₃ test	(d) Wolff-Kishner's reduction			
66.	HCHO and HCOOH can be distinguished by treating with				
	(a) Tollen's reagent	(b) NaHCO ₃			
	(c) Fehling solution	(d) Benedict's solution			
67.	Benedict's solution provides				
	a) Ag_+ (b) Cu_2^+	(c) Ba_2^+ (d) Li^+			
68.	Jone's reagent is				
	(a) acid KMnO ₄	(b) $K_2Cr_2O_7 + H_2SO_4$ or $CrO_3 + H_2SO_4$			
	(c) alk. KMnO ₄	(d) none			