2.3.3 COLUMN MATRIX

A matrix having *m* rows and only one column is called a *column matrix* of order $m \times 1$.

For example :
$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}_{m \times 1}$$
2.3.4 Horizontal matrix

A matrix having more columns than the number of its rows, is called *Horizontal matrix*.

	г		г
For evemple.	$A = \begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}	a ₁₃
For example.	$^{11} [a_{21}]$	a ₂₂	$a_{23} \Big _{2 \times 3}$

2.3.5 VERTICAL MATRIX

A matrix having more number of rows than its columns, is called *vertical matrix*.

For exmaple:	<i>a</i> ₁₁	a ₁₂
	$A = a_{21} $	a ₂₂
	$[a_{31}]$	a_{32}

REMARK

• Row matrix is also a horizontal matrix and column matrix is also a vertical matrix.

2.3.6 SQUARE MATRIX

A matrix having a number of rows equal to number of columns, is called square matrix.

		<i>a</i> ₁₁	a_{12}	a ₁₃	
For example :	A =	a ₂₁	a ₂₂	a ₂₃	
		a ₃₁	a_{32}	a ₃₃	3×3

Here, the matrix A has 3 rows and 3 columns, so it is a square matrix. Also the elements a_{11} , a_{22} , a_{33} are placed in the diagonal, so these elements are known as *diagonal elements*.

2.3.7 DIAGONAL MATRIX

A matrix of order $n \times n$ is called a *diagonal matrix* if it contains all its off diagonal elements equal to zero.

Suppose $A = [a_{ij}]_{n \times n}$ and if $a_{ij} = 0$ for all $i \neq j$, then A is a diagonal matrix. Diagonal matrix of order $n \times n$ is usually written as Diag $[a_{11} \quad a_{22} \quad a_{33} \quad \dots \quad a_{nn}]$

		[1	0	0]	
For example:	A =	0	2	0	= Diag [1 2 3]
		0	0	$3 \rfloor_{3\times}$	3

2.3.8 SCALAR MATRIX

A diagonal matrix whose diagonal elements are all equal but not equal to 1 is called a *scalar matrix*.

For example:
$$A = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}, k \neq 1$$

12

LINEAR PROGRAMMING : SOME MATHEMATICAL PRELIMINARIES AND CONVEX SETS 23

In other words, the rank of a matrix is the order of any highest order of a non-zero minor of the matrix.

REMARKS

- If the order of a matrix *A* is $m \times n$, then $\rho(A) \leq \min \{m, n\}$
- *A* is a null matrix iff $\rho(A) = 0$.
- If *A* is any non-zero matrix, then $\rho(A) \ge 1$.
- $\rho(A) \ge r$, if there exists a non-zero *r*-minor of *A*.
- For any square matrix A of order n, $\rho(A) = n$ iff A is non-singular.
- For any square matrix A of order n, $\rho(A) < n$ iff A is singular.
- $\rho(A) \le r$ if every *s*-minor of *A* is zero, where s > r.

Every (r+1)- rowed minor of A can be expressed as a linear combination of its r-rowed minors, therefore if every r-minor of A is zero, then its every (r+1)-minor is also zero.

2.18 ECHELON FORM OF A MATRIX

A matrix A is said to be in Echelon form if :

- (*i*) every row of *A* has all its entries 0 which occurs below every row having a non-zero entry. and
- (*ii*) the number of zeros before the first non-zero entry in a row is less than the number of such zeros in the next row.

REMARK

The rank of a matrix is equal to the number of non-zero rows in Echelon form of that matrix.

For example: Consider a matrix $A = \begin{bmatrix} 0 & 2 & 3 & 5 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Clearly, A is in Echelon form which has 2 non-zero rows, hence the rank of A is 2.

THEOREM 1. The rank of the transpose of a matrix is equal to the rank of that matrix.

PROOF. Let *A* be a marix, then *A'* is its transpose and let ρ(*A*) = *r*, then there exists an *r*-rowed minor of *A* which is not equal to zero and all *s*-rowed minors of *A* are zero, where *s* > *r*. Let |*B*| be a *r*-rowed minor of *A* such that |*B*|≠ 0. Since *A'* is the transpose of *A*, then |*B'*| is the *r*-rowed minor of *A'* but |*B'*| = |*B*|≠ 0, therefore ρ(*A'*) ≥ *r*. Suppose there is an *s*-minor |*C*| of *A'* such that |*C*|≠ 0, where *s* > *r*, then |*C'*| will be an *s*-minor of *A* such that |*C*| ≠ 0, therefore ρ(*A*) > *r* which is a contradiction, hence ρ(*A'*) = *r*.

Solved Examples

EXAMPLE1. Find the rank of the following matrices :

(i) [3 0 0]	(ii)	1	2	3					
(I) [3 0 0]		(11)	2	4	5				
	[1	2	3		[1	5	2	4]	
(iii)	3	4	5	(iv)	0	1	3	1	
	4	5	6		0	0	1	3	

FREMARK

• A function $f(\mathbf{x})$ is said to be strictly concave if $-f(\mathbf{x})$ is strictly convex.

THEOREM 1. The hyperplane is a convex set.

PROOF. Let $X = [\mathbf{x} : \mathbf{cx} = z]$ be a hyperplane and $\mathbf{x}_1, \mathbf{x}_2 \in X$ then, $\mathbf{cx}_1 = z \text{ and } \mathbf{cx}_2 = z$ (By definition) Now, if $\mathbf{x}_3 = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2, 0 \le \lambda \le 1$ Then, $\mathbf{cx}_3 = \lambda \mathbf{c} \cdot \mathbf{x}_1 + (1 - \lambda)\mathbf{cx}_2$ $= \lambda z + (1 - \lambda)z$ = z \Rightarrow $\mathbf{x}_3 = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in X$

 $\Rightarrow \mathbf{x}_3$ is also a point in X

Hence, X is a convex set.

THEOREM 2. The closed half spaces $H_1 = \{x : cx \ge z\}$ and $H_2 = \{x : cx \le z\}$ are convex sets.

PROOF. Let $\mathbf{x}_1 \in H_1$ and $\mathbf{x}_2 \in H_2$. Then by definition of H_1 , we can write $\mathbf{cx}_1 \ge z : \mathbf{cx}_2 \ge z$

Now, if $0 \le \lambda \le 1$, then we have

 $\boldsymbol{c}[\lambda \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{x}_2] = \lambda \boldsymbol{c} \cdot \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{c}\boldsymbol{x}_2$ $\geq \lambda \boldsymbol{z} + (1-\lambda)\boldsymbol{z} = \boldsymbol{z}$

Therefore, $\mathbf{x}_1, \mathbf{x}_2 \in H_1$ and $0 \le \lambda \le 1$ implies $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in H_1$

Hence, H_1 is a convex set

Similarly, we may prove that H_2 is a convex set.

REMARK

• In a similar way (as above) we may prove that the open half spaces {**x** : **cx** > z} and {**x** : **cx** < z} are convex sets.

THEOREM 3. Intersection of two convex sets is also a convex set.

[MEERUT-2007, 08, 12,15, 17, 18] **PROOF.** Let X_1 and X_2 be two convex sets. We have to prove that $X_1 \cap X_2$ is also convex. If $\mathbf{x}_1 \in X_1 \cap X_2 \Rightarrow \mathbf{x}_1 \in X_1$ and $\mathbf{x}_1 \in X_2$ $\mathbf{x}_2 \in X_1 \cap X_2 \Rightarrow \mathbf{x}_2 \in X_1$ and $\mathbf{x}_2 \in X_2$ Now, by definition of convex sets $\mathbf{x}_1, \mathbf{x}_2 \in X_1 \Rightarrow \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in X_1$; $0 \le \lambda \le 1$

$$\pmb{x}_1, x_2 \in X_2 \ \Rightarrow \lambda \pmb{x}_1 + (1-\lambda) \pmb{x}_2 \in X_2 \ ; \ 0 \leq \lambda \leq 1$$

Therefore, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in X_1$ and $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in X_2$

 $\Rightarrow \lambda \boldsymbol{x}_1 + (1 - \lambda) \boldsymbol{x}_2 \in X_1 \cap X_2$

Hence, $X_1 \cap X_2$ is a convex set.

THEOREM 4. Finite intersection of convex sets is also a convex set. [MEERUT-2016] **PROOF.** Let $X_1, X_2, ..., X_n$ be *n* convex sets.

We have to prove that $X_1 \cap X_2 \cap ... \cap X_n$ is also convex.

Let
$$\mathbf{x}_1 \in X_1 \cap X_2 \cap ... \cap X_n \Rightarrow \mathbf{x}_1 \in X_i \forall i = 1, 2, ..., n$$

 $\mathbf{x}_2 \in X_1 \cap X_2 \cap ... \cap X_n \Rightarrow \mathbf{x}_2 \in X_i \forall i = 1, 2, ..., n$

Since each X_i is convex set for i = 1, 2, ..., n

30

[MEERUT-2007]

(the convex set of all feasible solutions of $A\mathbf{x} = \mathbf{b}$) such that $\mathbf{x} = \lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2$, $0 < \lambda < 1$...(3)

But we can write,

$$\mathbf{x}_1 = [\mathbf{u}_1, \mathbf{v}_1] \text{ and } \mathbf{x}_2 = [\mathbf{u}_2, \mathbf{v}_2] \qquad \dots (4)$$

where u_1 and u_2 are vectors of *m* components of x_1 and x_2 respectively and v_1, v_2 are (*n*-*m*) components vectors.

Now using (1) and (4) in (3) we get

$$[X_B, \mathbf{0}] = \lambda[\mathbf{u}_1, \mathbf{v}_1] + (1 - \lambda)[\mathbf{u}_2, \mathbf{v}_2], 0 < \lambda < 1$$

= $[\lambda \mathbf{u}_1 + (1 - \lambda)\mathbf{u}_2, \lambda \mathbf{v}_1 + (1 - \lambda)\mathbf{v}_2]$
$$\mathbf{0} = \lambda \mathbf{v}_1 + (1 - \lambda)\mathbf{v}_2, 0 < \lambda < 1$$
...(5)

 \Rightarrow

Clearly, $1 > \lambda > 0$, $1 - \lambda > 0$ and the components of v_1 and v_2 are greater than equal to 0. So, (5) is satisfied only when $v_1 = 0$ and $v_2 = 0$

So,
$$\mathbf{x}_1 = [\mathbf{u}_1, 0], \mathbf{x}_2 = [\mathbf{u}_2, 0]$$

Also, $\boldsymbol{x}_1 \in X, \boldsymbol{x}_2 \in X$, then from (2) we have

and

$$A \mathbf{x}_1 = B \mathbf{u}_1 = \mathbf{b}$$

$$A \mathbf{x}_2 = B \mathbf{u}_2 = \mathbf{b}$$

$$X_B = \mathbf{u}_1 = \mathbf{u}_2$$

So, $\mathbf{x} = x_1 = x_2$, which contradict the fact that $\mathbf{x}_1 \neq \mathbf{x}_2$

 $\Rightarrow \mathbf{x}$ cannot be expressed as a convex combinations of any two distinct points in the set of all feasible solutions.

Hence, \boldsymbol{x} is an extreme point.

Conversly, let us suppose that $\mathbf{x} = (x_1, x_2, ..., x_n)$ be an extreme point. We have to prove that \mathbf{x} is a BFS.

Here, it is sufficient to prove that the vector associated with the positive elements of \boldsymbol{x} are linearly independent.

Let us suppose *p*-components in \mathbf{x} are non-zero and (n-p) components are zero. We can assume these components as the first *p*-components of \mathbf{x} .

So,
$$\sum_{i=1}^{p} \alpha_i x_i = \mathbf{b}$$
, $x_i > 0$, $i = 1, 2, ..., p$...(6)

where α_i is the column vector in A associated to the *i*th variable in **x**

Let if possible the column vectors α_1 , α_2 , ..., α_p of matrix be linearly dependent. Then by definition, there exist some scalars λ_i (i = 1, 2, ..., p) with at least one of them non-

zero such that
$$\sum_{i=1}^{p} \lambda_i \alpha_i = \mathbf{0}$$
 ...(7)

Now, from (6) and (7), for some arbitrary $\delta > 0$ we have

$$\sum_{i=1}^{p} x_i \alpha_i \pm \delta \sum_{i=1}^{p} \lambda_i \alpha_i = \mathbf{b}$$
$$\sum_{i=1}^{p} (x_i \pm \delta \lambda_i) \alpha_i = \mathbf{b}$$

 \Rightarrow