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1.1  CONTROL SYSTEM: TERMINOLOGY AND BASIC STRUCTURE

Control system theory evolved as an engineering discipline and due to universality of the  
principles involved, it is extended to various fields like economy, sociology, biology, medicine, etc. 
Control theory has played a vital role in the advance of engineering and science. The automatic control 
has become an integral part of modern manufacturing and industrial processes. For example, numerical 
control of machine tools in manufacturing industries, controlling pressure, temperature, humidity,  
viscosity and flow in process industry.

When a number of elements or components are connected in a sequence to perform a specific 
function, the group thus formed is called a system. In a system when the output quantity is controlled by 
varying the input quantity, the system is called control system. The output quantity is called controlled 
variable or response and input quantity is called command signal or excitation.

1.1.1 OPEN LOOP SYSTEM

Any physical system which does not automatically correct the variation in its output, is called an 
open loop system, or control system in which the output quantity has no effect upon the input quantity 
are called open-loop control system. This means that the output is not fedback to the input for correction.

In open loop system the output can be varied by varying the input. But due to external disturbances 
the system output may change. When the output changes due to disturbances, it is not followed by  changes 
in input to correct the output. In open loop systems the changes in output can be corrected by changing 
the input manually.

1.1.2  CLOSED LOOP SYSTEM

Control systems in which the output has an effect upon the input quantity in order to maintain the 
desired output value are called closed loop systems.
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The open loop system can be modified as closed loop system by providing a feedback. The  
provision of feedback automatically corrects the changes in output due to disturbances. Hence the closed 
loop system is also called automatic control system. The general block diagram of an automatic control 
system is shown in fig 1.2. It consists of an error detector, a controller, plant (open loop system) and 
feedback path elements.

The reference signal (or input signal) corresponds to desired output. The feedback path elements 
samples the output and converts it to a signal of same type as that of reference signal. The feedback 
signal is proportional to output signal and it is fed to the error detector. The error signal generated by the 
error detector is the difference between reference signal and feedback signal. The controller modifies and 
amplifies the error signal to produce better control action. The modified error signal is fed to the plant to 
correct its output.

Advantages of open loop systems

1.  The open loop systems are simple and economical.
2.  The open loop systems are easier to construct.
3.  Generally the open loop systems are stable.

Disadvantages of open loop systems 
1.  The open loop systems are inaccurate and unreliable.
2.  The changes in the output due to external disturbances are not corrected automatically.

Advantages of closed loop systems

1.  The closed loop systems are accurate.
2.  The closed loop systems are accurate even in the presence of non-linearities. 
3.  The sensitivity of the systems may be made small to make the system more stable.
4.  The closed loop systems are less affected by noise.

Disadvantages of closed loop systems

1.  The closed loop systems are complex and costly.
2.  The feedback in closed loop system may lead to oscillatory response.
3.  The feedback reduces the overall gain of the system.
4.  Stability is a major problem in closed loop system and more care is needed to design a stable
     closed loop system.

1.1.3  FEEDFORWARD AND FEEDBACK CONTROL THEORY

In automatic control systems, the changes in the controlled output variable due to disturbances are 
usually corrected automatically by feedback control. An alternative approach for automatic correction of 
changes in output variable due to disturbances is feedforward control.

In feedforward control the disturbance is measured before it enter the plant. Appropriate corrections 
to be made at the input are determined using the measured disturbance and input is corrected automatically, 
so that the corrected input and disturbance enter the plant almost simultaneously. This help in eliminating 
the effect of disturbance in the output much faster than feedback control, and also reduce the transient 
error. The feedforward control cannot be implemented alone, because it will not make corrections for non-
measurable disturbances. Therefore, a system with feedforward control will also have a feedback control. 
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Consider the unity feedback control system with an error correction controller in series with the 
plant as shown in fig 1.3.

Let, G(s) = Open loop transfer function
       Gc(s) = Controller transfer function

Let, N(s) = Disturbance or Noise input
       Gn(s) = Disturbance transfer function

Now, a feedforward transfer function Gf(s) can be designed and implemented in the system as 
shown in fig 1.4. 

                                        Fig. 1.4: Feedforward and feedback control system

The feedforward transfer function can be derived in terms of Gn(s), Gc(s) and G(s) as shown below.

With reference to fig 1.4, the equation for error signal E(s) can be written as shown below.

E(s)  =  R(s) – C(s) + N(s) Gf(s)                                                                                 ..... (1.1)

With reference to fig 1.4, the equation for output C(s) can be written as shown below.

C(s) = E(s) Gc(s) G(s)  +   N(s) Gn(s)       

On substituting for E(s) from equation (1) in the above equation we get,

C(s) = [R(s) – C(s) + N(s) Gf(s) ] Gc(s) G(s) + N(s) Gn(s)                                       

` C(s) = [R(s)  – C(s)] Gc(s) G(s) + N(s) Gf(s) Gc(s) G(s) + N(s) Gn(s)

` C(s) = [R(s)  – C(s)] Gc(s) G(s) + [ Gf(s) Gc(s) G(s) + Gn(s)] N(s)

In the above equation, if , Gf(s) Gc(s) G(s) + Gn(s) =0,
then the effect of disturbance in the output will be zero.

+-+
–

G (s)c
G(s)

R(s) E(s) C(s)

Input Output

Feedback control

Fig 1.3: Feedback control system

Disturbance

-
++ ++

G (s)n

G(s)G (s)c

G (s)f

Feedback control

Feedforward control

Input

R(s) C(s)

Output

Disturbance

N(s)

N(s)G (s)f

E(s) E(s)G (s)c E(s)G (s)G(s)c

N(s)G (s)n



1. 4 	 Control Systems Engineering

Therefore, the feedforward transfer function is designed such that, 

Gf(s) Gc(s) G(s) + Gn(s) =0

∴  ( ) ( ) ( )
( )G s G s G s

G s
f

c

n=−

From the above equation it is clear that, feedforward transfer function Gf(s) can be designed only 
from the knowledge of disturbance transfer function Gn(s). 

The advantage of feedforward control is that it reduces the transient error and so it performs very 
fast corrections but this control is applicable only if the disturbances are measurable. But, the feedback 
control can be employed for both measurable and non-measurable disturbances. 

1.1.4  EXAMPLES OF CONTROL SYSTEMS

EXAMPLE 1 : TEMPERATURE CONTROL SYSTEM

OPEN LOOP SYSTEM

The electric furnace shown in fig 1.5. is an open loop system. The output in the system is the desired temperature. 

The temperature of the system is raised by heat generated by the heating element. The output temperature depends 

on the time during which the supply to heater remains ON. 

The ON and OFF of the supply is governed by the time setting of the relay. The temperature is measured by a 

sensor, which gives an analog voltage corresponding to the temperature of the furnace. The analog signal is converted 

to digital signal by an Analog - to - Digital converter (A/D converter).

 					   

The digital signal is given to the digital display device to display the temperature. In this system if there is any 

change in output temperature then the time setting of the relay is not altered automatically.

CLOSED LOOP SYSTEM

The electric furnace shown in fig 1.6 is a closed  loop  system. The output of the system is the desired temperature 

and it depends on the time during which the supply to heater remains ON. 
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Fig 1.5 : Open loop temperature control system.
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The switching ON and OFF of the relay is controlled by a controller which is a digital system or computer. The 
desired  temperature  is  input  to  the system through keyboard or as a signal corresponding to desired temperature via 
ports. The actual temperature is sensed by sensor and converted to digital signal by the A/D converter. The computer 
reads the actual temperature and compares with desired temperature. If it finds any difference then it sends signal to 
switch ON or OFF the relay through D/A converter and amplifier. Thus the system automatically corrects any changes 
in output. Hence it is a closed loop system.

EXAMPLE 2 : TRAFFIC CONTROL SYSTEM

OPEN LOOP SYSTEM

Traffic control by means of traffic signals operated on a time basis constitutes an open-loop control system.  
The sequence of control signals are based on a time slot given for each signal. The time slots are decided based on a 
traffic study. The system will not measure the density of the traffic before giving the signals. Since the time slot does 
not changes according to traffic density, the system is open loop system.

CLOSED LOOP SYSTEM

Traffic control system can be made as a closed loop system if the time slots of the signals are decided based on 
the density of traffic. In closed loop traffic control system, the density of the traffic is measured on all the sides and the 
information is fed to a computer. The timings of the control signals are decided by the computer based on the density 
of traffic. Since the closed loop system dynamically changes the timings, the flow of vehicles will be better than open 
loop system.

EXAMPLE 3 : NUMERICAL CONTROL SYSTEM

OPEN LOOP SYSTEM 
Numerical control is a method of controlling the motion of machine components using numbers. Here, the position 

of work head tool is controlled by the binary information contained in a disk.
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Fig 1.6 : Closed loop temperature control system.
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A magnetic disk is prepared in binary form representing the desired part P (P is the metal part to be machined). 
The tool will operate on the desired part P. To start the system, the disk is fed through the reader to the D/A converter. 
The D/A converter converts the FM(frequency modulated) output of the reader to a analog signal. It is amplified and 
fed to servometer which positions the cutter on the desired part P. The position of the cutter head is controlled by the 
angular motion of the servometer. This is an open loop system since no feedback path exists between the output and 
input. The system positions the tool for a given input command. Any deviation in the desired position is not checked 

and corrected automatically.

CLOSED LOOP SYSTEM

A magnetic disk is prepared in binary form representing the desired part P (P is the metal part to be  
machined). To start the system, the disk is loaded in the reader. The controller compares the frequency modulated 
input pulse signal with the feedback pulse signal. The controller is a computer or microprocessor system.

 
The 

controller carries out mathematical operations on the difference in the pulse signals and generates an error signal. 
The D/A converter converts the controller output pulse (error signal) into an analog signal . The amplified analog signal  
rotates the servomotor to position the tool on the job. The position of the cutterhead is controlled according to  
the input of the servomotor. 

The transducer attached to the cutterhead converts the motion into an electrical signal. The analog  
electrical signal is converted to the digital pulse signal by the  A/D  converter. Then this signal is compared with the input 
pulse signal. If there is any difference between these two, the controller sends a signal to the servomotor to reduce it. 
Thus the system automatically corrects any deviation in the desired output tool position. An advantage of numerical 
control is that complex parts can be produced with uniform tolerances at the maximum milling speed.

EXAMPLE 4 : POSITION CONTROL SYSTEM USING SERVOMOTOR

The position control system shown in fig 1.9 is a closed loop system. The system consists of a servomotor 
powered by a generator. The load whose position has to be controlled is connected to motor shaft through gear  
wheels. Potentiometers are used to convert the mechanical motion to electrical signals. The desired load position 
(θ

R
) is set on the input potentiometer and the actual load position (θ

c
) is fed to feedback potentiometer. The difference 

between the two angular positions generates an error signal, which is amplified and fed to generator field circuit.  
The induced emf of the generator drives the motor. The rotation of the motor stops when the error signal is zero, i.e. 
when the desired load position is reached.

This type of control systems are called servomechanisms. The servo or servomechanisms are feedback  
control systems in which the output is mechanical position (or time derivatives of position e.g. velocity and acceleration).
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Fig 1.8 : Closed loop numerical control system.
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1.2  MATHEMATICAL MODELS OF CONTROL SYSTEM

A control system is a collection of physical objects (components) connected together to serve 
an objective. The input output relations of various physical components of a system are governed  
by differential equations. The mathematical model of a control system constitutes a set of 
differential equations. The response or output of the system can be studied by solving the differential 
equations for various input conditions.

The mathematical model of a system is linear if it obeys the principle of superposition and homogenity. 
This principle implies that if a system model has responses y1(t) and y2(t) to any inputs x1(t) and x2(t) 
respectively, then the system response to the linear combination of these inputs a1x1 (t) + a2 x2 (t) is given 
by linear combination of the individual outputs a1 y1(t) + a2 y2(t), where a1 and a2 are constants.

The principle of superposition can be explained diagrammatically as shown in fig 1.10. 

A mathematical model will be linear if the differential equations describing the system has  
constant coefficients (or the coefficients may be functions of independent variables). If the coefficients 
of the differential equation describing the system are constants then the model is linear time invariant. 
If the coefficients of differential equations governing the system are functions of time then the model is 
linear time varying.

Amplifier

Fig 1.9 : A position control system (servomechanism).
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The differential equations of a linear time invariant system can be reshaped into different form for 
the convenience of analysis. One such model for single input and single output system analysis is transfer 
function of the system. The transfer function of a system is defined as the ratio of Laplace transform of 
output to the Laplace transform of input with zero initial conditions.

Transfer function Laplace Transform of input
Laplace Transform of output

with zero initial conditions
=                      	   

The transfer function can be obtained by taking Laplace transform of the differential equations 
governing the system with zero initial conditions and rearranging the resulting algebraic equations to get 
the ratio of output to input.

1.3  ELECTRICAL TRANSFER FUNCTION MODELS

The models of electrical systems can be obtained by using resistor, capacitor and inductor. The current-
voltage relation of resistor, inductor and capacitor are given in table-1. For modelling electrical systems, 
the electrical network or equivalent circuit is formed by using R, L and C and voltage or current source.

The differential equations governing the electrical systems can be formed by writing Kirchoff ’s 
current law equations by choosing various nodes in the network or Kirchoff ’s voltage law equations by 
choosing various closed paths in the network. The transfer function can be obtained by taking Laplace 
transform of the differential equations and rearranging them as a ratio of output to input.
Table-1.1 : Current-Voltage Relation of  R, L and C

	     Element	        Voltage across the element	        Current through the element

	 	v(t) = Ri(t)	 ( ) ( )i t R
v t= 	

	 	 ( ) ( )v t L dt
d i t= 	 ( ) ( )i t L v t dt1= #

   	 	 ( ) ( )v t C i t dt1= # 	 ( ) ( )i t C dt
dv t=

1.3.1  TRANSFER FUNCTION OF ARMATURE CONTROLLED DC MOTOR

The speed of DC motor is directly proportional to armature voltage and inversely proportional to flux 
in field winding. In armature controlled DC motor the desired speed is obtained by varying the armature 
voltage. This speed control system is an electro-mechanical control system. The electrical system consists 
of the armature and the field circuit but for analysis purpose, only the armature circuit is considered because 
the field is excited by a constant voltage. The mechanical system consists of the rotating part of the motor 
and load connected to the shaft of the motor. The armature controlled DC motor speed control system is 
shown in fig 1.11.
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Fig 1.11 : Armature controlled DC motor.
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Let,	 Ra	=	 Armature resistance, Ω
	 La	=	 Armature inductance, H
	 ia	 =	 Armature current, A
	 va	=	 Armature voltage, V
	 eb	=	 Back emf, V
	 Kt	=	 Torque constant, N-m/A
	 T	 =	 Torque developed by motor, N-m
	 θ	 =	 Angular displacement of shaft, rad
	 w  =   Angular velocity, rad/sec
	 J	 =	 Moment of inertia of motor and load, Kg-m2/rad
	 B	 =	 Frictional coefficient of motor and load, N-m/(rad/sec)

	 Kb	=	 Back emf constant, V/(rad/sec)

The equivalent circuit of armature is shown in fig 1.12.

By Kirchoff ’s voltage law, we can write,

     i R L dt
di e vaa a

a
b a+ + =                           .....(1.2)

Torque of DC motor is proportional to the product of 
flux and current. Since flux is constant in this system, the torque 
is proportional to ia alone.

   	 T ∝ ia 
      ∴ Torque, T = Kt ia                               .....(1.3)

The mechanical system of the motor is shown in fig 1.13. 
The differential equation governing the mechanical system of motor is given by,

J
dt
d B dt

d T
2

2θ θ+ =                             .....(1.4)

The back emf of DC machine is proportional to speed (angular velocity) of shaft.

	 ; ,e and dt
d e dt

d or Back emf e K dt
d

b b b b\ ` \ω ω θ θ θ= =     	 .....(1.5)

The Laplace transform of various time domain signals involved in this system are shown below.

	 L{va} = Va(s)  ;  L{eb} = Eb(s)  ;  L{T} = T(s)  ;  L{ia} = Ia(s)  ;  L{q} = q(s)

The differential equations governing the armature controlled DC motor speed control system are,

	 ; ; ;i R L dt
di e v T K i J

dt
d B dt

d T e K dt
d

2

2

a t aa a
a

b a b b
θ θ θ+ + = = + = =

Taking Laplace transform of the above equations with zero initial conditions we get,
	 Ia(s) Ra + LasIa(s) + Eb(s) = Va(s)		 .....(1.6)

	 T(s) = KtIa(s)	 .....(1.7)

	 Js2q(s) + B s q(s) = T(s)	 .....(1.8)

	 Eb(s) = Kbsq (s)	 .....(1.9)

T� B

Fig 1.13.

J
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On equating equations (1.7) and (1.8) we get,	

	 KtIa(s) = (Js2 + Bs) q(s)

	 ( ) ( ) ( )I s K
Js Bs s

2

a
t

θ= +     	 .....(1.10)

Equation (1.16) can be written as,

	 (Ra + sLa) Ia(s) + Eb(s) = Va(s)				                 .....(1.11)

Substituting for Eb(s) and Ia(s) from equation (1.9) and (1.10) respectively in equation (1.11),

	 ( ) ( ) ( ) ( ) ( )R sL K
Js Bs s K s s V s

2

a a
t

b aθ θ+ + + =

( ) ( ) ( ) ( )K
R sL Js Bs K K s s V s

2

t

a a b t
aθ

+ + +
=> H

The required transfer function is ( )
( )

V s
s

a

θ

 ( )
( )

( ) ( )V s
s

R sL Js Bs K K s
K
2

a a a b t

t`
θ =

+ + + 	
....(1.12)

R Js R Bs L Js L Bs K K s
K

2 3 2
a a a a b t

t=
+ + + +

  
.

( ) ( )s JL s JR BL s BR K K
K

2
a a a a b t

t=
+ + + +6 @

/

s s JL
JR BL s JL

BR K K
K JL

2

a

a a

a

a b t

t a=
+

+
+

+
c cm m; E

	 .....(1.13)

The transfer function of armature controlled dc motor can be expressed in another standard form as 
shown below. From equation (1.12) we get,

( )
( )

( ) ( )V s
s

R sL Js Bs K K s
K

R R
sL Bs Bs

Js K K s

K

1 1
2 2

a a a b t

t

a
a

a
b t

tθ =
+ + +

=
+ + +c cm m

      
( ) ( )

/

s sT sT R B
K K

K R B

1 1a m
a

b t

t a=
+ + +; E

	 .....(1.14) 

where,     R
L T Electrical time constant

a

a
a= =

                 B
J T Mechanical time constantm= =
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1.3.2  TRANSFER FUNCTION OF FIELD CONTROLLED DC MOTOR

The speed of a DC motor is directly proportional to armature voltage and inversely proportional to 
flux. In field controlled DC motor the armature voltage is kept constant and the speed is varied by varying 
the flux of the machine. Since flux is directly proportional to field current, the flux is varied by varying field 
current. The speed control system is an electromechanical control system. The electrical system consists 
of armature and field circuit but for analysis purpose, only field circuit is considered because the armature 
is excited by a constant voltage. The mechanical system consists of the rotating part of the motor and the 
load connected to the shaft of the motor. The field controlled DC motor speed control system is shown in 
fig 1.14.

Let,	Rf	 =	 Field resistance, Ω
	 Lf	 =	 Field inductance, H
	 if	 =	 Field current, A
	 vf	 =	 Field voltage, V
	 T	 =	 Torque developed by motor, N-m
	 Ktf	=	 Torque constant, N-m/A	
	 J	 =	 Moment of inertia of rotor and load, Kg-m2/rad

	 B	 =	 Frictional coefficient of rotor and load, N-m/(rad/sec)

The equivalent circuit of field is shown in fig 1.15.
By Kirchoff ’s voltage law, we can write 

	 R i L dt
di vf f f

f
f+ =  			               .....(1.15)	                                              

The torque of DC motor is proportional to product of flux and 
armature current. Since armature current is constant in this system, 
the torque is proportional to flux alone, but flux is proportional to 
field current.

	 T ∝ if ,   ∴Torque, T = Ktf if  		              .....(1.16)	

The mechanical system of the motor is shown in fig 1.16. The differential equation governing the 
mechanical system of the motor is given by,

J
dt
d B dt

d T
2

2θ θ+ =                         	              .....(1.17)

The Laplace transform of various time domain signals involved in this system are shown below.

	 L{if} = If(s)	 ;	 L{T} = T(s)	 ;	 L{vf} = Vf(s)	 ;	 L{θ} = θ(s)
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Fig 1.14 : Field controlled DC motor.
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The differential equations governing the field controlled DC motor are,

	 ; ;R i L dt
di v T K i J

dt
d B dt

d T
2

2

f f f
f

f tf f
θ θ+ = = + =

On taking Laplace transform of the above equations with zero initial condition we get,

	 RfIf(s) + LfsIf(s) = Vf(s)	 .....(1.18)

	 T(s) = Ktf If(s)	 .....(1.19)

	 Js2q(s) + B sq(s) = T(s)	 .....(1.20)

Equating equations (1.19) and (1.20) we get,

KtfIf(s) = Js2q(s) + B sq(s)

( ) ( ) ( )I s s K
Js B sf

tf

θ= + 	 .....(1.21)

The equation (1.18) can be written as,

(Rf + sLf) If(s) = Vf(s)					              .....(1.22)

On substituting for If(s) from equation (1.21) in equation (1.22) we get,

( ) ( ) ( ) ( )R sL s K
Js B s V sf f

tf
fθ+ + =

( )
( )

( ) ( )V s
s

s R sL B sJ
K

f f f

tfθ =
+ +

( ) ( )sR R
sL B B

sJ
K

s sT sT
K

1 1 1 1
f

f

f

tf

f m

m=
+ +

=
+ +

c am k
	 .....(1.23)

where,  K R B
K Motor gain constantm
f

tf= =

T R
L Field time constantf

f

f= =

T B
J Mechanical time constantm = =

EXAMPLE 1.1

Obtain the transfer function of the electrical network shown in fig 1.

SOLUTION

In the given network, input is e(t) and output is v
2
(t).

Let,  Laplace transform of  e(t)  = L{e(t)}  = E(s)

	  Laplace transform of v
2
(t)  = L{v

2
(t)} = V

2
(s)

~ e(t) C1 C2

R1
R2 21

–

+
v (t)2

–

+

Fig 1.
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The transfer function of the network is 
E(s)
V (s)2

Transform the voltage source in series with resistance R
1
 into 

equivalent current source as shown in figure 2. The network has two 
nodes. Let the node voltages be v

1
 and v

2
. The Laplace transform of 

node voltages v
1
 and v

2
 are V

1
(s) and V

2
(s) respectively. The differential 

equations governing the network are given by the Kirchoff ’s current law 
equations at these nodes.

At node-1, by Kirchoff ’s current law (refer fig 3)

R
v

R
eC

dt
dv

R
v v

1

1
1

1

2

1 2

1
+ +

−
=

On taking Laplace transform of above equation with zero initial 
conditions we get,

R
V (s)

sV ( )
R

V (s)
R

V (s)
R

E(s)
C s

1

1
1 1

2

1

2

2

1
+ + − =

V (s)
R

s
R R

V (s)
R

E(s)
C1 1

1
1

1
2 2

2

1
+ + − =; E                    .....(1)

At node-2, by Kirchoff ’s current law (refer fig 4)

dt
dv

0
R

v v
C

2

2 1
2

2+ =-

On taking Laplace transform of above equation with zero initial conditions we get,

R
V (s)

R
V (s)

C sV ( ) 0s
2

2

2

1
2 2− + = 	

R
V (s)

R
V (s)

C sV ( ) ( )s
R

sC V s1
2

1

2

2
2 2

2
2 2= + = +; E 	

( ) [1 ] V ( )V s sC R s1 2 2 2` = + 	 .....(2) 

Substituting for V
1
(s) from equation (2) in equation (1) we get,

(1 R C )V ( )
R
1 C

R
1

R
V (s)

R
E(s)

s s s2 2 2
1

1
2 2

2

1
+ + + − =; E

R
(1 R C )( C R R )

V ( )
R

E(s)
R

s R R s R
s

1 2

2 2 2 1 1 1 2 1
2

1

+ + + −
=> H

E(s)
V ( )

[( R C )( C R R )
Rs

s R R s R1
2

2 2 1 2 1 1 2 1

2` =
+ + + − ]

	

_+

_+

V=IR

R

R

R

V

I R

Note : Source transformation

V

R
I =

Fig 2.

C1 C2
R1

R2

V1 V2

e

R1

V1

v1
v2

Fig 3. Fig 4.

e

R
1

v

R
1

1

C
dv

dt1

1
v v

R
2 1

2

�
C

dv

dt2

2

v v

R
1 2

2

�
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RESULT

The (node basis) differential equations governing the electrical network are,

1.
R
v

C
dt
dv v

R
v

R
e

1

1
1

1

2

1 2

1
+ +

−
=

2.
v

C
dt

dv
0

R
v

2

2 1
2

2−
+ =

The transfer function of the electrical network is,

( )
( )

[( C )( C R R )E s
V s

sR R R s R
R

1
2

2 2 1 2 1 1 2 1

2=
+ + −+ ]

1.4  MECHANICAL TRANSFER FUNCTION MODELS 

1.4.1  MECHANICAL TRANSLATIONAL SYSTEMS

The model of mechanical translational systems can be obtained by using three basic elements mass, 
spring and dash-pot. These three elements represents three essential phenomena which occur in various 
ways in mechanical systems. 

The weight of the mechanical system is represented by the element mass and it is assumed to be 
concentrated at the center of the body. The elastic deformation of the body can be represented by a spring. 
The friction existing in rotating mechanical system can be represented by the dash-pot. The dash-pot is a 
piston moving inside a cylinder filled with viscous fluid.

When a force is applied to a translational mechanical system, it is opposed by opposing forces due to 
mass, friction and elasticity of the system. The force acting on a mechanical body are governed by Newton’s 
second law of motion. For translational systems it states that the sum of forces acting on a body is zero (or 
Newton’s second law states that the sum of applied forces is equal to the sum of opposing forces on a body).

LIST OF SYMBOLS USED IN MECHANICAL TRANSLATIONAL SYSTEM

x	 =	 Displacement, m

v	 =	 dt
dx  = Velocity, m/sec

a	 = dt
dv

dt
d x

2

2
=  = Acceleration, m/sec2

f	 =	 Applied force, N (Newtons)

fm	=	 Opposing force offered by mass of the body, N

fk 	=	 Opposing force offered by the elasticity of the body (spring), N

fb	 =	 Opposing force offered by the friction of the body (dash - pot), N

M	=	 Mass, kg

K	=	 Stiffness of spring, N/m

B	 =	 Viscous friction co-efficient, N-sec/m

Note : Lower case letters are functions of time
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FORCE BALANCE EQUATIONS OF IDEALIZED ELEMENTS

Consider an ideal mass element shown in fig 1.17 which has negligible friction and elasticity. Let a 
force be applied on it. The mass will offer an opposing force which is proportional to acceleration of the body.

Let, f  = Applied force
	      fm = Opposing force due to mass

Here, f
dt
d x or f M

dt
d x

2

2

2

2

m m\ =

By Newton’s second law,  f f M
dt
d x

2

2

m= =       	 .....(1.24)

Consider an ideal frictional element dashpot shown in fig 1.18 which has negligible mass and 
elasticity. Let a force be applied on it. The dash-pot will offer an opposing force which is proportional to 
velocity of the body.

Let, f	 = Applied force
      fb = Opposing force due to friction

Here, f dt
dx or f B dt

dx
b b\ =

By Newton’s second law,  f f B dt
dx

b= = 	               .....(1.25)

When the dashpot has displacement at both ends as shown in 
fig 1.19, the opposing force is proportional to difference between 
velocity at both ends.

( ) ( )f dt
d x x or f B dt

d x xb b1 2 1 2\ − = −

∴  ( )f f B dt
d x xb 1 2= = − 	                                .....(1.26)

Consider an ideal elastic element spring shown in fig 1.20, 
which has  negligible mass and friction. Let a force be applied on 
it. The spring will offer an opposing force which is proportional to 
displacement of the body.

Let,  f  =	 Applied force
       fk    =	 Opposing force due to elasticity

Here fk ∝ x     or    fk = K x

By Newton’s second law,   f = fk = Kx                             .....(1.27)	    

When the spring has displacement at both ends as shown in 
fig 1.21 the opposing force is proportional to difference between 
displacement at both ends.

fk ∝ (x1- x2)       or  	 fk = K(x1- x2) 

          ∴ f = fk = K(x1- x2)                        		  .....(1.28)

M

x

f

Reference
Fig 1.17 : Ideal mass element.

B

x

f

Reference

Fig 1.18 : Ideal dashpot with
one end fixed to reference.

B

x1

f

Reference
Fig 1.19 : Ideal dashpot with

displacement at both ends.

x2

K

x

f

Reference

Fig 1.20 : Ideal spring with one end
fixed to reference.

K

x1

f

Fig 1.21 : Ideal spring with
displacement at both ends.

x2
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Guidelines to determine the Transfer Function of Mechanical Translational System 

1.	 In mechanical translational system, the differential equations governing the system are 
obtained by writing force balance equations at nodes in the system. The nodes are meeting 
point of elements. Generally the nodes are mass elements in the system. In some cases the 
nodes may be without mass element.

2.	 The linear displacement of the masses (nodes) are assumed as x1, x2, x3, etc., and assign a 
displacement to each mass(node). The first derivative of the displacement is velocity and the 
second derivative of the displacement is acceleration.

3.	 Draw the free body diagrams of the system. The free body diagram is obtained by drawing 
each mass separately and then marking all the forces acting on that mass (node). Always 
the opposing force acts in a direction opposite to applied force. The mass has to move in the 
direction of the applied force. Hence the displacement, velocity and acceleration of the mass 
will be in the direction of the applied force. If there is no applied force then the displacement, 
velocity and acceleration of the mass will be in a direction opposite to that of opposing force.

4.	 For each free body diagram, write one differential equation by equating the sum of applied 
forces to the sum of opposing forces.

5.	 Take Laplace transform of differential equations to convert them to algebraic equations. Then 
rearrange the  s-domain equations to eliminate the unwanted variables and obtain the ratio 
between output  variable and input variable. This ratio is the transfer function of  the system.

Note :	 Laplace transform of x(t) = L{x(t)} = X(s)

	 Laplace transform of L( ) ( ) ( )dt
dx t

dt
d x t s X s= =% /  (with zero initial conditions)

	 Laplace transform of L( ) ( ) ( )
dt
d x t

dt
d x t s X s

2 2

2 2
2= =' 1  (with zero initial conditions)

	  
EXAMPLE 1.2

Write the differential equations governing the mechanical system shown in fig 1. and determine the transfer 

function.

SOLUTION

In the given system, applied force ‘f(t)’ is the input and displacement ‘x’ is the output.

Let,  Laplace transform of f(t)  =  L{f(t)} = F(s)

      Laplace transform of  x  = L{x} = X(s)

      Laplace transform of  x
1
 = L{x

1
} = X

1
(s)

x1 x

K1

M1

B

K

M2 f(t)

B2B1

Fig 1.
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Hence the required transfer function is 
( )
( )

F s
X s

The system has two nodes and they are mass M
1
 and M

2
. The differential equations governing the system are 

given by force balance equations at these nodes.

Let the displacement of mass M
1
 be x

1
. The free body diagram of mass M

1
 is shown in fig 2. The opposing forces 

acting on mass M
1
 are marked as f

m1 
, f

b1 
, f

b
, f

k1
 and f

k
.

; ; K xf M
dt

d x
f B

dt
dx

f
2

2

m1 1
1

b1 1
1

k1 1 1= = =   ;

( ) ; f ( )f B
dt
d x x K x xb 1 k 1= − = −

By Newton’s second law,

f
m1

 + f
b1

 + f
b
 + f

k1
 + f

k
 = 0

dt

d x
dt
dx

(x ) K x (x ) 0M B B
dt
d x K x

2

2

1
1

1
1

1 1 1 1` + + − + + − =  

On taking Laplace transform of above equation with zero initial conditions we get,

M
1
s2X

1
(s) + B

1
sX

1
(s) + Bs[X

1
(s) - X(s)] + K

1
X

1
(s) + K[X

1
(s) - X(s)] = 0

X
1
(s) [M

1
s2 + (B

1 
+ B)s + (K

1
 + K)] - X(s) [Bs + K] = 0

X
1
(s) [M

1
s2 + (B

1 
+ B)s + (K

1
 + K)] = X(s) [Bs + K] 

( ) ( )
( ) ( )

X s X s
M s B B s K K

Bs K
21

1 1 1

` = =
+ + + +

+

......(1)

The free body diagram of mass M
2 
is shown in fig 3. The opposing forces acting on M

2
 are marked as f

m2 
, f

b2,
 f

b

and f
k 
.	

f
dt
d x ; f BM

dt
dx

2

2

m2 2 b2 2= =

f
dt
d ( ; f (B x x K x x

b 1 k 1= − = −) )

	 By Newton’s second law,	

f
m2

 + f
b2

 + f
b
 + f

k
 = f(t)

dt
d x

dt
dx ( ) ( ) ( )M B B

dt
d x x K x x f t

2

2

2 2 1 1
+ + − + − =

On taking Laplace transform of above equation with zero initial conditions we get,

M
2
s2X(s) + B

2
sX(s) + Bs[X(s)] - X

1
(s)] + K[X(s) - X

1
(s)] = F(s) 

X(s)[M
2
s2 + (B

2 
+ B)s + K]  - X

1
(s)[Bs + K] = F(s)		  .....(2)

Substituting for X
1
(s) from equation (1) in equation (2) we get,

( ) [ s ( ) ] ( )
s ( ) (K )

( )
( )X s M B B s K X s

M B B s K
Bs K

F s2
2

2

2 2
1 1 1

+ + + −
+ + + +

+ =

fm1

fb1

fb

fk1

fk

M1

Fig 2 : Free body diagram
of mass M (node 1).1

x1

f(t)

fm2

fb2

fk

M2

Fig 3 : Free body diagram
of mass M (node 2).2

x

fb
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( )
s ( ) ( )

[ s ( ) ] [ s ( ) ( )] ( )
( )X s

M B B s K K

M B B s K M B B s K K Bs K
F s

2

2 2 2

1 1 1

2 2 1 1 1

+ + + +
+ + + + + + + − +

=> H

( )
( )

[ s ( ) ( )] [ s ( ) ] ( )

s ( ) ( )
F s
X s

M B B s K K M B B s K Bs K

M B B s K K
2 2 2

2

1 1 1 2 2

1 1 1` =
+ + + + + + + − +

+ + + +

RESULT

The differential equations governing the system are,

1.
dt

d x
B

dt
dx

( ) x (x ) 0M B
dt
d x x K K x

2

2

1
1

1
1

1 1 1 1+ + − + + − =

2.
dt
d x B

dt
dx ( ) ( x ) ( )M B

dt
d x x K x f t

2

2

2 2 1 1+ + − + − =

The transfer function of the system is,

( )
( )

[ s ( ) ( )] [ s ( ) ] ( )

s ( ) ( )
F s
X s

M B B s K K M B B s K Bs K

M B B s K K
2 2 2

2

1 1 1 2 2

1 1 1=
+ + + + + + + − +

+ + + +

EXAMPLE 1.3

Determine the transfer function 
( )
( )

F s
Y s2 of the system shown in fig 1.

SOLUTION

Let,  Laplace transform of  f(t)  = L{f(t)} = F(s)

      Laplace transform of  y
1
  = L{y

1
}  = Y

1
(s)

      Laplace transform of  y
2 
 = L{y

2
}  = Y

2
(s)

The system has two nodes and they are mass M
1
 and M

2
. The differential 

equations governing the system are the force balance equations at these nodes.

The free body diagram of mass M
1
 is shown in fig 2. 

The opposing forces are marked as f
m1

, f
b
, f

k1
 and f

k2

M
dt

d y
; f ; K y ; (y y )f B

dt

dy
f f K

2

2

m1 1
1

b
1

k1 1 1 k2 2 1 2
= = = = −

By Newton’s second law, f
m1

 + f
b
 + f

k1
 + f

k2
 = f(t)

dt

d y

dt

dy
y ( ) ( )M B K K y y f t

2

2

1
1 1

1 1 2 1 2
` + + + − =  .....(1)

On taking Laplace transform of equation (1) with zero initial condition we get,

M
1
s2Y

1
(s) + BsY

1
(s) + K

1
Y

1
(s) + K

2
[Y

1
(s) - Y

2
(s)] = F(s)

Y
1
(s)[M

1
s2 + Bs + (K

1
+

 
K

2
)] - Y

2
(s)K

2
 = F(s)			  .....(2)

The free body diagram of mass M
2
 is shown in fig 3. The opposing forces acting on M

2
 are f

m2
 and f

k2
.

	
dt

d y
; ( )f M f K y y

2

2

m2 2
2

k2 2 2 1
= = −

By Newton’s second law,   f
m2

 + f
k2

 = 0  

f(t) B
K1

y1

y2

K2

M1

M2

Fig 1.

f(t)

fm1

fk1

M1

Fig 2.

fb

fk2

y1
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M
dt

d y
( ) 0K y y

2

2

2
2

2 2 1
` + − =

On taking Laplace transform of above equation we get,

M
2
s2Y

2
(s) + K

2
[Y

2
(s) - Y

1
(s)] = 0

Y
2
(s) [M

2
s2 + K

2
] - Y

1
(s) K

2 
= 0

Y (s) ( )
M s

Y s
K

K2

1 2
2

2 2` =
+ 	 .....(3)

Substituting for Y
1
(s) from equation (3) in equation (2) we get,

Y (s)
M s

[ s ( )] ( ) ( )
K

K
M Bs K K Y s K F s

2
2

2
2

2 2
1 1 2 2 2

+
+ + + − => H

Y (s)
(M s )[ s ( )]

( )
K

K M Bs K K K
F s

2 2 2

2
2

2 2 1 1 2 2
+ + + + −

=> H

( )
Y (s)

[ s ( )] [M s ]F s M Bs K K K K

K
2 2 2

2

1 1 2 2 2 2

2` =
+ + + + −

RESULT

The differential equations governing the system are,

1.
dt

d y
K y K (y ) ( )M B

dt

dy
y f t

2

2

1
1 1

1 1 2 1 2
+ + + − =

.
dt

d y
(y ) 0M K y2

2

2

2
2

2 2 1
+ − =

The transfer function of the system is,

( )
( )

[ s ( )] [ ]F s
Y s

M Bs K K M s K K

K
2 2 2

2

1 1 2 2 2 2

2=
+ + + + −

 

EXAMPLE 1.4

Determine the transfer function, 
( )
( )

F(s)
X (s)

F s
X s

and1 2  for the system shown in fig 1.

SOLUTION

Let,  Laplace transform of f(t) =  L{f(t)} =  F(s)

      Laplace transform of x
1
   =  L{x

1
}   =  X

1
(s)

      Laplace transform of x
2
   =  L{x

2
}   =  X

2
(s)

x1 x2

K1

M1

B12

K2

M2

f(t)

B2
B1

Fig 1.

y2

M2

fm2

fk2

Fig 3.

f(t)

fm1

fb12

M1 Fig 2.fb1

fk1

x1
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The system has two nodes and they are mass M
1
 and M

2
. The differential equations governing the system are 

the force balance equations at these nodes. The free body diagram of mass M
1
 is shown in fig 2. The opposing forces 

are marked as f
m1

, f
b1

, f
b12

 and f
k1

.

dt

d x
;

dt

dx
;

dt
d (x ) ; xf M f B f B x f K

2

2

m1 1
1

b1 1
1

b12 12 1 2 k1 1 1= = = − =

By Newton’s second law, f
m1

 + f
b1

 + f
b12

 + f
k1

 = f(t)

dt

d x
dt
dx ( )

K x ( )M B B
dt

d x x
f t

2

2

1
1

1
1

12
1 2

1 1+ +
−

+ =

On taking Laplace transform  of above equation with zero initial conditions we get,

M
1
s2X

1
(s) + B

1
sX

1
(s) + B

12
s[X

1
(s) - X

2
(s)] + K

1
X

1
(s) = F(s)

X
1
(s)[M

1
s2 + (B

1
 + B

12
)s + K

1
] - B

12
sX

2
(s) = F(s)		  .....(1)

The free body diagram of mass M
2
 is shown in fig 3. The opposing forces are marked as f

m2
, f

b2
, f

b12 
 and f

k2
.

dt

d x
;

dt

dx
f M f B

2

2

m2 2
2

b2 2
2= =

dt
d (x ) ; K xf B x fb12 12 2 1 k2 2 2= − =

By Newton’s second law, f
m2

 + f
b2

 + f
b12

 + f
k2

 = 0

dt

d x
dt

dx ( )
K x ( )M B B

dt
d x x

f t
2

2

2
2 2

12
2 1

2 22+ +
−

+ = 		  .....(2)

On taking Laplace transform  of equation (2) with zero initial conditions we get,

M
2
s2X

2
(s) + B

2
sX

2
(s) + B

12
s[X

2
(s) - X

1
(s)] + K

2
X

2
(s) = 0

X
2
(s)[M

2
s2 + (B

2
 + B

12
)s + K

2
] - B

12
sX

1
(s) = 0

X
2
(s)[M

2
s2 + (B

2
 + B

12
)s + K

2
] = B

12
sX

1
(s)

( )
[ s ( ) K ]

B sX (s)
X s

M B B s22
2 2 12 2

12 1=
+ + + 	

.....(3)

Substituting for X
2
(s) from equation (3) in equation (1) we get,

( ) [ s ( ) ]
M s (B B )

(B s) X (s)
( )X s M B B s K

s K
F s2

2

2

1 1 1 12 1
2 2 12 2

12 1

+
+ + + −

+ +
=

M s (B B )

( ) [ s ( ) ] [ s ( ) ] (B s)
( )

s K

X s M B B s K M B B s K
F s

2

2 2 2

2 2 12 2

1 1 1 12 1 2 2 12 2 12

++ +

+ + + + + + −
=

9 C

( )
( )

[M s (B B [ s ( ) ( )

s ( )

F s
X s

s K M B B s K B s

M B B s K
2 2 2

2
1

1 1 12 1 2 2 12 2 12

2 2 12 2
`

+
=

+ + + + + −

+ + +

) ] ]

From equation (3) we get,

( )
[ s ( ) ] ( )

X s
B s

M B B s K X s2

1
12

2 2 12 2 2=
+ + +

		  .....(4)

Substituting for X
1
(s) from equation (4) in equation (1) we get,

( ) [ s ( ) ]
[ s ( ) ] ( ) ( )

B s

X s M B B s K
M B B s K B sX s F s

2
2

12

2 2 2 12 2
1 1 12 1 12 2

+ + +
+ + + − =

fm2

fb12

M2

Fig 3.

fb2

fk2

x2
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	 ( )
[ s ( ) ] [ s ( ) ] ( )

( )X s
B s

M B B s K M B B s K B s
F s

2 2 2

2
12

2 2 12 2 1 1 12 1 12+ + + + + + −
=> H

( )
( )

[ s ( ) ] [ s ( ) ] ( )F s
X s

M B B s K M B B s K B s

B s
2 2 2

2

2 2 12 2 1 1 12 1 12

12` =
+ + + + + + −

RESULT

The differential equations governing the system are,

1.
dt

d ( )
K ( )M

x
B

dt

dx
B

dt

d x x
x f t

2

2

1
1

1
1

12
1 2

1 1
+ +

−
+ =

2.
dt

d ( )
K x 0M

x
B

dt

dx
B

dt

d x x
2

2

2
2

2
2

12
2 1

2 2
+ +

−
+ =

	 The transfer functions of the system are,

1.
( )

( )

[ s ( ) [ s ( B ) ( s)

s (

F s

X s

M B B s K M B s K B

M B B s K
2 2 2

2
1

1 1 12 1 2 2 12 2 12

2 2 12 2=
+ + + + + + −

+ + +

]]

)

2.
( )

( )

[ s ( ) [ s ( B ( s)F s

X s

M B B s K M B s K B

B s
2 2 2

2

2 2 12 2 1 1 12 1 12

12=
+ + + + + + −)] ]

EXAMPLE 1.5

Write the equations of motion in s-domain for the system shown in fig 1. Determine the transfer function of the 

system.

SOLUTION

Let,   Laplace transform of  x(t) = L{x(t)} = X(s)

       Laplace transform of  f(t) = L{f(t)}  =  F(s)	

Let x
1
 be the displacement at the meeting point of spring and dashpot. Laplace transform of x

1
 is X

1
(s).

The system has two nodes and they are mass M and the meeting point of spring and dashpot. The differential 
equations governing the system are the force balance equations at these nodes. The equations of motion in the s-domain 
are obtained by taking Laplace transform of the differential equations.

The free body diagram of mass M is shown in fig 2. The opposing forces are marked as f
m
, f

b1 
and f

b2
.

dt
d x ; ;

dt
d (x )f M f B

dt
dx f B x

2

2

m b1 1 b2 2 1= = = −

By Newton’s second law the force balance equation is,

f
m
 + f

b1
 + f

b2
 = f(t)

dt
d x

dt
dx

dt
d (x ) ( )M B B x f t

2

2

1 2 1
` + + − =

On taking Laplace transform of the above equation we get,

Ms2X(s) + B
1
(s)X(s) + B

2
 s[X(s) - X

1
(s)] = F(s)

[Ms2 + (B
1
 + B

2
)s] X(s) - B

2
 sX

1
(s) = F(s)		  .....(1)

K

B2

B1

f(t)

x(t)

M

Fig 1.

f(t)

fm

fb2

M

Fig 2.

fb1

x
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The free body diagram at the meeting point of spring and dashpot is shown in fig 3. The opposing forces are 

marked as f
k
 and f

b2
.

( ) ;f B
dt
d x x f Kxb2 2 1 k 1

= − =

By Newton’s second law,  fb2 + fk = 0

( ) 0B
dt
d x x Kx2 1 1` − + =

On taking Laplace transform of the above equation we get,

B
2
s[X

1
(s) - X(s)] + K X

1
(s) = 0

(B
2
s + K) X

1
(s) - B

2
 sX(s) = 0	  	

( )
B s K

B s
( )X s X s1

2

2` =
+

      	 .....(2)

Substituting for X
1
(s) from equation (2) in equation (1) we get,

( ) ( ) ( ) ( )Ms B B s X s B s
B s K

B s
X s F s2

1 2 2
2

2+ + −
+

=6 >@ H

( )
( ) ( ) ( ) ]

( )X s
B s K

Ms B B s B s K B s
F s

2 2

2

1 2 2 2
+

+ + + −
=

6 @

( )
( )

( ) ( ) ( )F s
X s

Ms B B s B s K B s

B s K
2 2

1 2 2 2

2` =
+ + + −

+

6 @

RESULT

The differential equations governing the system are,

1.
dt
d x ( ) ( )M B

dt
dx B

dt
d x x f t

2

2

1 2 1
+ + − =

2.
dt
d ( ) 0B x x K x2 1 1

− + =

The equations of motion in s-domain are,

1.  [M s2 + (B
1
 + B

2
)s] X(s) - B

2
 sX

1
(s) = F(s)   

2.  (B
2
s + K) X

1
(s) - B

2
 sX(s) = 0

The transfer function of the system is,

( )
( )

[ ( ) ] ( ) ( )F s
X s

M s B B s B s K B s

B s K
2 2

1 2 2 2

2=
+ + + −

+

1.4.2  MECHANICAL ROTATIONAL SYSTEMS

The model of rotational mechanical systems can be obtained by using three elements, moment 
of inertia [J] of mass, dash-pot with rotational frictional coefficient [B] and torsional spring with 
stiffness [K].

The weight of the rotational mechanical system is represented by the moment of inertia of the  
mass. The moment of inertia of the system or body is considered to be concentrated at the centre of gravity 
of the body. The elastic deformation of the body can be represented by a spring (torsional spring). The 
friction existing in rotational mechanical system can be represented by the dash-pot. The dash-pot is a 
piston rotating inside a cylinder filled with viscous fluid.

M=0

Fig 3.

fb2

fk

x1
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J

T �

Fig 1.22 : Ideal rotational mass element.

When a torque is applied to a rotational mechanical system, it is opposed by opposing torques due to 
moment of inertia, friction and elasticity of the system. The torques acting on a rotational mechanical body 
are governed by Newton’s second law of motion for rotational systems. It states that the sum of torques acting 
on a body is zero (or Newton’s law states that the sum of applied torques is equal to the sum of opposing 
torques on a body).

LIST OF SYMBOLS USED IN MECHANICAL ROTATIONAL SYSTEM

θ	 =	 Angular displacement, rad

	 dt
dθ 	 =	 Angular velocity, rad/sec

	 dt
d2θ 	 =	 Angular acceleration, rad/sec2 

T	 =	 Applied torque, N - m
J	 =	 Moment of inertia, Kg - m2/rad
B	 =	 Rotational frictional coefficient, N - m/(rad/sec)
K	 =	 Stiffness of the spring, N-m/rad

TORQUE BALANCE EQUATIONS OF IDEALISED ELEMENTS

Consider an ideal mass element shown in fig 1.22 which has negligible friction and elasticity. The 
opposing torque due to moment of inertia is proportional to the angular acceleration.

Let,	 T =	 Applied torque.
	 Tj = Opposing torque due to moment of inertia of the body.

Here	 T
dt
d or T J

dt
d

2

2

2

2

j j\ θ θ=

By Newton’s second law,

	 T T J
dt
d

2

2

j
θ= = 				     .....(1.29)

Consider an ideal frictional element dash pot shown in fig 1.23 which has negligible moment of 
inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque which is 
proportional to the angular velocity of the body.

Let,	 T  =  Applied torque.
	 Tb =	 Opposing torque due to friction.

        T
dt
d or T B dt

d
2b b\ θ θ=

        By Newton’s second law,	   T T B dt
d

b
θ= =     	 .....(1.30)

When the dash pot has angular displacement at both ends as shown in fig 1.24, the opposing torque 
is proportional to the difference between angular velocity at both ends.

( ) ( )T dt
d or T B dt

d
b b1 2 1 2
\ θ θ θ θ− = − 	

	       ( )T T B dt
d

b 1 2
` θ θ= = −                     	 .....(1.31)

T �
B

Fig 1.23 : Ideal rotational dash-pot with
one end fixed to reference.

T1 �1

B

Fig 1.24 : Ideal dash-pot with
angular displacement at both ends.

�2
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T ��
K

Fig 1.26 : Ideal spring with angular
displacement at both ends.

��

Consider an ideal elastic element, torsional spring as shown in fig 1.25, which has negligible moment 
of inertia and friction. Let a torque be applied on it. The torsional spring will offer an opposing torque 
which is proportional to angular displacement of the body.

Let,	 T  = Applied torque.

	 Tk =	Opposing torque due to elasticity.

	 Tk ∝ θ    or	 Tk = Kθ 

By Newton’s second law,	 T = Tk = Kθ             .....(1.32)	

When the spring has angular displacement at both ends as shown in fig 1.26 the opposing torque is 
proportional to difference between angular displacement at both ends.

Tk  ∝  (θ1 − θ2)   or   Tk = K(θ1 − θ2)

 ∴ T  =  Tk = K(θ1 − θ2)	 		   .....(1.33)	

Guidelines to determine the Transfer Function of Mechanical Rotational System 

1.	 In mechanical rotational system, the differential equations governing the system are obtained 
by writing torque balance equations at nodes in the system. The nodes are meeting point of 
elements. Generally the nodes are mass elements with moment of inertia in the system. In 
some cases the nodes may be without mass element.

2.	 The angular displacement of the moment of inertia of the masses (nodes) are assumed as θ1, 
θ2, θ3, etc., and assign a displacement to each mass (node). The first derivative of angular 
displacement is angular velocity and the second derivative of the angular displacement is 
angular acceleration.

3.	 Draw the free body diagrams of the system. The free body diagram is obtained by drawing 
each moment of inertia of mass separately and then marking all the torques acting on that 
body. Always the opposing torques acts in a direction opposite to applied torque.

4.	 The mass has to rotate in the direction of the applied torque. Hence the angular displacement, 
velocity and acceleration of the mass will be in the direction of the applied torque. If there 
is no applied torque then the angular displacement, velocity and acceleration of the mass is 
in a direction opposite to that of opposing torque.

5.	 For each free body diagram write one differential equation by equating the sum of applied 
torques to the sum of opposing torques.

6.	 Take Laplace transform of differential equation to convert them to algebraic equations. Then 
rearrange the s-domain equations to eliminate the unwanted variables and obtain the relation 
between output variable and input variable. This ratio is the transfer function of the system.

Note : 

	 Laplace transform of  θ  = L{θ} = θ(s)

	 Laplace transform of  
dθ
dt  = L        = s θ(s)   (with zero initial conditions)

	 Laplace transform of        = L         = s2 θ(s)   (with zero initial conditions)

	

1
2

3

dθ
dt 1

2
3

1
2

3

d2θ
dt2

1
2

3d2θ
dt2

T � K

Fig 1.25 : Ideal spring with one
end fixed to reference.
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EXAMPLE 1.6

Write the differential equations governing the mechanical rotational system shown in fig 1. Obtain the transfer 

function of the system.

SOLUTION

In the given system, applied torque T is the input and angular displacement θ is the output.

	 Let,  Laplace transform of  T   =  L{T} = T(s)

		   Laplace transform of  θ   = L{θ}  = θ(s)

		   Laplace transform of θ
1
  = L{θ

1
} = θ1(s)

	 Hence the required transfer function is 
( )
( )

T s
sθ  

The system has two nodes and they are masses with moment of inertia J
1
 and J

2
. The differential equations 

governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia J
1
 be θ

1
. The free body diagram of J

1
 is shown in 

fig 2. The opposing torques acting on J
1
 are marked as T

j1
 and T

k
.

; ( )T J
dt

d
T K

2

2

j1 1
1

k 1
θ

θ θ= = − 	

By Newton’s second law, T
j1
 + T

k
 = T

( )J
dt

d
K T

2

2

1
1

1
θ

θ θ+ − =

J
dt

d
K K T

2

2

1
1

1
θ

θ θ+ − = 	                                       	  .....(1)

On taking Laplace transform of equation (1) with zero initial conditions we get,

J
1
s2q

1
(s) + Kq

1
(s) - Kq(s) = T(s)

(J
1
s2 + K)q

1
(s) - Kq(s) = T(s) 			    .....(2)	 	

The free body diagram of mass with moment of inertia J
2
 is shown in fig 3. The opposing torques acting on J

2
 

are marked as T
j2
, T

b
 and T

k
.

; ; ( )T J
dt
d T B

dt
d T K

2

2

j2 2 b k 1
θ θ θ θ= = = −

By Newton’s second law, T
j2
 + T

b
 + T

k
 = 0

dt
d ( ) 0J B

dt
d K

2

2

2 1` θ θ θ θ+ + − =   

   
dt
d 0J B

dt
d K K

2

2

2 1
θ θ θ θ+ + − =

On taking Laplace transform of above equation with zero initial conditions we get,

	 J
2
s2q(s) + B s q(s) + K q(s) - Kq

1
(s) = 0

(J
2
s2 + Bs + K) q(s) - Kq

1
(s) = 0

( )
( )

( )s
K

J s Bs K
s

2

1
2θ θ=

+ +  	 	                     .....(3)

(Applied Torque) (Output)
� B

J1 J2

KT

Fig 1.

TkTj1

�1T

J1

Fig 2 : Free body diagram of mass with
moment of inertia J .1

Tk
Tj2

�

J2

Fig 3 : Free body diagram of mass with
moment of inertia J .2

Tb
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Substituting for θ
1
(s) from equation (3) in equation (2) we get,

( s )
s

( ) ( ) ( )J K
K

J Bs K
s K s T s2

2

1
2 θ θ+

+ +
− =

^ h

( s ) s
( ) ( )

K
J K J Bs K K

s T s
2 2 2

1 2 θ
+ + + −

=
^ h; E

( )
( )

( s ) sT s
s

J K J Bs K K
K

2 2 2
1 2

`
θ =

+ + + −^ h

RESULT

The differential equations governing the system are,

1. J
dt

d
K K T

2

2

1
1

1
θ

θ θ+ − =

. J
dt
d 0B

dt
d K K2

2

2

2 1
θ θ θ θ+ + − =

The transfer function of the system is,

( )
( )

( s )( s )T s
s

J K J Bs K K
K

2 2 2
1 2

θ =
+ + + −

EXAMPLE 1.7

Write the differential equations governing the mechanical rotational system shown in fig 1. and determine  

the transfer function θ(s)/T(s).

SOLUTION

In the given system, the torque T is the 

input and the angular displacement θ is the output.

Let, Laplace transform of  T = L{T}  = T(s)

	  Laplace transform of θ  = L{θ}  = θ(s)

	  Laplace transform of θ
1
 = L{θ1} = θ

1
(s)

Hence the required transfer function is 
( )
( )

T s
sθ

The system has two nodes and they are masses with moment of inertia J
1
 and J

2
. The differential equations 

governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia J
1
 be θ

1
. The free  body diagram of J

1 
is shown in 

fig 2. The opposing torques acting on J
1
 are marked as T

j1
, T

b12
 and T

k
 .

d
; ( ) ; ( )T J

dt
T B

dt
d T K

2

2

j1 1
1

b12 12 1 k 1
θ

θ θ θ θ= = − = − 	     

By Newton’s second law,     T
j1
 + T

b12
 + T

k
 = T	

		  J
dt

d
( ) ( )B

dt
d K T

2

2

1
1

12 1 1
θ

θ θ θ θ+ − + − = 	          

On taking Laplace transform of above equation with zero initial conditions we get,

J
1
s2q

1
(s) + s B

12
 [q

1
(s) - q(s)] + Kq

1
(s) - Kq(s) = T(s)

q
1
(s) [J

1
s2 + s B

12
 + K ] - q(s) [s B

12
 + K] = T(s)                                                                               .....(1)                                                          

K

J1 J2

�1
B12 �

B

Fig 1.

Tb12Tj1

�1T

J1

Fig 2 : Free body diagram of mass with
moment of inertia J .1

Tk
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The free body diagram of mass with moment of inertia J
2
 is shown in fig 3. The opposing torques are marked 

as T
j2
, T

b12
, T

b
 and T

k
.

dt
d ; ( )T J T B

dt
d

2

2

j2 2 b12 12 1
θ θ θ= = − 	

; ( )T B
dt
d T Kb k 1
θ θ θ= = −

By Newton’s second law, T
j2
 + T

b12
 + T

b
 + T

k
 = 0

dt
d ( ) ( )J B

dt
d B

dt
d K 0

2

2

2 12 1 1
θ θ θ θ θ θ+ − + + − =

dt
d ( ) 0J B

dt
d

dt
d B B K K

2

2

2 12
1

12 1
θ θ θ θ θ− + + + − =

On taking Laplace transform of above equation with zero initial conditions we get,

J
1
s2q(s) - B

12
 sq

1
(s) + sq(s) [B

12
 + B] + Kq(s) - Kq

1
(s) = 0

q(s) [s2J
2
 + s(B

12
 + B) + K] - q

1
(s) [sB

12
 + K] = 0

( )
[ ]

J ( )
( )s

sB K
s s B B K

s
2

1
12

2 12θ θ=
+

+ + +6 @                                                      	       .....(2)

Substituting for θ
1
(s) from equation (2) in equation (1) we get,

J s
( B )

[ s ( ) ] ( )
( ) ( ) ( )sB K

s K
J s B B K s

sB K s T s2
2

1 12
12

2 12
12

θ
θ+ +

+
+ + +

− + =6 @

( B )
(J s ) [ s ( ) ] ( )

( ) ( )
s K

sB K J s B B K sB K
s T s

2 2 2

12

1 12 2 12 12 θ
+

+ + + + + − +
=> H

( )
( )

(J s ) [ s ( ) ] ( )

( B )
T s

s
sB K J s B B K sB K

s K
2 2 2

1 12 2 12 12

12`
θ =

+ + + + + − +
+

	   

RESULT

The differential equations governing the system are, 

1. J
dt

d
dt
d ( ) ( )B K T

2

2

1
1

12 1 1
θ

θ θ θ θ+ − + − =

2. J
dt

d
dt
d

(B ) ( ) 0B
dt
d B K

2

2

2
1

12
1

12 1
θ θ θ θ θ− + + + − =

The transfer function of the system is,

( )
( )

( ) [ s (B ) ] ( )

( )
T s

s
J s sB K J s B K sB K

sB K
2 2 2

12 2 12 12

12

1

θ =
+ + + + + − +

+

1.5  ELECTRICAL ANALOGOUS OF MECHANICAL TRANSLATIONAL SYSTEMS

Systems remain analogous as long as the differential equations governing the systems or transfer 
functions are in identical form. The electric analogue of any other kind of system is of greater importance 
since it is easier to construct electrical models and analyse  them.

The three basic elements mass, dash-pot and spring that are used in modelling mechanical translational 
systems are analogous to resistance, inductance and capacitance of electrical systems.

Tb12Tj2

�

J2

Fig 3 : Free body diagram of mass with
moment of inertia J .2

Tk
Tb
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 The input force in mechanical system is analogous to either voltage source or current source in  
electrical systems. The output velocity (first derivative of displacement) in mechanical system is analogous 
to either current or voltage in an element in electrical system. 

Since the electrical systems has two types of inputs either voltage or current source, there are two  
types of analogies : force-voltage analogy and force-current analogy.

FORCE-VOLTAGE ANALOGY

The force balance equations of mechanical elements and their analogous electrical elements in 
force-voltage analogy are shown in table-1.2. The table-1.3 shows the list of analogous quantities in  
force-voltage analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical systems based 
on force-voltage analogy.

1.	 In electrical systems the elements in series will have same current, likewise in mechanical 
	 systems, the elements having same velocity are said to be in series.
2.	 The elements having same velocity in mechanical system should have the same analogous current  
	 in electrical analogous system.
3.	 Each node (meeting point of elements) in the mechanical system corresponds to a closed loop  
	 in electrical system. A mass is considered as a node.
4.	 The number of meshes in electrical analogous is same as that of the number of nodes (masses)  
	 in mechanical system. Hence the number of mesh currents and system equations will be same  
	 as that of the number of velocities of nodes (masses) in mechanical system. 

Table- 1.2 : Analogous Elements in Force-Voltage Analogy

	      Mechanical system	      Electrical system
	 Input    : Force	 Input    : Voltage source
	 Output : Velocity	 Output : Current through the element

f

v

K

x v dt� z

f Kx K v dt� � z

B

x

f

v
dx

dt
�

f B
dx

dt
Bv� �

e

+

_ _

+

v

i

R
e = v and v=Ri

� e = Ri

x

f
M

a
d x

dt

dv

dt
� �

2

2

f M
d x

dt
M

dv

dt
� �

2

2

e

+

_ _

+

v

i

L

e v and v L
di

dt
� �

� �e L
di

dt

e

+

_ _

+

v

i

C

e v and v
C

i dt� � z1

� ze =
1

C
i dt
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Table -1.3 : Analogous Quantities in Force-Voltage Analogy

	 Item	 Mechanical system	 Electrical system
			   (mesh basis system)

	 Independent variable	 Force, f	 Voltage, e, v
	 (input)		
	 Dependent variable	 Velocity, v	 Current, i

	 (output)	 Displacement, x	 Charge, q

	 Dissipative element	 Frictional coefficient	 Resistance, R
		  of dashpot, B
	 Storage element	 Mass, M	 Inductance, L
		  Stiffness of spring, K	 Inverse of capacitance, 1/C
	 Physical law	 Newton’s second law	 Kirchoff ’s voltage law
		  ∑f = 0	 ∑v = 0

	 Changing the level of                      Lever                                           Transformer    

                                                     f
f

l
l1

2

1

2

= 	 e
e

N
N1

2

1

2

=

Table-1.4 : Analogous Elements in Force-Current Analogy

		  Mechanical system			   Electrical system

		  Input   :  Force				    Input   :  Current source
		  Output :  Velocity			   Output :  Voltage across the element

B

x

f

v
dx

dt
�

f
dx

dt
Bv� �

_

+

v

i

Ri i
R

v� 1

x

f
M

f M
d x

dt
M

dv

dt
� �

2

2

a
d x

dt

dv

dt
� �

2

2

_

+

v

i

Ci i C
dv

dt
�

f

v

K

f Kx K v dt� � z

x v dt� z

_

+

v

i

Li i =
1

L
v dtz

independent variable
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Table-1.5 : Analogous Quantities in Force-Current Analogy

	 Item	 Mechanical system	 Electrical system
			   (node basis system)

	 Independent variable	 Force, f	 Current, i
	 (input)		

	 Dependent variable	 Velocity, v	 Voltage, v
	 (output)	 Displacement, x	 Flux, φ
	 Dissipative element	 Frictional coefficient	 Conductance G=1/R
		  of dashpot, B
	 Storage element	 Mass, M	 Capacitance, C
		  Stiffness of spring, K	 Inverse of inductance, 1/L
	 Physical law	 Newton’s second law	 Kirchoff ’s current law
		  ∑f = 0	 ∑i = 0
	 Changing the level of	 Lever	 Transformer
	 independent variable

	 	

5.	 The mechanical driving sources (force) and passive elements connected to the node (mass)  
in mechanical system should be represented by analogous elements in a closed loop in 
analogous electrical system.

6.	 The element connected between two (nodes) masses in mechanical system is represented as 
a common element between two meshes in electrical analogous system.

FORCE-CURRENT ANALOGY

The force balance equations of mechanical elements and their analogous electrical elements in 
force-current analogy are shown in table-1.4. The table-1.5 shows the list of analogous quantities in force-
current analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical systems based 
on force-current analogy.

1.	 In electrical systems elements in parallel will have same voltage, likewise in mechanical 
systems, the elements having same force are said to be in parallel.

2.	 The elements having same velocity in mechanical system should have the same analogous 
voltage in electrical analogous system.

3.	 Each node (meeting point of elements) in the mechanical system corresponds to a node in 
electrical system. A mass is considered as a node.

4.	 The number of nodes in electrical analogous is same as that of the number of nodes (masses) 
in mechanical system. Hence the number of node voltages and system equations will be same 
as that of the number of velocities of (nodes) masses in mechanical system.

5.	 The mechanical driving sources (forces) and passive elements connected to the node (mass) 
in mechanical system should be represented by analogous elements connected to a node in 
electrical system.

6.	 The element connected between two nodes (masses) in mechanical system is represented as 
a common element between two nodes in electrical analogous system.

f
f

l
l1

2

1

2

=
i
i

N
N2

2

1

1

=
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EXAMPLE 1.8

Write the differential equations governing the 
mechanical system shown in fig 1. Draw the force-voltage and 
force-current electrical analogous circuits and verify by writing 
mesh and node equations.

SOLUTION

The given mechanical system has two nodes (masses). The differential equations 
governing the mechanical system are given by force balance equations at these nodes. Let the 
displacements of masses M

1
 and M

2
 be x

1
 and x

2
 respectively. The corresponding velocities be 

v
1
 and v

2
.

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked as 

f
m1

, f
b1

, f
b12

  and f
k1

.

dt

d x
; f B

dt
dx

f M
2

2

m1 1
1

b1 1
1= =

dt
d (x x ) ; f (x x )f B Kb12 12 1 2 k1 1 1 2= − = −

By Newton’s second law, f
m1

 + f
b1

 + f
b12

 + f
k1

 = f(t)

dt

d x
B

dt
dx

B
dt
d ( ) (x ) ( )M x x K x f t

2

2

1
1

1
1

12 1 2 1 1 2
` + + − + − = 	 ......(1)

The free body diagram of M
2
 is shown in fig 3.The opposing forces are marked as f

m2
, f

b2
, f

b12
, f

k1
 and f

k2
 .

M
dt

d x
; f B

dt
dx

; f B
dt
d (x x )f

2

2

m2 2
2

b2 2
2

b12 12 2 1= = = −

f (x x ) ; f xK Kk1 1 2 1 k2 2 2= − =

By Newton’s second law, f
m2

 + f
b2

 + f
k2

 +f
b12

 + f
k1

 = 0

dt

d x
B

dt
dx

K x B
dt
d (x K (x x 0M x

2

2

2
2

2
2

2 2 12 2 1 1 2 1
+ + + − + − =))       .....(2) 

On replacing the displacements by velocity in the differential equations (1) and (2) of the mechanical system we get,

. .,
dt
d x ;i e

dt
dv

dt
dx v and x v dt

2

2
= = =c m#

M
dt
dv

B v B (v v ) K (v v ) dt ( )f t1
1

1 1 12 1 2 1 1 2+ + − + − =#     	          .....(3)

M
dt

dv
B v v dt B (v v ) K (v v ) dt 0K2

2
2 2 2 2 12 2 1 1 2 1+ + + − + − =# # 	                                                 .....(4)

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-voltage analogous electrical circuit 
will have two meshes. 

The force applied to mass, M
1
 is represented by a voltage source in first mesh. The elements M

1
, B

1
, K

1
 and B

12
 

are connected to first node. Hence they are represented by analogous element in mesh-1 forming a closed path. The 
elements K

1
, B

12
, M

2
, K

2
, and B

2
 are connected to second node. Hence they are represented by analogous element in 

mesh-2 forming a closed path.

The elements K
1
 and B

12
 are common between node-1 and 2 and so they are represented by analogous element 

as common elements between two meshes. The force-voltage electrical analogous circuit is shown in fig 4.

fm2

fb2

fk1

M2

Fig 3.

fb12

fk2

x2

v2

x1 x2

v1 v2

B12 B2

B1

M1
M2

K1

f(t)
K2

Fig 1.

f(t)

fm1

fb12

M1

Fig 2.

fb1

fk1

x1

v1
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The electrical analogous elements for the elements of mechanical system are given below.

	 f(t) → e(t)	 M
1
 → L

1	
B

1
 →  R

1
 	 K

1
 → 1/C

1
 

	  v
1
 →  i

1
	 M

2
 → L

2	
B

2
 →  R

2
 	 K

2
 → 1/C

2
 

	  v
2
 →  i

2
		  B

12
 → R

12
 

The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 4 are given below (Refer fig 5 and 6).

L
dt
di

R i R (i i )
C
1 (i i ) ( )dt e t1

1
1 1 12 1 2

1
1 2+ + − + − =# 	 .....(5)

L
dt
di

R i i R (i i )
C
1 (i i ) 0

C
dt dt1

2
2

2 2
2

2 12 2 1
1

2 1+ + + − + − =# # 	 .....(6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-current analogous electrical circuit 
will have two nodes.

The force applied to mass M
1
 is represented as a current source connected to node-1 in analogous electrical 

circuit. The elements M
1
, B

1
, K

1
 and B

12
 are connected to first node. Hence they are represented by analogous elements 

connected to node-1 in analogous electrical circuit. The elements K
1
, B

12
, M

2
, K

2
, and B

2
 are connected to second node. 

Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical circuit.

The elements K
1
 and B

12
 are common between node-1 and 2 and so they are represented by analogous elements 

as common element between two nodes in analogous circuit. The force-current electrical analogous circuit is shown 
in fig 7.

The electrical analogous elements for the elements of mechanical system are given below.

	 f(t)  → i(t)	 M
1
  →  C

1
	 B

1
 → 1/R

1
 	 K

1
 → 1/L

1
 

	  v
1
 → v

1
	 M

2
  →  C

2
	 B

2
 → 1/R

2
 	 K

2
 → 1/L

2
 

	  v
2
 → v

2
	 B

12
 → 1/R

12
 

+

_

e(t)

Fig 4 : Force-voltage electrical analogous circuit.
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+

+
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Fig 5 : Mesh-1 of analogous circuit.
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Fig 6 : Mesh-2 of analogous circuit.

R (i )12 1–i
2

R i1 1

i1 i1i2i2 i2
~

~

R (i )12 2 – i
1

R12

C1

C1

L2

R i2 2 R2

C2

L2R1
L1

i1 i2

R12
R2

C1 C2

L1
R1

R12

L
di

dt
1

1

1

1
1 2

C
i dt(i )�z 1

2
2 1

C
i dt(i )�z 1

1
2

C
i dtz

L
di

dt
2

2
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The node basis equations using Kirchoff ’s current law for the circuit shown in fig 7 are given below (Refer 

fig 8 and 9).

C
dt
dv

R
1 v

R
1 (v v ) 1 (v v ) ( )dt

L
i t1

1

1
1

12
1 2

1
1 2+ + − + − =# 	 .....(7)

C
dt

dv
R
1 v

L
1

R
1 (v v )

L
1 (v v ) 0v dt dt2

2

2
2

2
2

12
2 1

1
2 1+ + + − + − =# #               	      .....(8)

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4) 
governing the mechanical system.

EXAMPLE 1.9

Write the differential equations governing the mechanical system shown in 
fig1. Draw the force-voltage and force-current electrical analogous circuits and verify 
by writing mesh and node equations.

SOLUTION

The given mechanical system has three nodes masses. The differential 
equations governing the mechanical system are given by force balance equations at 
these nodes. Let the displacements of masses M

1
, M

2
 and M

3
 be x

1
, x

2
 and x

3 
respectively. 

The corresponding velocities be v
1
, v

2
 and v

3
. 

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked 

as f
m1

, f
b1

, f
k2

 and f
k1

.

C1
R1

C2

v1
v2

R12

L1

R2
i(t) L2

Fig 7 : Force-voltage electrical analogous circuit.
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v2
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L1

R1C1

i(t)

v1

Fig 8 : Node-1 of analogous circuit.
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v1

R12

L1

C2

v2

R2
L2

Fig 9 : Node-2 of analogous circuit.
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1
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C
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dt

M d x
;

dt
dx

; K (x x ) ; f K xf f B f
2

2

m1
1 1

b1 1
1

k2 2 1 2 k1 1 1= = = − =

By Newton’s second law, f
m1

 + f
b1

 + f
k2

 + f
k1

 = f
1
(t)

	  M
dt

d x
B

dt
dx

K (x x ) K x f (t)
2

2

1
1

1
1

2 1 2 1 1 1+ + − + =    				     .....(1)

Free body diagram of M
2
 is shown in fig 3. The opposing forces are marked as f

m2
, f

b3
, f

k2
 &  f

k3
.

	 M
dt

d x
; f B

dt
d (x x ) ; f K (x x ) ; f K (x x )f

2

2

m2 2
2

b3 3 2 3 k2 2 2 1 k3 3 2 3= = − = − = −

By Newton’s second law, f
m2

 + f
b3

 + f
k2

 + f
k3

 = f
2
(t)

M
dt

d x
B

dt
d (x x ) K (x x ) K (x x ) f (t)

2

2

2
2

3 2 3 2 2 1 3 2 3 2+ − + − + − = 	                                          .....(2)

The free body diagram of M
3
 is shown in fig 4. The opposing forces are marked as f

m3
, f

b3
 and f

k3
.

	 M
dt

d x
; f B

dt
d (x x ) ; f K (x x )f

2

2

m3 3
3

b3 3 3 2 k3 3 3 2= = − = −       

By Newton’s second law, 

	 M
dt

d x
B

dt
d (x x ) K (x x ) 0

2

2

3
3

3 3 2 3 3 2+ − + − = 	                                                                           .....(3)

On replacing the displacements by velocity in the differential equations (1), (2) and (3) governing the mechanical 

system we get,

	 . .,
dt
d x ;i e

dt
dv

dt
dx v and x v dt

2

2
= = =c m#

dt
dv

v K ( ) ( )M B K v dt v v dt f t1
1

1 1 1 1 2 1 2 1+ + + − =# #                                                                                             .....(4) 

dt
dv

B (v ) K ( ) K ( ) ( )M v v v dt v v dt f t2
2

3 2 3 2 2 1 3 2 3 2+ − + − + − =# # 		                                            .....(5)

dt
dv

B (v ) K ( ) 0M v v v dt3
3

3 3 2 3 3 2+ − + − =#                                                                                                   .....(6)

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-voltage analogous electrical circuit 
will have three meshes. The force applied to mass, M

1
 is represented by a voltage source in first mesh and the force 

applied to mass, M
2
 is represented by a voltage source in second mesh.

The elements M
1
, B

1
, K

1
 and K

2
 are connected to first node. Hence they are represented by analogous element 

in mesh-1 forming a closed path. The elements M
2
, B

3
, K

2
 and K

3
 are connected to second node. Hence they are 

represented by analogous element in mesh-2 forming a closed path. The elements M
3
, K

3
 and  B

3
 are connected to third  

node. Hence they are represented by analogous element in mesh-3 forming a closed path.

The element K
2
 is common between node-1 and 2 and so it is represented by analogous element as common 

element between mesh 1 and 2. The elements K
3
 and B

3
 are common between node-2 and 3 and so they are represented 

by analogous elements as common elements between mesh-2 and 3. The force-voltage electrical analogous circuit is 
shown in fig 5.

The electrical analogous elements for the elements of mechanical system are given below.

f
1
(t) → e

1
(t)	 v

1
 → i

1	
M

1
 → L

1
	 B

1
 → R

1	
K

1
 → 1/C

1
 

f
2
(t) → e

2
(t)	 v

2
 → i

2	
M

2
 → L

2
	 B

3
 → R

3	
K

2
 → 1/C

2
 

		  v
3
 → i

3	
M

3
 → L

3
		  K

3
 → 1/C

3
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The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 5 are given below (Refer fig 6, 7, 8).

dt
di

R i ( ) ( )L
C

i dt
C

i i dt e t1 1
1

1
1 1

1
1

2
1 2 1+ + + − =# # 	 .....(7)

dt
di

R (i ) ( ) (i ) ( )L i
C

i i dt
C

i dt e t1 1
2

2
3 2 3

3
2 3

2
2 1 2+ − + − + − =# # 	 .....(8)

dt
di

R (i ) ( ) 0L i
C

i i dt1
3

3
3 3 2

3
3 2+ − + − =# 	 .....(9)

It is observed that the mesh equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-current analogous electrical circuit 
will have three nodes.

The force applied to mass M
1
 is represented as a current source connected to node-1 in analogous electrical 

circuit. The force applied to mass M
2
 is represented as a current source connected to node-2 in analogous electrical circuit.

The elements M
1
, B

1
, K

1
 and K

2
 are connected to first node. Hence they are represented by analogous elements 

as elements connected to node-1 in analogous electrical circuit. The elements M
2
, B

3
, K

2
 and K

3
 are connected to second 

node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical 
circuit. The elements M

3
, B

3
 and K

3
 are connected to third node. Hence they are represented by analogous elements 

as elements connected to node-3 in analogous electrical circuit.

The element K
2
 is common between node-1 and 2 and so it is represented by analogous element as common 

element between node-1 and 2 in analogous circuit. The elements B
3
 and K

3
 are common between node-2 and 3 and so 

they are represented by analogous elements as common elements between node-2 and 3. The force-current electrical 
analogous circuit is shown in fig 9.

The electrical analogous elements for the elements of mechanical system are given below.

f
1
(t) → i

1
(t)	 v

1
 → v

1	
M

1
 → C

1
	 B

1
 → 1/R

1	
K

1
 → 1/L

1
 

f
2
(t) → i

2
(t)	 v

2
 → v

2	
M

2
 → C

2
	 B

3
 → 1/R

3	
K

2
 → 1/L

2
 

		  v
3
 → v

3	
M

3
 → C

3	
	 K

3
 → 1/L

3
 

Fig 5 : Force-voltage electrical analogous circuit.

+

+

_

+

_

+

_

Fig 7 : Mesh-2 of analogous circuit.
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+
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+
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+
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1

1

1
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+
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Fig 8 : Mesh-3 of analogous circuit.

Fig 6 : Mesh-1 analogous circuit.
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The node basis equations using Kirchoff ’s current law for the circuit shown in fig 9. are given below. (Refer fig10, 11,12).

dt
dv

R
1 v ( ) ( )C

L
v dt

L
v v dt i t1 1

1
1

1
1

1
1

2
1 2 1

+ + + − =# # 	 .....(10)

dt
dv

R
1 (v ) ( )

L
1 ( ) i ( )C v

L
v v dt v v dt t1

2
2

3
2 3

3
2 3

2
2 1 2

+ − + − + − =# #   	  .....(11)

dt
dv

R
1 (v ) ( ) 0C v

L
v v dt1

3
3

3
3 2

3
3 2

+ − + − =# 		  .....(12)

It is observed that node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) and 
(6) governing the mechanical system.

i (t)1 L1
R1

C1

v1
L2 v2

Fig 10 : Node-1 of analogous circuit.

1
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C
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dt1
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1

1

1

1

1L
v dtz

i (t)2 C2
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v1
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Fig 11 : Node-2 of analogous circuit.

1
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1
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v v dt( )z �

C
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dt2

21

2

2 1L
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Fig 12 : Node-3 of analogous circuit.
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Fig 9 : Force-current electrical analogous circuit.
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EXAMPLE 1.10

Write the differential equations governing the mechanical system shown in 
fig 1. Draw force-voltage and force-current electrical analogous circuits and verify 
by writing mesh and node equations.

SOLUTION

The given mechanical system has three nodes (masses). The differential 
equations governing the mechanical system are given by force balance equations 
at these nodes. Let the displacements of masses M

1
, M

2
 and M

3
 be x

1
, x

2
 and x

3
 

respectively. The corresponding velocities be v
1
,v

2
 and v

3
.

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked as f

b1
, f

k1
, f

b2
, f

b3
, and f

m1
. 

f M
dt

d x
; f B

dt
dx

; f K x
2

2

m1 1
1

b1 1
1

k1 1 1= = =

( ) ; ( )f B
dt
d x x f B

dt
d x xb2 2 1 2 b3 3 1 3

= − = -

By Newton’s second law, f
m1

 + f
b1

 + f
k1

 + f
b2

 + f
b3

 = 0

dt

d x
B

dt
dx

K x B
dt
d (x x ) B

dt
d (x ) 0M x

2

2

1
1

1
1

1 1 2 1 2 3 1 3+ + + − + − =         .....(1)                            

The free body diagram of M
2
 is shown in fig 3. The opposing forces are marked as f

m2 
, f

b2 
, f

b23  
and f

k23
.

f M
dt

d x
; f B

dt
d ( )x x

2

2

m2 2
2

b2 2 2 1
= = −

dt
d ( ) ; ( )f B x x f K x xb23 23 2 3 k23 23 2 3

= − = -

By Newton’s second law, f
m2

 + f
b2

 + f
b23

 + f
k23

 = 0

M
dt

d x
B

dt
d (x x ) B

dt
d (x ) (x ) 0x K x

2

2

2
2

2 2 1 23 2 3 23 2 3+ − + − + − =       ......(2)

The free body diagram of M
3
 is shown in fig 4. The opposing forces are marked as f

m3 
, f

b3 
, f

b23 
, and f

k23
.

f M
dt

d x
; f B

dt
d ( )x x

2

2

m3 3
3

b3 3 3 1
= = −

dt
d ( ) ; ( )f B x x f K x xb23 23 3 2 k23 23 3 2

= − = -

By Newton’s second law, f
m3

 + f
b3

 + f
b23

 + f
k23

 = 0

M
dt

d x
B

dt
d (x x ) B

dt
d (x ) (x x ) 0x K

2

2

3
3

3 3 1 23 3 2 23 3 2+ − + − + − =       .....(3)                      

On replacing the displacements by velocity in the differential equations (1), (2) and (3) governing the mechanical 

system we get,

. .,
dt
d x ,i e

dt
dv

dt
dx v and x vdt

2

2
= = =c m#

dt

d
B K v B ( ) B ( ) 0M

v
v dt v v v v1

1
1 1 1 1 2 1 2 3 1 3+ + + − + − =# 		 .....(4)

dt

dv
B ( ) ( ) ( ) 0M v v B v v K v v dt2

2
2 2 1 23 2 3 23 2 3+ − + − + − =# 	 .....(5)

M
dt

dv
B (v ) (v ) ( ) 0v B v K v v dt3

3
3 3 1 23 3 2 23 3 2+ − + − + − =# 	 .....(6)
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FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-voltage analogous electrical circuit 
will have three meshes. Since there is no applied force in mechanical system there will not be any voltage source in 
analogous electrical circuit.

The elements M
1
, K

1
, B

1
, B

3
 and B

2
 are connected to first node. Hence they are represented by analogous 

elements in mesh-1 forming a closed path. The elements M
2
, K

23
, B

23
 and B

2
 are connected to second node. Hence 

they are represented by analogous elements in mesh-2 forming a closed path. The elements M
3
, K

23
 , B

23
 and B

3
 are 

connected to third  node. Hence they are represented by analogous elements in mesh-3 forming a closed path.

The elements K
23

 and B
23

 are common between node-2 and 3 and so they are represented by analogous element 
as common elements between mesh-2 and 3. The element B

2
 is common between node-1 and 2 and so it is represented 

by analogous element as common element between mesh-1 and 2. The element B
3
 is common between node-1 and 

3 and so it is represented by analogous element between mesh-1 and 3. The force-voltage electrical analogous circuit 
is shown in fig 5.

The electrical analogous elements for the elements of mechanical system are given below.

v
1
 → i

1
	 M

1
 → L

1
	 K

1
   → 1/C

1	
B

2
  → R

2

v
2
 → i

2
	 M

2
 → L

2
	 K

23
 → 1/C

23	
B

3
  → R

3
 

v
3
 → i

3
	 M

3
 → L

3
	 B

1
  →  R

1
 	 B

23
 → R

23
 

The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 5 are given below. (Refer fig 6, 7
and 8).

dt
di

R i
C
1 R (i ) R (i ) 0L i dt i i1

1
1 1

1
1 2 1 2 3 1 3

+ + + − + − =# 	 .....(7)

L
dt
di

R (i i )
C
1 (i ) R (i ) 0i dt i2

2
2 2 1

23
2 3 23 2 3

+ − + − + − =# 	 .....(8)

i2
i1

i3

+

_
+

_
+

_ +
_

R i1 1

+

_

R3

L1

R1

C1

R2

Fig 6 : Mesh-1 of analogous circuit.
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Fig 5 : Force-voltage electrical analogous circuit.
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Fig 7 : Mesh-2 of analogous circuit.
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Fig 8 : .Mesh-3 of analogous circuit.
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R23

v1

v3

v2

C3

Fig 12 : Node-3 of analogous circuit.

L23

v3

1

3

3 1R
v v( )�

1

23

3 2L
v v( )dtz �

1
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Fig 10 : Node-1 of analogous circuit.
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Fig 11 : Node-2 of analogous circuit.
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Fig 9 : Force-current electrical analogous circuit.

L
dt
di

R (i i )
C
1 (i ) R (i ) 0i dt i3

3
3 3 1

23
3 2 23 3 2

+ − + − + − =# 	 .....(9)

It is observed that the mesh basis equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-current analogous electrical circuit 
will have three nodes. Since there is no applied force in mechanical system there will not be any current source in 
analogous electrical circuit.

The elements M
1
, K

1
, B

1
, B

2
 and B

3
 are connected to first node. Hence they are represented by analogous 

elements as elements connected to node-1 in analogous electrical circuit. The elements M
2
, K

23
, B

23
 and B

2
 are connected 

to second node. Hence they are represented by analogous elements as elements connected to node-2 in analogous 
electrical circuit. The elements M

3
, K

23
 , B

23
 and B

3
 are connected to third  node. Hence they are represented by analogous 

elements as elements connected to node-3 in analogous electrical circuit.

The elements K
23

 and B
23

 are common between node-2 and 3 and so they are represented by analogous element 
as common elements between node-2 and 3 in electrical analogous circuit. The element B

2
 is common between node-1 

and 2 and so it is represented by analogous element as common element between node-1 and 2 in electrical analogous 
circuit. The element B

3
 is common between node-1 and 3 and so it is represented by analogous element as common 

element between node-1 and 3 in electrical analogous circuit. The force-current electrical analogous circuit is shown 
in fig 9.

The electrical analogous elements for the elements of mechanical system are given below.

v
1
  →  v

1
		 M

1
	 →	 C

1
	 K

1
	 →	1/L

1
	 B

2
	 →	1/R

2
 

v
2
  →  v

2
		 M

2
	 →	 C

2
	 K

23
	→	1/L

23
	 B

3
	 →	1/R

3
 

v
3  

 →  v
3
		 M

3
	 →	 C

3	
B

1
	 →	1/R

1
       	 B

23
	→	1/R

23
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The node basis equations using Kirchoff ’s current law for the circuit shown in fig 9 are given below. (Refer fig 10, 11
and 12).

C
dt
dv

R
1 v

L
1 (v ) (v ) 0v dt

R
v

R
v1 1

1
1

1
1

1
1

2
1 2

3
1 3

+ + + − + − =# 		  .....(10)

C
dt

dv
R
1 (v )

L
1 (v ) (v ) 0v v dt

R
v1

2
2

2
2 1

23
2 3

23
2 3

+ − + − + − =# 	 .....(11)

C
dt

dv
R
1 (v )

L
1 (v ) (v ) 0v v dt

R
v1

3
3

3
3 1

23
3 2

23
3 2

+ − + − + − =# 			  .....(12)

It is observed that the node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) 

and (6) governing the mechanical system.

EXAMPLE 1.11

Write the differential equations governing the mechanical system shown in fig 1. 
Draw the force-voltage and force-current electrical analogous circuits and verify by writing 
mesh and node equations.

SOLUTION

The given mechanical system has two nodes (masses). The differential equations 
governing the mechanical system are given by force balance equations at these nodes. Let 
the displacement of masses M

1 
and M

2 
be x

1 
and x

2 
respectively. The corresponding velocities 

be v
1 
and v

2
.

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked as f

m1
, f

b1
 and f

k1
.

M
dt

d x
; f

( x )
; f K (x x )f B

dt
d x

2

2

m1 1
1

b1 1
1 2

k1 1 1 2= =
−

= −

By Newton’s second law,   f
m1

 + f
b1

 + f
k1

 = 0

   M
dt

d x
B

( )
K (x x ) 0

dt
d x x

2

2

1
1

1
1 2

1 1 2+
−

+ − =                                     .....(1)

The free body diagram of M
2
 is shown in fig 3. The opposing forces are marked as f

m2 
, f

b2 
, f

b1 
, f

k2
 and f

k1
.

M
dt

d x
; f B

dt
dx

; f
dt
d (x x )f B

2

2

m2 2
2

b2 2
2

b1 1 2 1= = = −

f
k2

 = K
2
x

2
            ;    f

k1
 = K

1
(x

2
-x

1
)

By Newton’s second law,  f
m2

 + f
b2

 + f
k2

 + f
b1

+ f
k1 

= f(t)

M
dt

d x
B

dt
dx

K x B
dt
d (x x ) K (x x ) ( )f t

2

2

2
2

2
2

2 2 1 2 1 1 2 1+ + + − + − =         .....(2)

On replacing the displacements by velocity in the differential equations (1) and (2) governing the mechanical  

system we get,

. .,
dt
d x ,i e

dt
dv

dt
dx v and x vdt

2

2
= = =c m#

dt
dv

B (v v ) K ( ) 0M v v dt1
1

1 1 2 1 1 2
+ − + − =#                                                                                    .....(3)

  M
dt

dv
B v ) K v (v ) ( ) ( )dt B v K v v dt f t2

2
2 2 2 2 1 2 1 1 2 1+ + + − + − =# #                                                                        .....(4)
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Fig 2.

fb1

fk1

x1

v1

K2 B2

f(t)

x2

Fig 1.

M1 B1x1

K1

M2



1. 41Chapter 1 - Systems Components and their Representation

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force voltage analogous electrical circuit will 
have two meshes. The force applied to mass, M

2
 is represented by a voltage source in second mesh.

The elements M
1
, K

1
 and B

1
 are connected to first node. Hence they are represented by analogous element 

in mesh 1 forming a closed path. The elements M
2
, K

2
, B

2
, B

1
 and K

1
 are connected to second node. Hence they are 

represented by analogous element in mesh 2 forming a closed path.

The elements B
1
 and  K

1
 are common between node 1 and 2 and so they are represented as common elements 

between mesh 1 and 2. The force-voltage electrical analogous circuit is shown in fig 4.

The electrical analogous elements for the elements of mechanical system are given below.

		  f(t) → e(t)	 v
1
	 →	 i

1
	 M

1
	 →	 L

1
	 K

1
	 →	 1/C

1
	 B

1
	 →	 R

1
 

			   v
2
	 →	 i

2
	 M

2
	 →	 L

2
	 K

2
	 →	 1/C

2
     	 B

2
	 →	 R

2
 

The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 4. are given below, (refer fig 5 and 6).

L
dt
di

R (i i )
C
1 (i i ) 0dt1

1
1 1 2

1
1 2+ − + − =# 	                                    .....(5)

L
dt
di

R i
C
1 (i ) R (i ) ( )i dt

C
i dt i e t1

2
2

2 2
2

2
1

2 1 1 2 1
+ + + − + − =# # 	            .....(6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-current analogous electrical circuit will 
have two nodes. The force applied to mass M

2
 is represented as a current source connected to node-2 in analogous 

electrical circuit. 

The elements M
1
, K

1
 and B

1
 are connected to first  node. Hence they are represented by analogous elements 

as elements connected to node-1 in analogous electrical circuit. The elements M
2
, K

2
, B

2
, B

1
 and K

1
 are connected 

to second node. Hence they are represented by analogous elements as elements connected to node-1 in analogous 
electrical circuit.
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Fig 4 : Force-voltage electrical analogous circuit.
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Fig 6 : Mesh-2 of analogous circuit.
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The elements K
1
 and B

1
 is common to node-1 and 2 and so they are represented by analogous element as 

common elements between two nodes in analogous circuit. The force-current electrical analogous circuit is shown in fig 7.

The electrical analogous elements for the elements of mechanical system are given below.

	 f(t) → i(t)	 v
1
 → v

1
 	 M

1
 → C

1
	 B

1
 → 1/R

1	
K

1
 → 1/L

1
 

		  v
2
 → v

2	
M

2
 → C

2
	 B

2
 → 1/R

2
 	 K

2
 → 1/L

2

The node basis equations using Kirchoff ’s current law for the circuit shown in fig.7, are given below, (Refer 
fig 8 and 9).

C
dt
dv

( ) (v ) 0
R

v v
L

v dt1 1
1

1

1
1 2

1
1 2+ − + − =#   	 .....(7)

C
dt

dv
R
1 v

L
( ) ( ) ( )v dt

R
v v

L
v v dt i t1 1 1

2
2

2
2

2
2

1
2 1

1
2 1+ + + − + − =##                                                         .....(8)

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4) 
governing the mechanical system.

1.6  ELECTRICAL ANALOGOUS OF MECHANICAL ROTATIONAL SYSTEMS

The three basic elements moment of inertia, rotational dashpot and torsional spring that are used 
in modelling mechanical rotational systems are analogous to resistance, inductance and capacitance of 
electrical systems. The input torque in mechanical system is analogous to either voltage source or current 
source in electrical systems. The output angular velocity (first derivative of angular displacement) in 
mechanical rotational system is analogous to either current or voltage in an element in electrical system. 
Since the electrical systems has two types of inputs either voltage source or current source, there are two 
types of analogies: torque-voltage analogy and torque-current analogy.

TORQUE-VOLTAGE ANALOGY

The torque balance equations of mechanical rotational elements and their analogous electrical 
elements in torque-voltage analogy are shown in table-1.6. The table-1.7 shows the list of analogous 
quantities in torque-voltage analogy.
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v1

C1
C2

R2
L2

v2

Fig 7 : Force-current electrical analogous circuit.
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Fig 8 : Node-1 of analogous circuit.
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Fig 9 : Node-2 of analogous circuit.
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TABLE-1.6 : Analogous Element of  Torque-Voltage Analogy

     Mechanical rotational system                                    Electrical system

	 Input    : Torque	 Input   : Voltage source

	 Output  :  Angular velocity	 Output : Current through the element

The following points serve as guidelines to obtain electrical analogous of mechanical rotational systems 
based on torque-voltage analogy.

1.	 In electrical systems the elements in series will have same current, likewise in mechanical 
systems, the elements having same angular velocity are said to be in series.

2.	 The elements having same angular velocity in mechanical system should have analogous 
same current in electrical analogous system.

3.	 Each node (meeting point of elements) in the mechanical system corresponds to a closed loop in 
electrical system. The moment of inertia of mass is considered as a node.

4.	 The number of meshes in electrical analogous is same as that of the number of nodes (moment 
of inertia of mass) in mechanical system. Hence the number of mesh currents and system 
equations will be same as that of the number of angular velocities of nodes (moment of inertia 
of mass) in mechanical system.

5.	 The mechanical driving sources (Torque) and passive elements connected to the node (moment 
of inertia of mass) in mechanical system should be represented by analogous element in a 
closed loop in analogous electrical system.

6.	 The element connected between two nodes (moment of inertia) in mechanical system is 
represented as a common element between two meshes in electrical analogous system.

B

�T

T B
d

dt
B� �� �

� �� d

dt

e

+

_ _

+

v

i

R
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� e = Ri

J
T �

T J
d

dt
j
d

dt
� �

2

2

� � �� �d

dt

d
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2

2

� � e

+

_ _

+

v

i

L

e v v L
di

dt
� �;
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di

dt

K

T �
T K K dt� � z� � � �� z dt

e

+
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+

v

i

C

e i= v ; v =
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C
dtz

� ze =
1

C
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Table-1.7 : Analogous Quantities in Torque-Voltage Analogy

	 Item	             Mechanical rotational system	        Electrical system
			          	           (mesh basis system)

Independent variable	 Torque, T	 Voltage, e, v
	 (input)		

Dependent variable	 Angular Velocity, ω	 Current, i

	 (output)	 Angular displacement, θ	 Charge, q

Dissipative element	 Rotational coefficient	 Resistance, R
		  of dashpot, B

	Storage element	 Moment of inertia, J	 Inductance, L

		  Stiffness of spring, K	     Inverse of capacitance, 1/C 

	Physical law	 Newton’s second law	 Kirchoff ’s voltage law

		  ∑T = 0	 ∑v = 0

	Changing the level of	 Gear	 Transformer
		 	independent variable

		

TORQUE-CURRENT ANALOGY

The torque balance equations of mechanical elements and their analogous electrical elements in 
torque-current analogy are shown in table-1.8. The table-1.9 shows the list of analogous quantities in 
torque-current analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical rotational 
systems based on Torque-current analogy.

1.	 In electrical systems the elements in parallel will have same voltage, likewise in mechanical 
systems, the elements having same torque are said to be in parallel.

2.	 The elements having same angular velocity in mechanical system should have analogous 
same voltage in electrical analogous system.

3.	 Each node (meeting point of elements) in the mechanical system corresponds to a node in 
electrical system. The moment of inertia of mass is considered as a node.

4.	 The number of nodes in electrical analogous is same as that of the number of nodes (moment 
of inertia of mass) in mechanical system. Hence the number of node voltages and system 
equations will be same as that of the number of angular velocities of nodes (moment of inertia 
of mass) in mechanical system.

5.	 The mechanical driving sources (Torque) and passive elements connected to the node in 
mechanical system should be represented by analogous element connected to a node in 
analogous electrical system.

6.	 The element connected between two nodes (moment of inertia of mass) in mechanical system 
is represented as a common element between two nodes in electrical analogous system.

T
T

n
n

2

1

2

1= e
e

N
N

2

1

2

1=
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TABLE-1.8 : Analogous Elements in Torque-Current Analogy

        Mechanical rotational system	             Electrical system

	 Input    : Torque	 Input   : Current source
	 Output  : Angular velocity	 Output : Voltage across the element

Table-1.9 : Analogous Quantities in Torque-Current Analogy

	 Item	 Mechanical rotational system	 Electrical system
			   (node basis system)

Independent variable	 Torque, T	 Current, i
	 (input)		

Dependent variable	 Angular Velocity, ω	 Voltage, v

	 (output)	 Angular displacement, θ	 Flux, φ

Dissipative element	 Rotational frictional	 Conductance, G = 1/R
		  coefficient of dashpot, B

	 Storage element	 Moment of inertia, J	 Capacitance, C

		  Stiffness of spring, K	 Inverse of inductance, 1/L 

	 Physical law	 Newton’s second law	 Kirchoff ’s current law

		  ∑T = 0	 ∑i = 0

	Changing the level of	 Gear	 Transformer
	independent variable

		  	

B
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T
d
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� �
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+
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EXAMPLE 1.12

Write the differential equations governing the mechanical rotational 
system shown in fig 1. Draw the torque-voltage and torque-current electrical 
analogous circuits and verify by writing mesh and node equations.

SOLUTION

The given mechanical rotational system has two nodes (moment of inertia of masses). The differential equations 
governing the mechanical rotational system are given by torque balance equations at these nodes.

Let the angular displacements of J
1
 and J

2
 be θ

1
 and θ

2 
respectively. The corresponding angular velocities be

ω
1 
and ω

2
. 

The free body diagram of J
1
 is shown in fig 2. The opposing torques are marked as T

j1
, T

b1
 and T

k1
.

J
dt

d
; T B

dt
d

; T ( )T K
2

2

j1 1
1

b1 1
1

k1 1 1 2
θ θ

θ θ= = = −      

By Newton’s second law,  T
j1
 + T

b1
 + T

k1
 = T

dt

d
B K ( )J

dt
d

2

2

1
1

1
1

1 1 2

θ θ
θ θ+ + −  = T	                                .....(1)	

The free body diagram of J
2
 is shown in fig 3. The opposing torques are marked as T

j2
, T

b2
, T

k2 
and T

k1
.

J
dt

d
; B

dt
d

T T
2

2

j2 2
2

b2 2
2θ θ

= = 	

T ; T ( )K Kk2 2 2 k1 1 2 1θ θ θ= = −

By Newton’s second law,  T
j2
 + T

b2
 + T

k2
 + T

k1
 = 0

dt

d
B

dt
d

K K ( )J
2

2

2
2

2
2

2 2 1 2 1
θ θ

θ θ θ+ + + −  = 0              	      .....(2)	       

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing 
the mechanical rotational system we get,

. .,
dt
d ;i e

dt
d

dt
d and dt

2

2θ ω θ ω θ ω= = =c m#

dt
d

B K ( )J dt T1
1

1 1 1 1 2
ω

ω ω ω+ + − =#    	 .....(3)

dt
d

B K K ( ) 0J dt dt2
2

2 2 2 2 1 2 1
ω

ω ω ω ω+ + + − =# # 	 .....(4)

TORQUE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (J
1
 and J

2
). Hence the torque-voltage analogous electrical circuit 

will have two meshes. The torque applied to J
1
 is represented by a voltage source in first mesh. The elements J

1
, B

1
 

and K
1
 are connected to first node. Hence they are represented by analogous element in mesh-1 forming a closed path. 

The elements J
2
, B

2
, K

2
 and K

1
 are connected to second node. Hence they are represented by analogous elements  in 

mesh-2 forming a closed path.

The element K
1
 is common between node-1 and 2 and so it is represented by analogous element as common 

element between two meshes. The torque-voltage electrical analogous circuit is shown in fig 4.

The electrical analogous elements for the elements of mechanical rotational system are given below.

	 T	 → e(t)	 J
1
	 →	 L

1
	 B

1
	 →	 R

1	
K

1
	 →	 1/C

1
 

	 ω
1
	 → i

1
	 J

2
	 →	 L

2
	 B

2
	 →	 R

2	
K

2
	 →	 1/C

2
 

	 ω
2
	 → i

2
	

K1 K2

J2J1

T

B1
B2

Fig 1.

Tb1
Tj1��

J1

Fig 2.

Tk1
T

Tb2
Tj2��

J2

Fig 3.

Tk2
Tk1
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The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 4 are given below 
(Refer fig 5 and 6).

L
dt
di

R i
C
1 ( ) ( )i i e t1

1
1 1

1
1 2+ + − =#                                                                                                                         .....(5)

L
dt
di

R i
C
1 d (i ) 0i t

C
i dt1

2
2

2 2
2

2
2

2 1+ + + − =# #                                                                                          .....(6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 

governing the mechanical system.

TORQUE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (J
1
 and J

2
). Hence the torque-current analogous electrical circuit 

will have two nodes. The torque applied to J
1
 is represented as a current source connected to node-1 in analogous 

electrical circuit. 

The elements J
1
, B

1
 and K

1
 are connected to first node. Hence they are represented by analogous elements as 

elements connected to node-1 in analogous electrical circuit. The elements J
2
, B

2
, K

2
 and K

1
 are connected to second 

node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical circuit.

The element K
1
 is common between node-1 and 2. So it is represented by analogous element as common 

element between node-1 and 2. The torque-current electrical analogous circuit is shown in fig 7.

e(t)

Fig 4 : Torque-voltage electrical analogous circuit.

+

_

+

_

Fig 5 : Mesh-1 of analogous circuit. Fig 6 : .Mesh-2 of analogous circuit.
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L2
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i1 i2

R1

R2

C1

C2

L1

R1

+_

+_e(t)

R i1 1

+ _

+

_
C1i1

i2

L2

_

+

R i2 2

+
_

+

_

L
di

dt1

1

1

1

1 2
C

i dt(i )z � 1

1

2 1
C

i dt(i )z �

1

2
2

C
i dtz

L
di

dt2

2

v1 v2

i(t)

C1 R1
C2 R2 L2

Fig 7 : Torque-current electrical analogous circuit.
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The electrical analogous elements for the elements of mechanical rotational system are given below.

	 T  →  i(t)	 B
1
 → 1/R

1	
ω

1
 → v

1
	 J

1
 → C

1
	 K

1
 → 1/L

1
 

		       	 B
2
 → 1/R

2	
ω

2
 → v

2
	 J

2
 → C

2
	 K

2
 → 1/L

2
 

The node basis equations using Kirchoff ’s current law for the circuit shown in fig 7 are given below (Refer fig 8 and 9).

	
dt
dv

R
1 v

L
1 (v ) ( )C v dt i t1

1

1
1

1
1 2

+ + − =# 		  .....(7)

	
dt

dv
R
1 v

L
1 v

L
1 (v )C dt v dt 01

2

2
2

2
2

1
2 1

+ + + − =# # 	 .....(8)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 
governing the mechanical system.

EXAMPLE 1.13

Write the differential equations governing the 
mechanical rotational system shown in fig 1. Draw the  
torque-voltage and torque-current electrical analogous 
circuits and verify by writing mesh and node equations.

SOLUTION

The given mechanical rotational system has three nodes (moment of inertia of masses). The differential equations 
governing the mechanical rotational system are given by torque balance equations at these nodes. 

Let the angular displacements of  J
1
, J

2
 and J

3
 be θ

1
, θ

2 
and θ

3 
respectively. The corresponding angular velocities 

be ω
1
, ω

2 
and ω

3
. 

The free body diagram of J
1
 is shown in fig 2. The opposing torques are marked as T

j1
, T

b1
 and T

k1
.

	 J
dt

d
;

( )
T T B

dt
d

2

2

j1 1
1

b1 1
1 2θ θ θ

= =
−

	 ( )T Kk1 1 1 2θ θ= −

By Newton’s second law, T
j1
 + T

b1
 + T

k1
 = T

dt

d ( )
K ( )J B

dt
d

T
2

2

1
1

1
1 2

1 1 2

θ θ θ
θ θ+

−
+ − = 		         .....(1)

The free body diagram of J
2
 is shown in fig 3. The opposing torques are marked as T

j2
, T

b2
, T

b1
and T

k1
.

	
dt

d
; T

( )
T J B

dt
d

2

2

j2 2
2

b2 2
2 3θ θ θ

= =
−

v1 v2

i(t)

C1 R1

Fig 8 : Node-1 of analogous circuit.

L1

C
dv

dt1

1 1

1

1R
v

1

1

1 2
L

v v( )�z dt

v1 v2

C2 R2 L2

Fig 9 : Node-2 of analogous circuit.

L1

1

1

2 1
L

v v( )�z dt

C
dv

dt2

2 1

2

2R
v

1

2

2
L

vz dt
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Fig 1.
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( ) ; B
dt

d( )
T K Tk1 1 2 1 b1 1

2 1θ θ
θ θ

= − =
−

By Newton’s second law, T
j2
 + T

b2
 + T

b1
 + T

k1
 = 0

	 J
dt

d ( )
dt

d( )
( ) 0B

dt
d

B K
2

2

2
2

2
2 3

1
2 1

1 2 1
θ θ θ θ θ

θ θ+
−

+
−

+ − =      .....(2)

The free body diagram of J
3
 is shown in fig 4. The opposing torques are marked as T

j3
, T

b2
, and T

k3
.

T
dt

d
; B

dt
d( )

; KJ T T
2

2

j3 3
3

b2 2
3 2

k3 3 3
θ θ θ

θ= =
−

=

By Newton’s second law, T
j3
 + T

b2
 + T

k3
 = 0

dt

d ( )
0J B

dt
d

K
2

2

3
3

2
3 2

3 3`
θ θ θ

θ+
−

+ =                           .....(3)

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing 
the mechanical rotational system we get,

. .,
dt
d ;i e

dt
d

dt
d and dt

2

2θ ω θ ω θ ω= = =c m#

dt
d

B ( ) ( )J K dt T1
1

1 1 2 1 1 2
ω

ω ω ω ω+ − + − =#  	 .....(4)

dt
d

B ( ) B ( ) ( ) 0J K dt2
2

1 2 1 2 2 3 1 2 1
ω

ω ω ω ω ω ω+ − + − + − =# 	 .....(5)

dt
d

B ( ) 0J K dt3
3

2 3 2 3 3
ω

ω ω ω+ − + =# 	 .....(6)

TORQUE-VOLTAGE ANALOGOUS CIRCUIT
The given mechanical system has three nodes (J

1
, J

2
 and J

3
). Hence the torque-voltage analogous electrical 

circuit will have three meshes. The torque applied to J
1
 is represented by a voltage source in first mesh.

The elements J
1
, K

1
 and B

1
 are connected to first node. Hence they are represented by analogous element in 

mesh-1 forming a closed path. The elements J
2
, B

2
, B

1
 and K

1
 are connected to second node. Hence they are represented 

by analogous element in mesh-2 forming a closed path. The element J
3
, B

2
 and K

3
  are connected to third node. Hence 

they are represented by analogous element in mesh-3 forming a closed path.

The elements K
1
 and B

1
 are common between the nodes-1 and 2 and so they are represented by analogous 

element as common between mesh-1 and 2. The element B
2
 is common between the nodes-2 and 3 and so it is 

represented by analogous element as common element between the mesh-2 and 3. The torque-voltage electrical 
analogous circuit is shown in fig 5.

The electrical analogous elements for the elements of mechanical rotational system are given below.

T → e(t)	 ω
1
	 →	 i

1	
	 J

1
 	→	 L

1
	 B

1
	 →	 R

1	
	 K

1
	 →	 1/C

1
 

	 ω
2
	 → 	i

2	
	 J

2
	 →	 L

2
	 B

2
	 →	 R

2	
	 K

3
	 →	 1/C

3
 

	 ω
3
	 →	 i

3	
	 J

3
	 →	 L

3

+
_

+ _

i1
i2e(t)

+

_

_

+

C1

R1

L1

Fig 6 : Mesh-1 of analogous circuit.

+_

L1 L2 L3

C1

i1 i2 i3

R2

R1

e(t) C3

Fig 5 : Torque-voltage electrical
analogous circuit.

L
di

dt1

1

1

1

1 2
C

i(i )z � dt

R i1 1 2(i )�

Tb2
Tj2��

J2

Fig 3.

Tk1
Tb1
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Tj3��
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The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 5 are given below (Refer fig 6, 7

and 8).

dt
di

R (i ) ( i ) ( )L i
C

i dt e t1
1

1
1 1 2

1
1 2+ − + − =# 	 .....(7)

L
dt
di

R (i ) R (i ) (i i ) 0i i
C

dt1
2

2
1 2 1 2 2 3

1
2 1+ − + − + − =# 	 .....(8)

L
dt
di

R (i ) ii
C

dt1 03
3

2 3 2
3

3+ − + =# 	 .....(9)

It is observed that the mesh basis equations (7), (8) and (9) are similar to the differential equations (4), (5) and 
(6) governing the mechanical system.

TORQUE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (J
1
, J

2
 and J

3
). Hence the torque-current analogous electrical circuit 

will have three nodes. The torque applied to J
1
 is represented as a current source connected to node-1 in analogous 

electrical circuit. 

The elements K
1
, J

1
 and B

1
 are connected to first node. Hence they are represented by analogous elements as 

elements connected to node-1 in analogous electrical circuit. The elements J
2
, B

2
, B

1 
and K

1
 are connected to second 

node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical 
circuit. The elements J

3
, B

2
, and K

3
 are connected to third node. Hence they are represented by analogous elements 

as elements connected to node-3 in analogous electrical circuit.

The elements K
1
 and B

1
 are common between node-1 and 2 and so they are represented by analogous element 

as common elements between node-1 and 2. The element B
2
 is common between node-2 and 3 and so it is represented 

as common element between node-2 and 3 in analogous circuit. The torque-current electrical analogous circuit is shown 
in fig 9.

R1

L1

v2
R

2
v3

C1 C2 C3

Fig 9 : Torque-current electrical
analogous circuit.

L3

v1

i(t)

Fig 10 : Node-1 of analogous circuit.
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R
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v v dt( )�z
C
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dt
1

1
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i2

i3

+

_ +
_

+

_

+

_

R2

R1

C1

L2

Fig 7 : Mesh-2 of analogous circuit.
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Fig 8 : Mesh-3 of analogous circuit.
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The electrical analogous elements for the elements of mechanical rotational system are given below.

T → i(t)	    ω
1
	 →	 v

1	
J

1
	 →	 C

1
	 B

1	
→	 1/R

1	
K

1
 	 →	 1/L

1
 

	    ω
2
 	 →	 v

2	
J

2
 	 →	 C

2
	 B

2
 	 →	 1/R

2
	 K

3
	 →	 1/L

3
 

	    ω
3
 	 →	 v

3
	 J

3
	 →	 C

3

The node basis equations using Kirchoff ’s current law for the circuit shown in fig 9 are given below (Refer fig 10, 11
and 12).

dt
dv

R
1 (v ) (v ) ( )C v

L
v dt i t1

1
1

1
1 2

1
1 2+ − + − =#         	 .....(10)

C
dt

dv
R
1 (v )

R
1 (v ) (v ) 0v v

L
v dt1

2
2

1
2 1

2
2 3

1
2 1+ − + − + − =#             	   .....(11)

dt
dv

R
1 (v ) 0C v

L
v dt1

3
3

2
3 2

3
3

+ − + =#                                     	      .....(12)

It is observed that the node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) 

and (6) governing the mechanical system.

1.7  BLOCK DIAGRAM MODELS

A control system may consist of a number of components. In control engineering to show the 
functions performed by each component, we commonly use a diagram called the block diagram. A block 
diagram of a system is a pictorial representation of the functions performed by each component and of the 
flow of signals. Such a diagram depicts the interrelationships that exist among the various components. 
The elements of a block diagram are block, branch point and summing point.

BLOCK

In a block diagram all system variables are linked to each other through functional blocks. The 
functional block or simply block is a symbol for the mathematical operation on the input signal to the block 
that produces the output. The transfer functions of the components are usually entered in the corresponding 
blocks, which are connected by arrows to indicate the direction of the flow of signals. Figure 1.27 shows 
the block diagram of functional block.

The arrowhead pointing towards the block  indicates the input, 
and the arrowhead leading away from the block represents the output. 
Such arrows are referred to as signals. The output signal from the block is  
given  by  the product of input signal and transfer function in  the block.

Fig 11.
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C2

v1

v3

R2

v2

v1

1

1
2 1

R
v v( )�

1

1
1 2
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v v dt( )�z

1

2
2 3

R
v v( )�

C
dv

dt
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2

Fig 12.
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3

3 1

3
3

L
v dtz

Transfer
function

G(s)

Input, A

B = A G(s)

Output, B

Fig 1.27 : Functional block.
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SUMMING POINT

Summing points are used to add two or more signals in the system. 
Referring to figure 1.28, a circle with a cross is the symbol that indicates 
a summing operation.

The plus or minus sign at each arrowhead indicates whether the 
signal is to be added or subtracted. It is important that the quantities 
being added or subtracted have the same dimensions and the same units.
BRANCH POINT

A branch point is a point from which the signal from a block goes 
concurrently to other blocks or summing points.

CONSTRUCTING BLOCK DIAGRAM FOR CONTROL SYSTEMS

A control system can be represented diagramatically by block diagram. The differential equations 
governing the system are used to construct the block diagram. By taking Laplace transform the  
differential equations are converted to algebraic equations. The equations will have variables and  
constants. From the working knowledge of the system the input and output variables are identified and 
the block diagram for each equation can be drawn. Each equation gives one section of block diagram.  
The output of one section will be input for another section. The various sections are interconnected  
to obtain the overall block diagram of the system.

EXAMPLE 1.14

Construct the block diagram of armature controlled dc motor.

SOLUTION

The differential equations governing the armature controlled dc motor are (refer section 1.7),

V i R L
dt
di

ea a a a
a

b= + + 	                                                                                             .....(1)

T = K
t
i
a
       	   .....(2)

T J
dt
d Bω ω= +      	 .....(3)

eb = Kbw             	   .....(4)

dt
dω θ=                   	    .....(5)

On taking Laplace transform of equation (1) we get,

V
a
(s) = I

a
(s)R

a
 + L

a 
s I

a
(s) + E

b
(s)				           .....(6)

In equation (6), V
a
(s) and E

b
(s) are inputs and I

a
(s)  is the output. Hence the 

equation (6) is rearranged and the block diagram for this equation is shown in fig 1.

V
a
(s) - E

b
(s) = I

a
(s) [R

a
 + s L

a
]

I (s) [ ( ) ( )]
R s L

V s E s1
a

a a
a b` =

+
−

On taking Laplace transform of equation (2) we get,

	 T(s) = K
t
 I

a
(s)                                                        .....(7)

In equation (7), I
a
(s) is the input and T(s) is the output. The block diagram for this equation is shown in fig 2.

I (s)a
T(s)

Kt

Fig 2.

V (s)a –E (s)b

V (s)a

E (s)b

Fig 1.

+-+
–

1

R sLa a�

A A–B

B

Fig 1.28 : Summing point.

+
–

Branch point

B
G

A

A B = AG

Fig 1.29 : Branch point.

�
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On taking Laplace transform of equation (3) we get,

	 T(s) = Js ω(s) + B ω(s)	                                    			    .....(8)

In equation (8), T(s) is the input and ω(s) is the output. Hence the equation (8) is rearranged and the block 

diagram for this equation is shown in fig (3).

T(s) = (Js + B) w(s)

( ) ( )s
Js B

T s1` ω =
+

On taking Laplace transform of equation (4) we get,

E
b
(s) = K

b
 ω(s)				               		    .....(9)

In equation (9), ω(s) is the input and E
b
(s) is the output. The block diagram for 

this equation is shown in fig 4.

On taking Laplace transform of equation (5) we get,

	 ω(s) = s θ(s)                                                                                  	  .....(10)	

In equation (10), ω(s) is the input and θ(s) is the output. Hence equation (10) is rearranged and the block diagram 

for this equation is shown in fig 5.

	 ( ) ( )s
s

s1θ ω=

The overall block diagram of armature controlled dc motor is obtained by connecting the various sections shown in 
fig 1 to fig 5. The overall block diagram is shown in fig 6.

EXAMPLE 1.15

Construct the block diagram of field controlled dc motor.

SOLUTION

The differential equations governing the field controlled dc motor are (refer section 1.8),

v i
dt
di

R L
t f f f

f= + 					            .....(1)

T = K
tf
i
f 
						             .....(2)

dt
dT J B

dt
d

2

2θ θ= + 				                                               .....(3)

On taking Laplace transform of equation (1) we get,

	 V
f
 (s) = R

f
I
f
 (s) + L

f 
s I

f
(s)

 
                                                                                                                   .....(4)

T(s) �(s)

Fig 3.

1

Js B�

E (s)b�(s)

Fig 4.

Kb

�(s)�(s)

Fig 5.

1/s

Kt

Kb

V (s)a –E (s)b

V (s)a

E (s)b

I (s)a T(s) �(s) �(s)

�(s)

Fig 6 : Block diagram of armature controlled dc motor.

+-+
–

1/s
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1
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In equation (4), V
f
 (s) is the input and I

f
 (s) is the output. Hence the equation (4) is rearranged and the block 

diagram for this equation is shown in fig 1.

( ) I (s)V s R sLf f f f= +6 @

I (s) ( )
R sL

V s1
f

f f
f

` =
+

On taking Laplace transform of equation (2) we get,

	 T(s) = K
tf

 I
f
  (s)			                     .....(5)

In equation (5), I
f
 (s) is the input and T(s) is the output. The block diagram for 

this equation is shown in fig 2.

On taking Laplace transform of equation (3) we get,

	 T(s) = J s2 θ(s) + B s θ(s)	                    .....(6)

In equation (6), T(s) is input and θ(s) is the output. Hence equation (6) is rearranged 
and the block diagram for this equation is shown in fig 3.

( ) ( ) ( )T s Js Bs s2 θ= +

( ) ( )s
Js Bs

T s1
2

` θ =
+

The overall block diagram of field controlled dc motor is obtained by connecting the various section shown in  
fig 1 to fig 3. The overall block diagram is shown in fig 4.

BLOCK DIAGRAM REDUCTION

The block diagram can be reduced to find the overall transfer function of the system. The following rules can 
be used for block diagram reduction. The rules are framed such that any modification made on the diagram does not 
alter the input-output relation.

RULES OF BLOCK DIAGRAM ALGEBRA

Rule-1 :	 Combining the blocks in cascade

Rule-2 :	 Combining Parallel blocks (or combining feed forward paths)

Rule-3 :	 Moving the branch point ahead of the block

V (s)f

Fig 1.

I (s)f1

R sLf f�

Ktf

I (s)f
T(s)

Fig 2.

T(s) �(s)

Fig 3.

1
2Js Bs�

Ktf
V (s)f

I (s)f T(s)
�(s)

Fig 4 : Block diagram of field controlled dc motor.

1

R sLf f�
1

2Js Bs�

A AG1 AG G1 2 � G G1 2

AG G1 2A
G1

G2

A

AG1

AG2
AG +AG = A(G +G )1 2 1 2 A A(G +G )1 2

G +G1 2

�
G1

G2
+-++

A

A

AG AGA

AG A
�

1/G

G G
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Rule-4 :	 Moving the branch point before the block

Rule-5 :	 Moving the summing point ahead of the block

Rule-6 :	 Moving the summing point before the block

Rule-7 :	 Interchanging summing point

Rule-8 :	 Splitting summing points

Rule-9 :	 Combining summing points

Rule-10 :	Elimination of (negative) feedback loop

Proof :
C = (R - CH)G	 ⇒	 C =  RG - CHG	 ⇒	   C + CHG = RG

∴ C(1 + HG) = RG	 ⇒	 R
C

1 GH
G= +

Rule-11 : Elimination of (positive) feedback loop

R

CH
�

(R CH)–

C

C R C+-+
–

(R CH)G–

H

G G

GH1�

R

�

C

R C
++ G

H

G

GH1�

AGA

AG

AG

AG

A

�
G

G

G

A

B

A+B ( )GA+B

A

B

AG

BG

AG + BG = (A+B)G

�
G+-++

+-++
G

G

�
AGA

B

AG+B

B

A

B/G

AG+B
+-++ +-++

G

1/G

G

A
B

G
�

A+B A+B–CA

B

C

A–C A A+B– –C+B= C

C

B

A�+-+
+ +-+ +-+ +-+

+

– –

A

B

C

A+B–C A

B

C

A+B A+B–C�+-+
+ +-+

+ +-+_
–

A

B

C

A+B A+B–C

C

A

B

A+B–C
�+-+

+ +-+ +-+
+

– –
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EXAMPLE 1.16

Reduce the block diagram shown in fig 1 and find C/R.

SOLUTION

Step 1: Move the branch point after the block.

Step 2: Eliminate the feedback path and combining blocks in cascade.

Step 3: Combining parallel blocks

Step 4: Combining blocks in cascade

1 G H
G

G
G

1 G
G

G
G G G

1 G H
G G G

R
C G

H1

1
2

1

3

1

1

1

1 2 3

1

1 2 3=
+

+ =
+

+
=

+
+

f f f fp p p p

RESULT

The overall transfer function of the system,  
1 G H

G G G
R
C

1

1 2 3

+
+=

R C

Fig 1.

+-+ +-+
+

–
G1

H

G2

G3

R C
+-+ +-+

+

–
G1

G3

G2

H

CR +-+ +-+
+

–
G1

H

1/G1
G3

G2

R C
+-++

G /G3 1

G2

G

G H
1

11�

R CG

G H
1

11�
G

G

G
2

3

1

�
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EXAMPLE 1.17

Using block diagram reduction technique find closed loop transfer function of the system whose block diagram 
is shown in fig 1.

SOLUTION

Step 1: Moving the branch point before the block

Step 2: Combining the blocks in cascade and eliminating parallel blocks

Step 3: Moving summing point before the block.

Step 4: Interchanging summing points and modifying branch points.

R C

Fig 1.

+-+
–

+-+
–

+-+
–

+-+
+G1 G2

G4

G3

H2

H1

R C+-+
–

+-+
–

+-+
–

+-+
+G1 G2

H2

H1

G4

G3

R C+-+
++-+

–
+-+

–

+-+
–

G1

G4

G2 G3

H2

G2H1

R C+-+
–

+-+
–

+-+
–

G1
G G +G2 3 4

H2

H G1 2

R C+-+
–

+-+
–

+-+
–

G1 G G +G2 3 4

H21/G1

H G1 2
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Step 5: Eliminating the feedback path and combining blocks in cascade

Step 6: Eliminating the feedback path

1
1 G G H

G (G G G )
G
H

1 G G H
G (G G G )

2 3 1

2 3

1 2 1

2 3

1 4

1

2

1 4

+
+

+
+

+

    ⇒    

1 G G H
1 G G H G G H G H

1 G G H
G G G G G

1 2 1

1 2 1 2 3 2 4 2

1 2 1

1 2 3 1 4

+
+ + +

+
+

    ⇒    
1 G G H G G H G H

G G G G G

1 2 1 2 3 2 4 2

1 2 3 1 4

+ + +
+

Step 7: Eliminating the feedback path

	

	

1
1 G G H G G H G H

G G G G G
1 G G H G G H G H

G G G G G

1 G G H G G H G H G G G G G
G G G G G

R
C

1 2 1 2 3 2 4 2

1 2 3 1 4

1 2 1 2 3 2 4 2

1 2 3 1 4

1 2 1 2 3 2 4 2 1 2 3 1 4

1 2 3 1 4=
+

+ + +
+

+ + +
+

=
+ + + + +

+

RESULT

The overall transfer function is given by,

	
1 G G H G G H G H G G G G G

G G G G G
R
C

1 2 1 2 3 2 4 2 1 2 3 1 4

1 2 3 1 4=
+ + + + +

+

EXAMPLE 1.18

Determine the overall transfer function 
( )
( )

R s
C s  for the system shown in fig 1.

R C
+-+

–
+-+

–
+-+

–
G1 G G +G2 3 4

H G1 2

H21/G1

G

G H G
1

1 1 1 2�

R C+-+
–

+-+
–

G G G G

G G H
1 2 3 4

1 2 11

( )

( )

�
�

H

G
2

1

R C+-+
–

G G G G G

G G H G G H G H
1 2 3 1 4

1 2 1 2 3 2 4 21

�
� � �

R(s) C(s)

Fig 1.

+-+
–

+-+
– +-+

–
G1 G2

H2

G3
G4

H1
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SOLUTION

Step 1: Moving the branch point before the block

Step 2 : Combining the blocks in cascade and rearranging the branch points

Step 3 : Eliminating the feedback path

Step 4 : Combining the blocks in cascade and eliminating feedback path

Step 5 :  Combining the blocks in cascade

R(S) C(S)
+-+

–
G1 G4

G4

G G

G H G

G G

G H G
H

2 3

4 1 3

2 3

4 1 3
2

1

1
1

�

�
�

G G

G G H G G H
2 3

3 4 1 2 3 21� �

R(s) C(s)+-+
–

+-+
– +-+

–
G1 G2

H2

H1

G3 G4

R(s) C(s)
+-+

–
+-+

– +-+
–

G1 G2

H2

G3 G4

G4H1

G4

R(s) C(s)
+-+

–
+-+

–
+-+

–
G1

H2

G2 G3 G4

G H4 1

G4

R(s)
C(s)

+-+
–

G1 +-+
–

G2

H2

G4

G4

G

G H G
3

4 1 31�
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Step 6 :  Eliminating the feedback path

Step 7 : Combining the blocks in cascade

	

( )
( )

1 G G H G G H G G G G
G G G G

R s
C s

3 4 1 2 3 2 1 2 3 4

1 2 3 4=
+ + +

RESULT

The overall transfer function of the system is given by,

	
( )
( )

1 G G H G G H G G G G
G G G G

R s
C s

3 4 1 2 3 2 1 2 3 4

1 2 3 4=
+ + +

EXAMPLE 1.19

For the system represented by the block diagram shown in fig 1. Evaluate the closed loop transfer function when 

the input R is (i) at station-I (ii) at station-II.

SOLUTION

(i)	 Consider the input R is at station-I and so the input at station-II is made zero. Let the output be C
1
. Since 

there is no input at station-II that summing point can be removed and resulting block diagram is shown 
in fig 2.

R(S) C(S)
+-+

–
G4

G4

G G G

G G H G G H
1 2 3

3 4 1 2 3 21� �

R(S) C(S)
G4

1
1

1
1

1 2 3

3 4 1 2 3 2

1 2 3

3 4 1 2 3 2
4

� � �

�
� �

�

G G G

G G H G G H

G G G

G G H G G H
G

G G G

G G H G G H G G G G
1 2 3

3 4 1 2 3 2 1 2 3 41� � �

C(S)

Fig 1.

Station-I Station-II

+-
+

–
+-+

–
G1 G2

H3

+-+
–

+-+
+

H2

G3

H1
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     Step 1 : Shift the take off point of feedback H
3
 beyond G

3 
and rearrange the branch points

Step 2 :  Eliminating the feedback H
2
 and combining blocks in cascade

Step 3:  Eliminating the feedback path

1
1 G H

G G
G
H

1 G H
G G

1
1 G H

G H
1 G H

G G

1 G H G H
G G

3 2

2 3

3

3

3 2

2 3

3 2

2 3

3 2

2 3

3 2 2 3

2 3

#
+ +

+

+
=

+

+
=

+ +
	

Step 4: Combining the blocks in cascade

Step 5: Eliminating feedback path H
1

	

1
1 G H G H

G G G
H

1 G H G H
G G G

1 G G H G G G H
G G G

H

3 2 2 3

1 2 3
1

3 2 2 3

1 2 3

3 2 2 3 1 2 3 1

1 2 3

#
+ +

+

+ +
=

+ + +

R C
+-+

–

H1

G G G

G H G H
1 2 3

3 2 2 31� �

C1

Fig 2.

R

+-
+

–
G1

+-+
–

G2 +-+
–

G3

H2

H3

H1

C1

R

+-
+

–
G1 +-+ G2

+-+
–

G3

H3
1/G3

H2

H1

–

R

+-
+

–
G1

+-+
–

H1

H /G3 3

C1
G G

G H
2 3

3 21�

R C
+-+

–
G1

H1

G G

G H G H
2 3

3 2 2 31� �
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R(s)
C (s)

1 G H G H G G G H
G G G1

3 2 2 3 1 2 3 1

1 2 3` =
+ + +

(ii)	 Consider the input R at station-II, the input at station-I is made zero. Let output be C
2
. Since there is no 

input in station-I that corresponding summing point can be removed and a negative sign can be attached 
to the feedback path gain H

1
. The resulting block diagram is shown in fig 3.

Step 1: Combining the blocks in cascade, shifting the summing point of H
2
 before G

2 
and rearranging the branch 

points.

Step 2: Interchanging summing points and combining the blocks in cascade.

Step 3: Combining parallel blocks and eliminating feedback path

Step 4: Combining the blocks in cascade 

1 G H
H

G
H

1 G H
G G H G

(1 G H )G
G (G G H H )G

G
G

H

2 3

2
1 1

2

2

2 3

2

2

1 1 2 2

2 3 2

2 1 2 1 2# #+
− − =

+
− −

=
+

− +
f f f fp p p p

R

C2

+-++
G3

G

G H
2

2 31�

� �G H
H

G
1 1

2

2

C2

Fig 3.

R

+-+
–

G1 G2
+-+

++-+
–

H3

G3

H2

–H1

C2

R

+-+
– +-+

–
G2 +-+

+ G3

1/G2 H2

–G H1 1

H3

C2

R

+-+
–

+-+
–

G2
+-+

+
G3

H /G2 2

–G H1 1

H3
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Step 5: Eliminating the feedback path

	

1
1 G H

(G G H H )
G

G

1 G H
1 G H G (G G H H )

G
1 G H G (G G H H )

G (1 G H )

2 3

1 2 1 2
3

3

2 3

2 3 3 1 2 1 2

3

2 3 3 1 2 1 2

3 2 3

−
+

− +
=

+
+ + +

=
+ + +

+

f p

R
C

1 G H G (G G H H )
G (1 G H )2

2 3 3 1 2 1 2

3 2 3` =
+ + +

+

RESULT

The transfer function of the system with input at station-I is,

	
R
C

1 G H G H G G G H
G G G1

3 2 2 3 1 2 3 1

1 2 3=
+ + +

The transfer function of the system with input at station-II is,

	
R
C

1 G H G (G G H )
G (1 H )

H
G2

2 3 3 1 2 1 2

3 2 3=
+ + +

+

EXAMPLE 1.20

For the system represented by the block diagram shown in the fig 1, determine C
1
/R

1
 and C

2
/R

1
.

SOLUTION

Case (i) To find R
C
1

1

In this case set R
2
 = 0 and consider only one output C

1
. Hence we can remove the summing point which adds 

R
2
 and need not consider G

6
, since G

6
 is on the open path. The resulting block diagram is shown in fig 2.

R C2+-++ G3

� �
�

G G G H H

G H

2 1 2 1 2

2 3 21

( )

( )G

Fig 1

R1

R2

C1

C2

+-+
+

–

G1
G2 G3

H2

+-+
+ +-+

–
G4

H1

G5 G6
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Step 1: Eliminating the feedback path

Step 2: Combining the blocks in cascade and splitting the summing point

Step 3: Eliminating the feedback path

Step 4: Combining the blocks in cascade

Fig 2.

R1
C1

+-+
+

–

G1
G2 G3

H2

G4

H1

G5+-+
–

R1 C1+-+
+

–

G1
G2 G3

H2

H1

G5

G

G
4

41�

C1R1 +-+
– +-+

+
G1

G2 G3

G G H H

G
4 5 1 2

41�

C1

R1 +-+
–

G2 G3

G

G G G H H

G

1

1 4 5 1 2

4

1
1

�
�
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Step 5 : Eliminating the feedback path

Step 6: Combining the blocks in cascade

R
C

(1 G G )(1 G ) G G G H H
G G G (1 G )

1

1

1 2 4 1 4 5 1 2

1 2 3 4=
+ + −

+

Case 2 : To find R
C
1

2

In this case set R
2
 = 0 and consider only one output C

2
. Hence we can remove the summing point which adds 

R
2
 and need not consider G

3
, since G

3
 is on the open path. The resulting block diagram is shown in fig 3.

Step 1: Eliminate the feedback path.

C1R1

+-+
–

G3

G G G

G G G G H H
1 2 4

4 1 4 3 1 2

1

1

( )

( )

�
� �

C1R1

G3

G G G

G G G G H H

G G G

G G G G H H

1 2 4

4 1 4 5 1 2

1 2 4

4 1 4 5 1 2

1

1

1
1

1

( )

( )

( )

( )

�
� �

� �
� �

Fig 3.
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+

–
G1 G2
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G4
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C1R1
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G G G

G G G G H H G G G

1 2 4

4 1 4 5 1 2 1 2 4

1

1 1

( )

( ) ( )
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Step 2: Combining blocks in cascade and splitting the summing point

Step 3: Eliminating the feedback path		  Step 4 : Combining the blocks in cascade	 	
	

Step 5: Eliminating the feedback path

Step 6: Combining the blocks in cascade

		
R
C

(1 G )(1 G G ) G G G H H
G G G G H

1

2

4 1 2 1 4 5 1 2

1 4 5 6 2=
+ + −

R1

C2

+-+
+

–

G1
G2

H1

H2 G5 G6

G

G
4

41�

R1
C2

R1
C2

+-++
G6

H1

G6

G G G H

G G G
1 4 5 2

4 1 21 1( )( )� �

G G G H

G G G

G G G H H

G G G

1 4 5 2

4 1 2

1 4 5 2 1

4 1 2

1 1

1
1 1

( )( )

( )( )

� �

�
� �

R1
C2

G6

G G G H

G G G G G G H H
1 4 5 2

4 1 2 1 4 5 1 21 1( )( )� � �

R1

C2

+-+
+

+-+
–

G2

G1

H1

G6

G G H

G
4 5 2

41�

R1

C2

+-+
+

H1

G6

G

G G
1

1 21�

G G H

G
4 5 2

41�
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RESULT

The transfer function of the system when the input and output are R
1
 and C

1
 is given by, 

R
C

(1 G G )(1 G ) G G G H H
G G G (1 G )

1

1

1 2 4 1 4 5 1 2

1 2 3 4=
+ + −

+      						    

The transfer function of the system when the input and output are R
1
 and C

2
 is given by, 

R
C

(1 G )(1 G G ) G G G H H
G G G G H

1

2

4 1 2 1 4 5 1 2

1 4 5 6 2=
+ + −

 					     	

EXAMPLE 1.21

Obtain the closed loop transfer function C(s)/R(s) of the system whose block diagram is shown in fig 1.

SOLUTION

Step 1 : Splitting the summing point and rearranging the branch points

Step 2 : Eliminating the feedback path

Step 3 : Shifting the branch point after the block.

Fig 1.

C(S)R(S)
+-+

+
G1 +-+

–

–

H2

G2 +-+
+

G3

H1

G4

C(S)R(S)
+-+

+
G1

+-+
–

–
G2 G3

+-+
+

H1

G4

H2

C(S)R(S)
+-+

+
G1 +-+

–
+ G2 G3 +-+

+

H1H1

H2

G4

C(S)R(S)
+-+

+
G1 +-+

–
G3 +-+

+

H1

H2

G4

G

G H
2

2 11�
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Step 4 : Combining the blocks in cascade and eliminating feedback path

Step 5 : Combining the blocks in cascade and eliminating feedback path

Step 6 : Eliminating forward path

	

	
( )
( )

1 G H G G H G G H
G G G

G
R s
C s

2 1 2 3 2 1 2 1

1 2 3
4` =

+ + −
+ 	

RESULT

The transfer function of the system is 
( )
( )

1 G H G G H G G H
G G G

G
R s
C s

2 1 2 3 2 1 2 1

1 2 3
4=

+ + −
+

EXAMPLE 1.22

The block diagram of a closed loop system is shown in fig 1. Using the block diagram reduction technique 
determine the closed loop transfer function C(s)/R(s).

SOLUTION

Step 1 : Splitting the summing point.

R(S) C(S)

G4

+-++
G G G

G H G G H G G H
1 2 3

2 1 2 3 2 1 2 11� � �

G G G

G H G G H

G G G

G H G G H

H

G

1 2 3

2 1 2 3 1

1 2 3

2 1 2 2 2

1

3

1

1
1

� �

�
� �

F

HG
I

KJ

R(S) C(S)
+-+ G1+

G4

H /G1 3

+-++
G G

G H G G H
2 3

2 1 2 3 21� �

G G

G H

G G H

G H

2 3

2 1

2 3 2

2 1

1

1
1

�

�
�

C(S)R(S)
+-+

+
G1 +-+

–
G3 +-+

+

H1

H2

G4

1/G3

G

G H
2

2 11�

C(S)R(S)
+-+

++-+
– –

G (s)1 G (s)2

H (s)1

H (s)2

Fig 1.

C(S)R(S)
+-+

++-+
– –

G (s)1 G (s)2

H (s)1

H (s)2
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Step 2 : Eliminating the feedback path.

Step 3 : Moving the summing point after the block.

Step 4 : Interchanging the summing points and combining the blocks in cascade

Step 5 : Eliminating the feedback path and feed forward path

Step 6 : Combining the blocks in cascade

	

( )
( )

1 G (s)H (s) G (s)G (s)H (s)
G (s) [G (s) 1]

R s
C s

2 2 1 2 1

2 1` =
+ +

+

RESULT

The transfer function of the system is,

	
( )
( )

1 G (s)H (s) G (s)G (s)H (s)
G (s) [G (s) 1]

R s
C s

2 2 1 2 1

2 1=
+ +

+

C(S)R(S)
+-+

++-+
–

G (s)1 G (s)2

H (s)1

H (s)2

+-+
–

C(S)R(S)
+-+

++-+
–

G (s)1

H (s)1

G s

G s H s
2

2 21

( )

( ) ( )�

C(S)R(S)
+-+

++-+
–

G (s)1

H (s)1G (s)1

G s

G s H s
2

2 21

( )

( ) ( )�

C(S)R(S)
+-+

+ +-+
–

G (s)1

G (s) H1 1(s)

G s

G s H s
2

2 21

( )

( ) ( )�

G s

G s H s

G s

G s H s
G s H s

2

2 2

2

2 2
1 1

1

1
1

( )

( ) ( )

( )

( ) ( )
( ) ( )

�

�
�

C(S)R(S)
G (s)+11

G s

G s H s G s s H s
2

2 2 1 2 11

( )

( ) ( ) ( )G ( ) ( )� �
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EXAMPLE 1.23

Using block diagram reduction technique find the transfer function C(s)/R(s) for the system shown in fig 1.

SOLUTION

Step 1 : Rearranging the branch points

Step 2 : Combining the blocks in cascade and eliminating the feedback path.

Step 3 : Moving the branch point after the block.

C(S)R(S)
G1+ G2

H3

+-+++-+ +G3 G4

H4

H1 H2

Fig 1.

C(S)R(S)
G1+ G2

H3

+-++ +G3 G4

H4

H1 H2

+

C(S)R(S)
G1+ G2

H3

+-++ +G3 G4

H4

H1 H2

+

C(S)R(S)
G1+ G2

H3

+-++ G3

H4

+
G

G H H
4

4 1 21�
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Step 4 : Moving the branch point and combining the blocks in cascade.

Step 5 : Combining the blocks in cascade

Step 6 : Eliminating feedback path and interchanging the summing points.

1
1 G H H
G G G H

1 G H H
G G G

1 G H H G G G H
G G G

4 1 2

2 3 4 3

4 1 2

2 3 4

4 1 2 2 3 4 3

2 3 4

−
+

+
=

+ −

Step 7 : Combining the blocks in cascade and eliminating the feedback path

1 G H H G G G H
G G G G

G G
H (1 G H H

1 G H H G G G H
G G G G

1 G H H G G G H G G H (1 G H H )
G G G G

1
4 1 2 2 3 4 3

1 2 3 4

3 4

4 4 1 2

4 1 2 2 3 4 3

1 2 3 4

4 1 2 2 3 4 3 1 2 4 4 1 2

1 2 3 4

+
+ −

+
+ −

=
+ − + +

f fp p

C(S)R(S)
G1+ G2

H3

+-++ G3

H4

+
G

G H H
4

4 1 21�

1

3G

C(S)R(S)
G1+

H3

+-++ G2G3+
G

G H H
4

4 1 21�

1 4 1 2

4

� G H H

G

H

G
4

3

C(S)R(S)
G1+ +

G G G

G H H G G G H
2 3 4

4 1 2 2 3 4 31� �

H G H H

G G
4 4 1 2

3 4

1( )�

C(S)R(S)
G1+

H3

+-+++
G G G

G HH

2 3 4

4 1 2
1�

H G H H

G G
4 4 1 2

3 4
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Step 8 : Eliminating the unity feedback path.

( )
( )

1 G H H G G G H G G H (1 G H H )
G G G G

1 G H H G G G H G G H (1 G H H )
G G G G

R s
C s

1
4 1 2 2 3 4 3 1 2 4 4 1 2

1 2 3 4

4 1 2 2 3 4 3 1 2 4 4 1 2

1 2 3 4

` =
+

+ − + +

+ − + +

1 G H H G G G H G G H (1 G H H ) G G G G
G G G G

4 1 2 2 3 4 3 1 2 4 4 1 2 1 2 3 4

1 2 3 4=
+ − + + +

1 H H ( G G G H ) G G (H G G ) G G G H
G G G G

G1 2 4 1 2 4 4 1 2 4 3 4 2 3 4 3

1 2 3 4=
+ + + + −

RESULT

The transfer function of the system is,

( )
( )

1 H H ( G G G H ) G G (H G G ) G G G H
G G G G

R s
C s

G1 2 4 1 2 4 4 1 2 4 3 4 2 3 4 3

1 2 3 4=
+ + + + −

       

1.8  SIGNAL FLOW GRAPH MODELS

The signal flow graph is used to represent the control system graphically and it was developed by 
S.J. Mason.

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. 
By taking Laplace transform, the time domain differential equations governing a control system can 
be transferred to a set of algebraic equations in s-domain. The signal flow graph of the system can be 
constructed using these equations.

It should be noted that the signal flow graph approach and the block diagram approach yield the 
same information. The advantage in signal flow graph method is that, using Mason’s gain formula the 
overall gain of the system can be computed easily. This method is simpler than the tedious block diagram 
reduction techniques.

The signal flow graph depicts the flow of signals from one point of a system to another and gives the 
relationships among the signals. A signal flow graph consists of a network in which nodes are connected 
by directed branches. Each node represents a system variable and each branch connected between two 
nodes acts as a signal multiplier. Each branch has a gain or transmittance. When the signal pass through a 
branch, it gets multiplied by the gain of the branch. 

In a signal flow graph, the signal flows in only one direction. The direction of signal flow is indicated 
by an arrow placed on the branch and the gain (multiplication factor) is indicated along the branch.

R(S) C(S)
+-+

–

G G G G

G H H G G G H G G H G H H
1 2 3 4

4 1 2 2 3 4 3 1 2 4 4 1 21 1� � � �( )
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EXPLANATION OF TERMS USED IN SIGNAL FLOW GRAPH

Node	 :	 A node is a point representing a variable or signal.

Branch	 :	 A branch is directed line segment joining two nodes. The arrow on the 
		  branch	indicates the direction of signal flow and the gain of a branch is the  
		  transmittance.

Transmittance	 :	 The gain acquired by the signal when it travels from one node to another is 		
		  called transmittance. The transmittance can be real or complex.

Input node ( Source)	 :	 It is a node that has only outgoing branches.	

Output node ( Sink )	 :	 It is a node that has only incoming branches.

Mixed node	 :	 It is a node that has both incoming and outgoing branches.

Path	 :	 A path is a traversal of connected branches in the direction of the branch 		
		  arrows. The path should not cross a node more than once.

Open path	 :	 A open path starts at a node and ends at another node.

Closed path	 :	 Closed path starts and ends at same node.

Forward path	 :	 It is a path from an input node to an output node that does not cross any node 	
		  more than once.

Forward path gain	 :	 It is the product of the branch transmittances (gains) of a forward path.	

Individual loop           	 :	 It is a closed path starting from a node and after passing through a certain 
		  part of a graph arrives at same node without crossing any node more than once.

Loop gain	 :	 It is the product of the branch transmittances (gains) of a loop.

Non-touching Loops	 :	 If the loops does not have a common node then they are said to be non- touching 
		  loops.

PROPERTIES OF SIGNAL FLOW GRAPH

The basic properties of signal flow graph are the following :

(i)	 The algebraic equations which are used to construct signal flow graph must be in the form 
of cause and effect relationship.

(ii)	 Signal flow graph is applicable to linear systems only.

(iii)	 A node in the signal flow graph represents the variable or signal.

(iv)	 A node adds the signals of all incoming branches and transmits the sum to all outgoing 
branches.

(v)	 A mixed node which has both incoming and outgoing signals can be treated as an output 
node by adding an outgoing branch of unity transmittance.

(vi)	 A branch indicates functional dependence of one signal on the other.
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(vii)	 The signals travel along branches only in the marked direction and when it travels it gets 
multiplied by the gain or transmittance of the branch.

(viii)	 The signal flow graph of system is not unique. By rearranging the system equations different 
types of signal flow graphs can be drawn for a given system.

SIGNAL FLOW GRAPH ALGEBRA

Signal flow graph for a system can be reduced to obtain the transfer function of the system using 
the following rules. The guideline in developing the rules for signal flow graph algebra is that the signal 
at a node is given by sum of all incoming signals.

Rule 1	 :	 Incoming signal to a node through a branch is given by the product of a signal at previous 
node and the gain of the branch.

		  Example:

Rule 2	 :	 Cascaded branches can be combined to give a single branch whose transmittance is equal 
to the product of individual branch transmittance.

		  Example:

Rule 3	 :	 Parallel branches may be represented by single branch whose transmittance is the sum of 
individual branch transmittances.

		  Example:

Rule 4	 :	 A mixed node can be eliminated by multiplying the transmittance of outgoing branch 
(from the mixed node) to the transmittance of all incoming branches to the mixed node.

		  Example:
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Rule 5	 :	 A loop may be eliminated by writing equations at the input and output node and rearranging 
the equations to find the ratio of output to input. This ratio gives the gain of resultant 
branch.

		  Example:

Proof :

x2 = ax1 + cx3   ;   x3 = bx2

Put, x2 = ax1 + cx3 in the equation for x3.

∴ x3 = b(ax1 + cx3)     ⇒     x3 = abx1 + bcx3    ⇒    x3- bcx3 = abx1    ⇒    x3(1- bc) = abx1

x
x

bc
ab

11

3` =
−

SIGNAL FLOW GRAPH REDUCTION

The signal flow graph of a system can be reduced either by using the rules of a signal flow graph 
algebra or by using Mason’s gain formula. 

For signal flow graph reduction using the rules of signal flow graph, write equations at every node  
and then rearrange these equations to get the ratio of output and input (transfer function).

The signal flow graph reduction by above method will be time consuming and tedious. S.J.Mason 
has developed a simple procedure to determine the transfer function of the system represented as a signal 
flow graph. He has developed a formula called by his name mason’s gain formula which can be directly 
used to find the transfer function of the system.

MASON’S GAIN FORMULA

The Mason’s gain formula is used to determine the transfer function of the system from the signal 
flow graph of the system.

Let,   R(s) = Input to the system

         C(s) = Output of the system

Now,	 Transfer function of the system, ( ) ( )
( )T s R s
C s= 		            .....(1.34)

Mason’s gain formula states the overall gain of the system [transfer function] as follows,

,Overall gain T P1
k

k kT
T= / 	 				              .....(1.35)
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where,	 T	 =    T(s) = Transfer function of the system

	 PK	 =	 Forward path gain of Kth forward path

	 K	 =	 Number of forward paths in the signal flow graph

	 ∆	 =	 1 − (Sum of individual loop gains)
Sum of gain products of all possible
combinations of two non touching loops

+
−

e o

Sum of gain products of all possible
combinations of three non touching loops

-
-

e o

			      + ..............................
	 ∆K	 =	 ∆ for that part of the graph which is not touching Kth forward path

CONSTRUCTING SIGNAL FLOW GRAPH FOR CONTROL SYSTEMS

A control system can be represented diagrammatically by signal flow graph. The differential equations 
governing the system are used to construct the signal flow graph. The following procedure can be used to 
construct the signal flow graph of a system. 

1.	 Take Laplace transform of the differential equations governing the system in order to  convert  
	            them to algebraic equations in s-domain.

2.	 The constants and variables of the s-domain equations are identified.
3.	 From the working knowledge of the system, the variables are identified as input, output and   

		  intermediate variables. 
4.	 For each variable a node is assigned in signal flow graph and constants are assigned as the  

		  gain or transmittance of the branches connecting the nodes. 
5.	 For each equation a signal flow graph is drawn and then they are interconnected to give  

		  overall signal flow graph of the system.

PROCEDURE FOR CONVERTING BLOCK DIAGRAM TO SIGNAL FLOW GRAPH

The signal flow graph and block diagram of a system provides the same information but there is 
no standard procedure for reducing the block diagram to find the transfer function of the system. Also the 
block diagram reduction technique will be tedious and it is difficult to choose the rule to be applied for 
simplification. Hence it will be easier if the block diagram is converted to signal flow graph and Mason’s 
gain formula is applied to find the transfer function. The following procedure can be used to convert block 
diagram to signal flow graph.

1.	 Assume nodes at input, output, at every summing point, at every branch point and in between 
cascaded blocks.

2.	 Draw the nodes separately as small circles and number the circles in the order 1, 2, 3, 4, ..... etc.
3.	 From the block diagram find the gain between each node in the main forward path and connect 

all the corresponding circles by straight line and mark the gain between the nodes.
4.	 Draw the feed forward paths between various nodes and mark the gain of feed forward path 

along with sign.
5.	 Draw the feedback paths between various nodes and mark the gain of feedback paths along 

with sign.
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EXAMPLE 1.24

Construct a signal flow graph for armature controlled dc motor.

SOLUTION

The differential equations governing the armature controlled dc motor are (refer  section 1.3.1)

v i R L
dt
di

e ; i ; ; ; /T K T J
dt
d B e K d dta a a a

a
b f a b b

ω ω ω ω θ= + + = = + = =  

On taking Laplace transform of  above equations we get,

Va(s) = Ia(s) Ra + La s Ia(s) + Eb(s) 			          .....(1)

T(s)  =  K
t
I
a
(s)						            .....(2)

T(s)  = J s ω(s) + B ω(s)					            .....(3)

Eb(s) = Kb ω(s) 						             .....(4)

ω(s)  = s θ (s)						          .....(5)

The input and output variables of armature controlled dc motor are armature voltage  Va(s) and angular 
displacement θ(s) respectively. The variables Ia(s), T(s), Eb(s) and ω(s) are intermediate variables.

The equations (1) to (5) are rearranged & individual signal flow graph are shown in fig 1 to fig 5.

V
a
(s) - E

b
(s) = I

a
(s) [R

a
 + s L

a
]

( ) ( ) ( )I s
R sL

V s E s1
a

a a
a b` =

+
−6 @

T(s) = K
t
I
a
(s)

T(s) = w(s) [Js + B]

( ) ( )s
Js B

T s1` ω =
+

E
b
(s) = K

b
 ω(s)

w(s) = sq(s)

( ) ( )s
s

s1` θ ω=

The overall signal flow graph of armature controlled dc motor is obtained by interconnecting the individual signal 

flow graphs shown in fig 1 to fig 5. The overall signal flow graph is shown in fig 6.

				    Fig 6 : Signal flow graph of armature controlled dc motor.
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R(s) 1 G1 G2 G3 G4 G5

2 3 4 5 6 7 81

1 C(s)

Fig 2 : Forward path-1.

R(s) 1

2 3 4 5 6 7 8

G4 G5 1 C(s)

G6 Fig 3 : Forward path-2.

R(s) G1 G2 G3 G4 G5

�H2

�H1

G6

�H3

1

2 3 4 5 6 7 81

Fig 1

EXAMPLE 1.25

Find the overall transfer function of the system whose signal flow graph is shown in fig 1.

SOLUTION

I.  Forward Path Gains

There are two forward paths.   ∴ K = 2

Let forward path gains be P
1
 and P2.

Gain of forward path-1,   P1 =  G1  G2 G3 G4 G5 

Gain of forward path-2,   P2 =  G4G5G6

II.  Individual Loop Gain

There are three individual loops. Let individual loop gains be P
11

, P
21

 and P
31

.

Loop gain of individual loop-1,   P
11

  = - G
2
H

1
 

Loop gain of individual loop-2,   P
21

  = - G
2
G

3
H

2
 

Loop gain of individual loop-3,   P
31

  = - G
5
H

3

III.  Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops. Let the gain products of two non touching loops be P
12

 and P
22

.

P P P ( G H )( G H ) G G H HGain product of first combination

of two non touching loops
12 11 31 2 1 5 3 2 5 1 3= = − − =4

P P P ( G G H )( G H ) G G G H HGain product of second combination

of two non touching loops
22 21 31 2 3 2 5 3 2 3 5 2 3= = − − =4

3 4
G2

�H1

Fig 4 : Loop-1.

�H2

G2 G3

3 5
4

Fig 5 : Loop-2.

G5

�H3

6 7

Fig 6 : Loop-3.

3 4
G2

�H1

6 7
G5

�H3

Fig 7 : First combination of 2 non-touching loops.
3 4 5

G2
G3

�H2 G5
6 7

�H3

Fig 8 : Second combination of 2 non-touching loops.
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G1G2

G4
G8

G6

�H1

G3 G5

G7

�H2

1R(s) 1 C(s)

Fig 1

IV.  Calculation of ∆ and ∆
K

∆   =  1 - (P
11

 
+ P

21

 
+ P

31
) + (P

12

 
+ P

22
)

 
 
     =	1 - (-G

2
H

1
- G

2
G

3
H

2
 - G

5
H

3
) + (G

2
G

5
H

1
H

3 
+ G

2
G

3
G

5
H

2
H

3
)

     =	1 +  G
2
H

1
 + G

2
G

3
H

2

 
 + G

5
H

3
 + G

2
G

5
H

1
H

3
 + G

2
G

3
G

5
H

2
H

3

 

∆
1
 
 =	1, Since there is no part of graph which is not touching with first forward path.	

The part of the graph which is non touching with second forward path is shown in fig 9.

∆
2
 
=  1 - P

11
 = 1 - (-G

2
H

1
)  =  1 + G

2
H

1
 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

(P P ) ( )T P1 1 Number of forward paths is 2 and so K 2
K

1 1 2 2K KT
T

T
T T= = + =/

1 G H G G H G H G G H H G G G H H
G G G G G G G G (1 G H )

2 1 2 3 2 5 3 2 5 1 3 2 3 5 2 3

1 2 3 4 5 4 5 6 2 1=
+ + + + +

+ +

1 G H G G H G H G G H H G G G H H
G G G G G G G G G G G G H

2 1 2 3 2 5 3 2 5 1 3 2 3 5 2 3

1 2 3 4 5 4 5 6 2 4 5 6 1=
+ + + + +

+ +

1 G H G G H G H G G H H G G G H H
G G G [G G G /G G H ]

2 1 2 3 2 5 3 2 5 1 3 2 3 5 2 3

2 4 5 1 3 6 2 6 1=
+ + + + +

+ +

EXAMPLE 1.26

Find the overall gain of the system 
whose signal flow graph is shown in fig 1.

SOLUTION

Let us number the nodes as shown in fig 2.

I.  Forward Path Gains

There are six forward paths.  ∴ K = 6

Let the forward path gains be P
1
, P

2
, P

3
, P

4
, P

5
  and P

6
.

R(s) 1

2

G2

3 4

5 6

C(s)1

G6

G4

7 8

Fig 3 : Forward path-1.

3 4

R(s) 1

2 G3

G5

G7
5 6

C(s)1

7 8
Fig 4 : Forward path-2.

R(s) 1
G2

G1

G4
G8

G5

G3

�H2

G7

1 C(s)

�H1

3

G6

4

87

2 5

Fig 2

6

3 4
G2

�H1

Fig. 9.
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Gain of forward path-1, P
1
 = G

2
G

4
G

6
 

Gain of forward path-2, P
2
 = G

3
G

5
G

7
 

Gain of forward path-3, P
3
 = G

1
G

2
G

7
 

Gain of forward path-4, P
4
 = G

3
G

8
G

6
 

Gain of forward path-5, P
5
 = -G

1
G

3
G

7
G

8
H

1
 

Gain of forward path-6, P
6
 = -G

1
G

2
G

6
G

8
H

2

II.  Individual Loop Gain

There are three individual loops. 

Let individual loop gains be P
11

, P
21

 and P
31

.

Loop gain of individual loop-1,   P
11

 = -G
4
H

1
 

Loop gain of individual loop-2,   P
21

 = -G
5
H

2
 

Loop gain of individual loop-3,   P
31

 =   G
1
G

8
H

1
H

2
 

III.  Gain Products of Two Non-touching Loops

There is only one combination of two non-touching 
loops. Let gain product of two non-touching loops be P

12
.

P P P ( G H )( G H ) G G H HGain product of first combination

of two non touching loops
12 11 21 4 1 5 2 4 5 1 2

-
= = − − =4

IV.  Calculation of ∆ and ∆
K

∆  =	 1 - (P
11

 + P
21

 + P
31

) + P
12

  = 1 - (-G
4
H

1
 - G

5
H

2
 + G

1
G

8
H

1
H

2
) + G

4
G

5
H

1
H

2

     =	 1 + G
4
H

1
 + G

5
H

2
 - G

1
G

8
H

1
H

2
 + G

4
G

5
H

1
H

2
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5 6
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G1

G7

Fig 5 : Forward path-3
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Fig 6 : Forward path-4
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Fig 7 : Forward path-5
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Fig 8 : Forward path-6
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Fig 9 : Loop-1
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The part of the graph non-touching forward path - 1 is shown in fig 13.

	 ∴ ∆
1
 = 1 - (-G

5
H

2
) = 1 + G

5
H

2

The part of the graph non-touching forward path -2 is shown in fig 14.

	 ∴ ∆
2
 = 1 - (-G

4
H

1
) = 1 + G

4
H

1

There is no part of the graph which is non-touching with forward paths 3, 4, 5 and 6.

	 ∴ ∆
3
 = ∆

4
 = ∆

5
 = ∆

6
 = 1

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

( )T P1 Number of forward paths is six and so K 6
K

K KT
T= =c m/

1 (P P P P P P )
1 1 2 2 3 3 4 4 5 5 6 6T
T T T T T T= + + + + +

G G G (1 G H ) G G G (1 G H ) G G G G G G

G G G G H G G G G H

4 1 5 2 1 8 1 2 4 5 1 2

2 4 6 5 2 3 5 7 4 1 1 2 7 3 6 8

1 3 7 8 1 1 2 6 8 2=

+ + + + +
− −

1 G H G H G G H H G G H H+ + − +
	

EXAMPLE 1.27

Find the overall gain C(s)/R(s) for the signal flow graph shown in fig 1.

SOLUTION

I.  Forward Path Gains

There are two forward paths. ∴ K = 2. Let the forward path gains be P
1
 and P

2
.

Gain of forward path-1,   P
1
 = G

1
G

2
G

3
G

4

Gain of forward path-2,   P
2
 = G

1
G

2
G

6

R(s) C(s)

21 3 54

G2G1 G4G3

Fig 2 : Forward path-1

R(s) C(s)

21 3 54

G2G1

G6Fig 3 : Forward path-2

R(s)

C(s)
21 3 54

G2G1

�H2

G4G3

�H1

G5

G6�H3

Fig 1

87

�H2

G5

Fig 13

4G4

�H1

3

Fig 14
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II.  Individual Loop Gain

There are five individual loops. Let the individual loop gains be p
11

, p
21

, p
31

, p
41

 and p
51

. 

Loop gain of individual loop-1,   P
11

 = - G
2
G

3
H

1
 

Loop gain of individual loop-2,   P
21

 = - H
2
G

2

Loop gain of individual loop-3,   P
31

 = - G
2
G

6
H

3
 

Loop gain of individual loop-4,   P
41

 = - G
2
G

3
G

4
H

3
 

Loop gain of individual loop-5,   P
51

 = G
5

III.  Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops.

Let the gain products of two non-touching loops be P
12

 and P
22 

.

of two non touching loops
P P P ( G H )(G ) G G HGain product of first combination

12 21 51 2 2 5 2 5 2= = − =4

of two non touching loops
P P P ( G G H )(G ) G G G HGain product of second combination

22 31 51 2 6 3 5 2 5 6 3= = − = −4

IV.  Calculation of ∆ and ∆
K

D = 1 - (P
11

 + P
21

 + P
31

 + P
41

 + P
51

) + (P
12

 + P
22

)

   = 1 - (-G
2
G

3
H

1
 - H

2
G

2
 - G

2
G

3
G

4
H

3
 + G

5
 - G

2
G

6
H

3
) + (- G

2
H

2
G

5
 - G

2
G

5
G

6
H

3
)	

Since there is no part of graph which is not touching forward path-1, ∆
1 
= 1. 

The part of graph which is not touching forward path-2 is shown in fig 11.

	 ∴ ∆
2 
= 1 - G

5
 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,	

(T P1 Number of forward path is 2 and so K 2)
K

K KT
T= =/

Fig 11
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P G G G G 1 G G (1 )P G G1 1
1 1 2 2 1 2 3 4 1 2 6 5#

T
T T

T
= + = + −6 6@ @  

1 G G H H G G G G H G G G H G H G G G G H
G G G G G G G G G G G

2 3 1 2 2 2 3 4 3 5 2 6 3 2 2 5 2 5 6 3

1 2 3 4 1 2 6 1 2 5 6=
+ + + − + − −

+ −  

EXAMPLE 1.28

Find the overall gain C(s)/R(s) for the signal flow graph shown in fig 1.

SOLUTION

I.  Forward Path Gains

There is only one forward path.   ∴ K = 1.

Let the forward path gain be P
1
.

Gain of forward path-1, P
1
 = G

1
G

2
G

3
G

4

II.  Individual Loop Gain

There are three individual loops. Let the loop gains be P
11

, P
21

, P
31

.

Loop gain of individual loop-1,   P
11

 = - G
3
G

4
H

1
 

Loop gain of individual loop-2,   P
21

 = - G
2
G

3
H

2

Loop gain of individual loop-3,   P
31

 = - G
1
G

2
G

3
G

4

III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.

IV.  Calculation of ∆ and ∆
K

D = 1 - (P
11

 + P
21

 + P
31

)

   = 1 - (-G
3
G

4
H

1
 - G

2
G

3
H

2
 - G

1
G

2
G

3
G

4
)

   = 1 + G
3
G

4
H

1
 + G

2
G

3
H

2
 + G

1
G

2
G

3
G

4

Since no part of the graph is non-touching with forward path-1, ∆
1
 = 1. 

G4

Fig 2 : Forward path-1
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�H2

G3
G2

3 4 5

Fig 4 : loop-2
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H1

G2

2 3 3 4

H2

4 5

H3

G3
G4

4 5

G6

H2 H3

3

Fig 4 : loop-1 Fig 5 : loop-2 Fig 6 : loop-3 Fig 7 : loop-4

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

R(s)
C(s) 1 P 1 P ( )T Number of forward path is1and so K 1

K
K K 1 1T
T

T
T == = =/

    
1 G G H G G H G G G G

G G G G

3 4 1 2 3 2 1 2 3 4

1 2 3 4=
+ + +

	

EXAMPLE 1.29

The signal flow graph for a feedback control system is shown in fig 1. Determine the closed loop transfer function 

 C(s)/R(s).

SOLUTION

I.  Forward Path Gains

There are two forward paths.   ∴  K = 2.
Let forward path gains be P

1
 and P

2
.

Gain of forward path-1,   P
1
 = G

1
G

2
G

3
G

4
G

5

Gain of forward path-2,   P
2
 = G

1
G

2
G

6
G

5

II.  Individual Loop Gain

There are four individual loops. Let individual loop gains be P
11

, P
21

, P
31

 and P
41

.

Loop gain of individual loop-1,   P
11

 =  G
2
H

1
 

Loop gain of individual loop-2,   P
21

 =  G
3
H

2

Loop gain of individual loop-3,   P
31

 =  G
4
H

3
 

Loop gain of individual loop-4,   P
41

 =  G
6
H

2
H

3
 

III.  Gain Products of Two Non-touching Loops
There is only one combination of two non-touching loops. Let the 

gain products of two non-touching loops be P
12

.

H1

G5

Fig 1
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G1 G4G3
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Fig 2 : Forward path-1
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Fig 3 : Forward path-2
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Fig 8 : First combination of
two non touching loops
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�H
Fig 3

G2
R(s) C(s)

1 2 3 4 5 6

�G3

G1
1 1 1

Fig 1

+-�+ G1 G2
+-+

�

G3

H

R(s) C(s)

of two non touching loops-
Gain product of first combination P (G H )(G H )12 2 1 4 3=4

                                                              = G
2
G

4
H

1
H

3

IV.  Calculation of ∆ and ∆
K

D = 1 - (P
11

 + P
21

 + P
31

 + P
41

) + P
12

 = 1 - (G
2
H

1
 + G

3
H

2
 + G

4
H

3
 + G

6
H

2
H

3
) + G

2
G

4
H

1
H

3

 = 1 - G
2
H

1
 - G

3
H

2
 - G

4
H

3
 - G

6
H

2
H

3
 + G

2
G

4
H

1
H

3

Since there is no part of graph which is non-touching with forward path-1 and 2, ∆
1
 = ∆

2
 = 1 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

T 1 P 1 (P P ) ( )Number of forward paths is two and so K 2
K

K K 1 1 2 2T
T

T
T T == = +/

   
1 G H G H G H G H H G G H H

G G G G G G G G G

2 1 3 2 4 3 6 2 3 2 4 1 3

1 2 3 4 5 1 2 5 6=
− − − − +

+
	

EXAMPLE 1.30

Convert the given block diagram to signal flow graph and determine C(s)/R(s).

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

The signal flow graph of the above system is shown in fig 3.

I.  Forward Path Gains

There are two forward paths.  ∴ K = 2

Let the forward path gains be P
1
 and P

2
.

1

Fig 2

+-�+ G1 G2
+-+

�

G3

H

R(s) C(s)

2
3 4 5 6
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Fig 2

+-�+ G1 G2

G4

+-+�R(s) C(s)
+-�+ +-�+ G3

H1

1 2 3 4 5 6 7 8 9

10H2

Gain of forward path-1,   P
1
= G

1
G

2

Gain of forward path-2,   P
2
= -G

3

II.  Individual Loop Gain

There is only one individual loop. Let the individual loop gain be P
11

.

Loop gain of individual loop-l, P
11 

= -G
1
H.

III.  Gain Products of Two Non-touching Loops

There are no combinations of non-touching loops.

IV.  Calculation of ∆ and ∆
K

∆ = 1 − [P
11

]  = 1 + G
1
H

Since there are no part of the graph which is non-touching with forward path-1 and 2,

∆
1 
= ∆

2 
= 1 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

1 P 1 P P
1 G H

G G G
T

K
K K 1 1 2 2

1

1 2 3
T

T
T

T T= = + =
+
−

6 @/ 	

EXAMPLE 1.31

Convert the block diagram to signal flow graph and determine the transfer function using Mason’s gain formula.

SOLUTION

The nodes are assigned at input, ouput, at every summing point & branch point as shown in fig 2.

Fig 4 : Forward path-1

G2
R(s) C(s)

1 2 3 4 5 6

G111 1

Fig 5 : Forward path-2

�G3
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Fig 1
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R(s) C(s)

+-�+ +-�+ G3

H1

H2

+
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R(s) C(s)

1

1 G11 1

G4

1 1

8 9765432

Fig 5 : Forward path-2
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1

1 G11 1 G2
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10

1

�H2

�1

Fig 3

The signal flow graph for the above block diagram is shown in fig 3.

I.  Forward Path Gains

There are two forward paths.    ∴  K=2.
Let the gain of the forward paths be P

1
 and P

2
.

Gain of forward path-1,   P
1
= G

1
G

2
G

3

Gain of forward path-2,   P
2
= G

1
G

4

II.  Individual Loop Gain

There are five individual loops. Let the individual loop gain be P
11

, P
21

, P
31

, P
41

 and P
51

.

Loop gain of individual loop-1,   P
11

 = - G
1
G

2
G

3

Loop gain of individual loop-2,   P
21 

 = - G
2
G

1
H

1

Loop gain of individual loop-3,   P
31

 
 
= - G

2
G

3
H

2

Loop gain of individual loop-4,   P
41 

 = - G
1
G

4

Loop gain of individual loop-5,   P
51 

 = - G
4
H

2

1
G4

1

87654

10

1

�H2

Fig 10 : loop-5.
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III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.,.

IV.  Calculation of ∆ and ∆
K

∆ = 1- [ P
11

 + P
21

 + P
31

 + P
41

 + P
51

]  = 1 + G
1
G

2
G

3 
+ G

1
G

2
H

1 
+ G

2
G

3
H

2 
+ G

1
G

4 
+ G

4
H

2

Since no part of graph is non touching with forward paths-1 and  2,   ∆
1 
= ∆

2 
= 1.

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

P 1 P PT 1

k
K K 1 1 2 2T
T

T
T T= = +6 @/

   
1 G G G G G H G G H G G G H

G G G G G

1 2 3 1 2 1 2 3 2 1 4 4 2

1 2 3 1 4=
+ + + + +

+
	

EXAMPLE 1.32

Convert the block diagram to signal flow graph and determine the transfer function using Mason’s gain formula.

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

The signal flow graph for the above block diagram is shown in fig 3.

Forward Path Gains

There are two forward path,   ∴ K=2.

Let the forward path gains be P
1
 and P

2
.

Fig 3

G2
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Gain of forward path-1,   P
1
= G

1
G

2
G

3

Gain of forward path-2,   P
2
=G

4

II.  Individual Loop Gain

There are three individual loops with gains P
11

,P
21

 and P
31

.

Gain of individual loop-1,   P
11 

=    G
1
G

2
H

1

Gain of individual loop-2,   P
21 

=  − G
2
G

3
H

2

Gain of individual loop-3,   P
31 

=  − G
2
H

1

III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two-non touching loops, three non-touching loops, etc.,.

IV.  Calculation of ∆ and ∆
K

∆  =  1 − [ P
11

 + P
21

 + P
31

 ]  =  1  − G
1
G

2
H

1
 + G

2
G

3
H

2
 + G

2
H

1
 

Since no part of graph touches forward path-1, ∆
1
  = 1. 

The part of graph non touching forward path-2 is shown in fig 9.

∴ ∆
2 
 =  1 − [G

1
G

2
H

1
 − G

2
G

3
H

2
 − G

2
H

1
]

	
 
   =  1  − G

1
G

2
H

1 
+ G

2
G

3
H

2
 + G

2
H

1

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

1 P 1 P PT (Number of forward paths is 2 and so K 2)
K

K K 1 1 2 2T
T

T
T T= = + =6 @/

G G G G (1 G G H G G H G H1
1 2 3 4 1 2 1 2 3 2 2 1T

= + − + + )6 @

G G G G G G G H G G G H G G H1
1 2 3 4 1 2 4 1 2 3 4 2 2 4 1T

= + − + +6 @

1 G G H G G H G H
G G G G G G G H G G G H G G H

1 2 1 2 3 2 2 1

1 2 3 4 1 2 4 1 2 3 4 2 2 4 1=
− + +

+ − + +

Fig 4 : Forward path-1.
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H1-G4 Fig 3

G3
G1

1

1 2 3 4 5 6

1

7

-G2

11

8

-H2

EXAMPLE  1.33

Draw a signal flow graph and evaluate the closed loop transfer function of a system whose block diagram is 
shown in fig 1.

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

The signal flow graph for the block diagram of fig 2, is shown in fig 3.

I.  Forward Path Gains

There are four forward paths,  ∴ K = 4

Let the forward path gains be P
1
, P

2
, P

3
 and P

4
.

+-�+ G1 G3
+-+

�

G2

R(s) C(s)

H2
+-�+

G4

H1

Fig 1
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R C
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H1

Fig 2
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Fig 4 : Forward path-1.
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Gain of forward path-1,   P
1
 =    G

1
G

3

Gain of forward path-2,   P
2
 =  -G

1
G

2

Gain of forward path-3,   P
3
 =   G

1
G

3
G

4
H

2

Gain of forward path-4,   P
4
 = -G

1
G

2
G

4
H

2

II.  Individual Loop Gain
There are two individual loops, let individual loop gains be P

11
 and P

21
.

Loop gain of individual loop-1,   P
11

 = − G
1
G

3
H

1
H

2
 

Loop gain of individual loop-2,   P
21

 = G
1
G

2
H

1
H

2

III.  Gain Products of Two Non-touching Loops
There are no possible combinations of two non-touching loops, three non-touching loops, etc.,.

IV.  Calculation of ∆ and ∆
K

∆ = 1−  [ sum of individual loop gain ] = 1 −  (P
11

+ P
21

)

			      
 
= 1− [− G

1
G

3
H

1
H

2
 + G

1
G

2
H

1
H

2
]  =  1 + G

1
G

3
H

1
H

2 
−  G

1
G

2
H

1
H

2

Since no part of graph is non touching with the forward paths,   ∆
1 
= ∆

2 
= ∆

3 
= ∆

4 
= 1. 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

P
P P P P

(Number of forward paths is 4 and so K 4)T 1

K
K K

1 2 3 4
T

T
T

== =
+ + +/

1 G G H H G G H H
G G G G G G G H G G G H

1 3 1 2 1 2 1 2

1 3 1 2 1 3 4 2 1 2 4 2=
+ −

− + −

1 G H H (G G )
G (G G ) G G H (G G )

1 G H H (G G )
G (G G )( G H )1

1 1 2 3 2

1 3 2 1 4 2 3 2

1 1 2 3 2

1 3 2 4 2=
+ −
− + −

=
+ −

− +

1.9  AUTOMATIC CONTROL SYSTEM

	 The basic block diagram of an automatic control system are Error detector, Amplifier and Controller, 
Actuator (Power actuator), Plant and Sensor or Feedback system. The block diagram of an automatic control 
system is shown in fig 1.30.

Reference
input

+-+
–(Input

signal)

Error detector

Error signal

Amplifier and
Controller

Control signal

Actuator Plant
Output

Sensor or
Feedback systemFeedback signal

Automatic controller

Fig 1.30: Block diagram of automatic control system.
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3 4 5 6

�G2

1

8

�H2

Fig 9 : loop-2
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The plant is the open loop system whose output is automatically controlled by closed loop system. 
The combined unit of error detector, amplifier and controller is called automatic controller, because 
without this unit the system becomes open loop system.

In automatic control systems the reference input will be an input signal proportional to desired  
output. The feedback signal is a signal proportional to current output of the system. The error detector 
compares the reference input and feedback signal and if there is a difference it produces an error signal. 
An amplifier can be used to amplify the error signal and the controller modifies the error signal for  
better control action.

The actuator amplifies the controller output and converts to the required form of energy 
that is acceptable for the plant. Depending on the input to the plant, the output will change. This 
process continues as long as there is a difference between reference input and feedback signal. If  
the difference is zero, then there is no error signal and the output settles at the desired value.

The function of error detector is to compare the reference input with feedback signal, to produce 
an error signal if there is a difference between  them. The error signal is used to correct the output if there 
is a deviation from the desired value. Examples of error detector are potentiometer, LVDT (Linearly 
Variable Differential Transformer),  Synchros, etc.,.

Generally, the error signal will be a weak signal and so it has to be amplified and then modified for 
better control action. In most of the system the controller itself amplifies the error signal and integrates 
or differentiates to produce a control signal (i.e., modified error signal). The different types of controllers 
are P,PI, PD and PID controllers.

The controllers employed may be electrical, electronic, hydraulic or pneumatic depending on the 
nature of error signal. If the error signal is electrical then the controller may be electrical or electronic and 
they are designed using R-C circuit or Operational amplifiers. If the error signal is mechanical then the 
controller may be hydraulic or pneumatic and they are designed using hydraulic servomotors or pneumatic 
flapper valves.

The actuator is a power amplifying device that produces the input to the plant according to the 
control signal. The actuator may be a pneumatic motor/valve, hydraulic motor or electric motor. Examples 
of electric motors employed as actuator are DC servomotor, AC servomotor and stepper motor.

The feedback system samples the output to produce a feedback signal which is proportional to current 
output. Also the feedback system should convert the output variable into another  suitable variable such as 
displacement, pressure or voltage, so that it can be used to compare with the reference input. Usually the 
feedback system consists of sensor and associated circuit/devices. Transducers, Tachogenerators, etc., are 
used as feedback systems.

Many transducers like thermocouples, photo electric cells produce dc voltages proportional to the 
quantity to be measured. If this signal is to actuate an ac system, then this dc signal has to be converted to 
an ac signal before it is applied to ac systems. The device which transfers the information available in a  
dc signal to ac signal is called a modulator and the convertion process is called modulation. In modulation 
the control signal is superimposed on a high frequency carrier. Certain control system components like  
ac tachogenerators produces a modulated output signal. Hence the information is obtained by demodulation. 
The device which is used to extract the information available on a high frequency carrier is called 
demodulator and the process is called demodulation. In demodulation the control signal is extracted 
from the carrier signal.
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Sometimes power transmitters like transformers, levers and gear trains are employed in control 
system. The function of transformer is to alter the voltage and current level of the power being transmitted. 
The fuction of lever is to alter the force and that of gear train is to alter the torque of the power being 
transmitted.
1.9.1  DC SERVO SYSTEM

Servo Systems are automatic position control systems. In the servo systems if the nature of control 
signals is DC then the servo system is called DC servo system. In servo systems, the desired position 
is  maintained by servo motors, and so in DC servo systems, DC servo motor is employed for position 
control.

The block diagram of DC servo system is shown in Fig. 1.31. The DC servo system consists of DC 
servo motor, DC potentiometer as error detector, DC error amplifier and DC power amplifier.  The desired 
position is set through DC potentiometer and compared with actual position maintained by the DC servo 
motor. The DC amplifiers will amplify the error signals to appropriate level and apply to DC servo motor 
for error correction.

                                               Fig. 1.31: Block diagram of DC Servo system

1.9.2  AC SERVO SYSTEM

Servo Systems are automatic position control systems. In the servo systems if the nature of control 
signals is AC then the servo system is called AC servo system. In servo systems, the desired position 
is maintained by servo motors, and so in AC servo systems, AC servo motor is employed for position 
control.

The block diagram of AC servo system is shown in Fig. 1.32. The AC servo system consists of AC 
servo motor, AC potentiometer/Synchro as error detector, AC error amplifier and AC power amplifier.  The 
desired position is set through AC potentiometer/Synchro and compared with actual position maintained 
by the AC servo motor. The AC amplifiers will amplify the error signals to appropriate level and apply to 
AC servo motor for error correction.

                                  Fig. 1.32: Block diagram of AC Servo system
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1.10  COMPONENTS OF CONTROL SYSTEM

1.10.1  POTENTIOMETER

A potentiometer is a device that can be used to convert a linear or angular displacement into a  
voltage. A potentiometer is a variable resistance whose value varies according to the angular/linear 
displacement of the wiper contact (movable contact).

The resistance element can be constructed by winding resistance wire on a former or by depositing 
a conducting material on a plastic base. The potentiometer has an input shaft to which a wiper is attached. 
The displacement is applied to the input shaft. When the shaft moves, the wiper contact slides over the 
resistance material.

The potentiometer is excited by a dc or ac voltage. The output voltage is measured at wiper contact 
with respect to reference. The linear & angular displacement potentiometer are shown in fig 1.33.

LINEAR DISPLACEMENT POTENTIOMETER

	 y	 =  Displacement of the wiper contact from reference (y = 0).

	 ymax	 =  Maximum displacement of wiper contact.

	 E	 =  Excitation voltage of potentiometer.

	 eo	 =  Output voltage.

	 If y = 0,	 then eo= 0,    and     if   y = ymax, 	 then eo= E

∴ For a displacement y,   

Output  voltage,  e y
E y K y
max

o p= = 	 .....(1.36)

where, K y
E
max

p =  = Sensitivity of potentiometer in Volts/mm

ANGULAR DISPLACEMENT POTENTIOMETER

	 θ	 =  Angular displacement of wiper arm from reference (θ = 0).

	 θmax	 =  Maximum displacement of wiper arm.

	 E	 =  Excitation voltage of potentiometer. 

Fig 1.33 : Potentiometers.
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Fig 1.33 : Angular displacement potentiometer.
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	 eo	 =  Output voltage.
	 If  θ = 0,	 then e0 = 0       and 	 if  θ = θmax,	 then eo = E

∴ For a displacement θ, 
Output  voltage,   e E K

max
o pθ

θ θ= =                                                                    	                                                  	
			   .....(1.37)

where, K E
max

p θ=  = Sensitivity of potentiometer in Volts/deg

Note : Kp is also called gain or gain constant of potentiometer.

APPLICATIONS OF POTENTIOMETERS

Potentiometers can be used either to convert a mechanical motion to proportional voltage or as 
an error signal. A single potentiometer excited by dc or ac voltage is used to produce an output voltage 
proportional to displacement of the input shaft.

When potentiometers are used as error detector, two identical potentiometers are required as  
shown in fig 1.34. Both the potentiometer are excited by the same source and at same potential. Hence, 
if the wiper arm of both the potentiometers are in the same position then the voltage between two wiper 
arms is zero.

The position of one wiper arm is kept as reference input. The displacement to be compared is applied 
to the wiper arm of another potentiometer. Hence the output voltage which is measured between two wiper 
arms is proportional to the difference between the displacement of both the wiper arms.
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CHARACTERISTICS OF POTENTIOMETER

1.	 The ideal characteristics of a potentiometer is linear variation of resistance with displacement. 
This is best realised by having very large radius, more number of turns and high resistance 
elements.

2.	 The device which measures the output voltage of potentiometer should have high input 
impedance to avoid loading error. If necessary an isolation amplifier with high input impedance 
may be used.

3.	 When the wiper slides over resistance it makes simultaneous contact with adjacent turns to 
avoid discontinuity in output. Consequently the output is in the form of staircase steps. Hence 
we define a term called resolution which specifies the output voltage per step. The resolution 
of a potentiometer is defined as the ratio of number of steps to total number of turns. The 
resolution of potentiometer is an important factor in the determination of minimum value of 
output voltage.

SPECIFICATIONS OF POTENTIOMETER

The specifications of potentiometers used in control system are the following,
1.	 Turns per unit length is in the range of 6 to 30 turns per mm.
2.	 Torque required for wiper movement is in the range of 1×10−3 Kg-m  to 1×10−2 Kg-m.
3.	 The total resistance of the potentiometer is in the range of 25 ohms to 1 mega-ohms.
4.	 Power rating is 1 to 10 watts.
5.	 Heat dissipation is 1/2 watts per cm2.
6.	 Excitation voltage is 4 to 20 volts.
7.	 Voltage gradient is 0.01 to 0.05 volt per degree.

AC POTENTIOMETER

In potentiometers excited by ac supply the output will be a modulated voltage. The carrier is the 
excitation voltage. The envelope of the carrier is modulated by the movement of the wiper arm. Hence 
the information is available in the envelope of the carrier. The ac potentiometer will have inductive effect 
in addition to resistance which leads to difficulty in balancing the potentiometers used as error detectors.
1.10.2  SERVOMOTOR

The motors that are used in automatic control systems are called Servomotors. When the objective of 
the system is to control the position of an object then the system is called Servomechanism. The servomotors 
are used to convert an electrical signal (control voltage) applied to them into an angular displacement of 
the shaft. They can either operate in a continuous duty or step duty depending on construction.

There are variety of servomotors available for control system applications. The suitability of a 
motor for a particular application depends on the characteristics of the system, the purpose of the system 
and its operating conditions. 

In general, a servomotor should have the following feature.
1.	 Linear relationship between the speed and electric control signal. 
2.	 Steady state stability.
3.	 Wide range of speed control.
4.	 Linearity of mechanical characteristics throughout the entire speed range.
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5.	 Low mechanical and electrical inertia.
6.	 Fast response.

Depending on the supply required to run the motor, they are broadly classified as DC servomotors 
and AC servomotors. The DC motors are expensive than AC motors. But, the DC servomotors have linear 
characteristics and so it is easier to control.

The advantages of DC servomotors are the following :
1.	 Higher output than from a 50 Hz motor of same size.
2.	 Linearity of characteristics are achieved easily.
3.	 Easier speed control from zero speed to full speed in both directions.
4.	 High torque to inertia ratio that gives them quick response to control signals.
5.	 DC servomotors have light weight, low inertia and low inductance armature that can respond 

quickly to commands for a change in position or speed.
6.	 Low electrical time constants(0.1 to 6ms) and low mechanical time constants(2.3 to 40ms).
7.	 DC motors are capable of delivering over 3 times their rated torque for a short time but AC 

motors will start at 2 to 2.5 times their rated torque.
The DC servomotors are generally used for large power applications such as in machine tools and robotics.
Advantages of AC motors are lower cost, higher efficiency and less maintenance since there is no 

commutator and brushes. The disadvantage of AC motor is that the characteristics are quite non-linear 
and this motors are more difficult to control especially for positioning applications (servomechanisms).

The AC motor are best suited for low power applications such as instrument servo (eg. Control 
of pen in X-Y recorders) and computer related equipment (eg., Disk drives, Tape drives, Printers, etc.,).  
The three phase induction motors with pulse width modulated power amplifier are currently gaining 
popularity in high power control application.

1.10.3  DC SERVOMOTOR

DC servomotors are broadly classified as shown below.

		

↓ ↓

↓ ↓

DC  SERVOMOTORS

Sliding contact motors
with commutator and brushes.

Brushless or contactless motors
 with transistor commutator.

Permanent magnet motors
1. Cylindrical armature motors.
2. DISC armature motors.
3. Moving coil motors.	

 Electromagnetic fields motors
1.  Armature controlled motors.
2.  Field controlled motors.
3.  Series motor.
4.  Split field motor.
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PERMANENT MAGNET DC MOTORS

In this type of motors, the field winding is replaced by permanent magnets to produce the required 
magnetic field. Permanent magnet motor are economical for power ratings upto a few KW. The following 
are some of the advantages of permanent-magnet motors.

1.	 A simpler, more reliable motor because the field power supply is not required.
2.	 Higher efficiency due to the absence of field losses.
3.	 Field flux is less affected by temperature rise.
4.	 Less heating, making it possible to totally enclose the motor.
5.	 No possibility of over speeding due to loss of field.
6.	 A more linear torque Vs speed curve. 
7.	 Higher power output at the same dimensions and temperature limitations.

The disadvantages of permanent magnet motors are that the magnets deteriorate with time and 
demagnetised by large current transients. These drawbacks are eliminated by high grade magnetic materials 
such as ceramic magnets and rare earth magnets (samarium cobalt). But the cost of these materials are 
very high.

In permanent magnet motors, the armature is placed in rotor and permanent magnet poles are fixed 
to the stator. The rotor employs special type of constructions to reduce the weight and so the inertia of the 
rotating system. The special type of constructions are cylindrical 
armature with small diameter and longer axial length, disc armature 
and hollow armature (moving coil).
ELECTRO-MAGNETIC FIELD MOTORS

These motors are economical for higher power ratings, 
generally above 1KW. This type of servomotors are similar to 
conventional dc motors constructionally. But has the following 
special features.

1.	 The number of slots and commutator segments is 
large to improve commutation.

2.	 Compoles and compensating windings are provided 
to eliminate sparking.

3.	 The diameter to length ratio is kept low to reduce 
inertia.

4.	 Oversize shafts are employed to withstand the high 
torque stress.

5.	 Eddy currents are reduced by complete lamination 
of the magnetic circuit and by using low-loss steel.

In this type of motor, the torque and speed may be controlled 
by varying the armature current and/or the field current. Generally, 
one of these is varied to control the torque while the other is 
held constant. In armature controlled mode of operation,the field  
current is held constant and the armature current is varied to  
control the torque. In the field controlled mode, the armature 
current is maintained constant and field current is varied to control 
the torque.
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ARMATURE CONTROLLED DC SERVOMOTOR

It is a DC shunt motor designed to satisfy the requirement of a servomotor. The field is excited by a 
constant DC supply. If the field current is constant then speed is directly proportional to armature voltage 
and torque is directly proportional to armature current. Hence the torque and speed can be controlled by 
armature voltage. Reversible operation is possible by reversing the armature voltage.

In small motors, the armature voltage is controlled by a variable resistance. But in large motors 
in order to reduce power loss, armature voltage is controlled by thyristors. The steady-state operating 
characteristics of an armature controlled DC servomotor are illustrated in fig 1.35.

Note : For transfer function of armature controlled DC motor, refer section-1.3.1. 

FIELD CONTROLLED DC SERVOMOTORS

It is a DC shunt motor designed to satisfy the requirement of a servomotor. In this motor, the 
armature is supplied with a constant current or voltage. When armature voltage is constant the torque is 
directly  proportional to field flux. Since the field current is proportional to flux, the torque of the motor is 
controlled by controlling the field current. Reversible operation is possible by reversing the field current. 
The response of field controlled motor is however slowed by field inductance.

Note : For the transfer function of field controlled DC motor refer section-1.3.2.

1.10.4  AC SERVOMOTOR

An  Ac servomotor is basically a two-phase induction motor except for certain special design features. 
A two-phase servomotor differs in the following two ways from a normal induction motor.

1.	 The rotor of the servomotor is built with 
high resistance, so that its X/R (Inductive 
reactance/Resistance) ratio is small which 
results in linear speed-torque characteristics. 
(But conventional induction motors will 
have high value of X/R which results in 
high efficiency and non-linear speed-
torque characteristics). The speed-torque 
characteristics of normal induction motor  
(curve-a) and ac servomotor(curve-b) are 
shown in fig 1.36.

2.	 The excitation voltage applied to two stator 
windings should have a phase difference of 
90º.

CONSTRUCTION OF AC SERVOMOTOR

The ac servomotor is basically a two phase induction motor with some special design features. The 
stator consists of two pole-pairs (A-B and C-D) mounted on the inner periphery of the stator, such that 
their axes are at an angle of 90º in space. Each pole-pair carries a winding. One winding is called reference 
winding and the other is called control winding. The exciting current in the winding should have a phase 
displacement of 90º. The supply used to drive the motor is single phase and so a phase advancing capacitor 
is connected to one of the phase to produce a phase difference of 90º. The simple constructional features 
of ac servomotor is shown in fig 1.37.

Curve-a: Normal induction motor
Curve-b: AC servo motor
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Fig 1.36 : Speed-Torque characteristics of
induction motor and ac servomotor.
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The rotor construction is usually squirrel cage or drag-cup type. The squirrel cage rotor is made 
of laminations. The rotor bars are placed on the slots and  short circuited at both ends by end rings. The 
diameter of the rotor is kept small in order to reduce inertia and to obtain good accelerating characteristics.

	 The Drag-cup construction is employed for very low inertia applications. In this type of construction, 
the rotor will be in the form of hollow cylinder made of aluminium. The aluminium cylinder itself acts as 
short circuited rotor conductors, (Electrically both the types of rotors are identical).

WORKING PRINCIPLE OF AC SERVOMOTOR

Working of servomotor as ordinary induction motor

The stator windings are excited by voltages of equal rms magnitude and 90° phase difference. This 
results in exciting currents i1 and i2 that are phase displaced by 90° and have equal rms values. These 
currents give rise to a rotating magnetic field of constant magnitude. The direction of rotation depends  
on the phase relationship of the two currents (or voltages). The exciting currents shown in fig 1.37b  
produces a clockwise rotating magnetic field, which results in clockwise rotation of the rotor. (A phase 
shift of 180° in i1 will produce an anticlockwise rotating magnetic field, which results in anticlockwise 
rotation of rotor).

The rotating magnetic field sweeps over the rotor conductors. The rotor conductors experience a 
change in flux and so voltages are induced in rotor conductors. This voltage circulates current in the short 
circuited rotor conductors and the currents create rotor flux.

Due to the interaction of stator and rotor flux, a mechanical force (or torque) is developed on the 
rotor and so the rotor starts moving in the same direction as that of rotating magnetic field.

Working of ac servomotor in control systems

The symbolic representation of an ac servomotor as a control system component is shown in fig 1.38. 
The reference winding is excited by a constant voltage source with a frequency in the range 50 to 1000Hz. 
By using frequencies of 400 Hz or higher, the system can be made less susceptible to low frequency noise. 
Due to this feature, ac devices are extensively used in aircraft and missile control system in which the noise 
and disturbance often create problems.
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The control winding is excited by the modulated control signal and this voltage is of variable 
magnitude and polarity. The control signal of the servo loop (or the system) dictates the magnitude and 
polarity of this voltage.

Usually the control signals will be low frequency signals, in the range of 0 to 20Hz. For production 
of rotating magnetic field, the control-phase voltage must be of the same frequency as the reference-phase 
voltage and in addition the two voltages must be in time quadrature. Hence the control signal is modulated 
by a carrier whose frequency is same as that of reference voltage and then applied to control winding. The 
ac supply itself is used as carrier signal for modulation process. The 90° phase difference between the 
control-phase and reference-phase voltages is obtained by the insertion of a capacitor in reference winding.

Let,	 ec    =	  Control signal

	 ecar  =	  E cos ωct = Carrier signal

	 ecm  =	  Modulated control signal.

The waveforms of a typical control signal, carrier signal and modulated control signal are shown 
in fig 1.39. The type of modulation is amplitude modulation and so the information is available on the 
envelope of the modulated signal. In fig 1.39 it can be observed that the envelope of the modulated wave 
is identical to control signal.

The polarity of ec dictates the phase of ecm with respect to that of carrier. If ec is positive, then ecm 
and ecar have the same phase,otherwise they have 180º phase difference.

   cose E e tcm c c` ω= +               for ec > 0	

              ( )cosE e tc cω π= + +      for ec < 0	  .....(1.38)

This means that, a reversal in phase of ecm occurs whenever the signal ec crosses the zero-magnitude 
axis. This reversal in phase causes a reversal in the direction of rotation of the magnetic field and hence a 
reversal in the direction of rotation of the motor shaft.

Note:  The control signal is modulated in order to match the frequency to that of reference signal. 
In the modulated wave the information is stored in the envelope of ecm, but not in ecm. Hence, we should 
consider ec as the input and the envelope of ecm as the output of the modulator.  Therefore the transfer 
function of the modulator is equal to 1, because the envelope of ecm is identical to ec.
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Fig 1.38 : Symbolic representation of an ac servomotor.
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The speed-torque curves of a typical ac servomotor plotted for fixed reference phase voltage 
E cosωct and different values of constant input voltages ec ≤  E are shown in fig 1.40a. All these curves 
have negative slope. Note that the curve for ec= 0 goes through the origin, this means that when the 
control-phase voltage becomes zero, the motor develop a decelerating torque and so the motor stops. The 
curves show a large torque at zero speed. This is a requirement for a servomotor in order to provide rapid 
acceleration.

The speed-torque curves of ac servomotor are nonlinear except in the low speed region. In order 
to derive a transfer function for the motor,some linearizing approximations are necessary. A servomotor 

seldom operates at high speeds, therefore the linear portions of speed-torque curves can be extended 
out to the high speed region as shown in fig 1.40a, by use of dashed lines. But even with this approximation, 
the resultant curves are still not parallel to each other. This means that for constant speeds, except  
near-zero speed, the torque does not vary linearly with respect to input voltage ec. The curves in fig 1.40b 
illustrates this effect.
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TRANSFER FUNCTION OF AC SERVOMOTOR

Let,	 Tm	 =	 Torque developed by servomotor.

	 θ	 =	 Angular displacement of rotor.

	 ω	 =   dt
dθ  = Angular speed.

	 Tl	 =	 Torque required by the load.
	 J	 =	 Moment of inertia of load and the rotor.
	 B	 =	 Viscous-frictional coefficient of load and the rotor.
	 K1	 =	 Slope of control-phase voltage Vs Torque characteristic.
	 K2	 =	 Slope of speed-torque characteristic.

With reference to fig 1.40, we can say that for speeds near zero, all the curves are straight lines 
parallel to the characteristic at rated input voltage (ec= E) and are equally spaced for equal increments 
of the input voltage. Under this assumption, the torque developed by the motor is represented by 
equation (1.39) given below:

Torque developed by motor, T K e K dt
d

m c1 2
θ= − 	                        		  .....(1.39)

The rotating part of motor and the load can be modelled by the equation (1.40) given below:

Load torque, T J
dt
d B dt

d
2

2

l
θ θ= +                                  		  .....(1.40)

At equilibruim the motor torque is equal to load torque.

	 J
dt
d B dt

d K e K dt
d

2

2

c1 2` θ θ θ+ = − 			   .....(1.41)

On taking Laplace transform of equation (1.39) with zero initial conditions we get,

J s2q(s) + B sq(s) = K1 Ec(s) - K2 sq(s)

[J s2 + Bs + K2 s]q(s) = K1 Ec(s)
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+c m
		   .....(1.42)

where, K B K
K

m
2

1=
+

   =  Motor gain constant		              .....(1.43)

	                   B K
J

m
2

τ =
+

  =  Motor time constant		              		  .....(1.44)

The equation (1.42) is the transfer function of ac servomotor.

Note : The modulation process for running the ac servomotor is not necessary if the control signal 
in the system is an ac signal of frequency equal to that of the reference phase supply. The transfer function 
of motor given by equation (1.42) is applicable in these situations also.

L{q} = q(s)  ;  L
dt
d

n

nθ' 1 = sn q(s)

L{ec} = Ec(s)
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1.10.5  SYNCHROS

The term synchro is a generic name for a family of inductive devices which works on the principle 
of a rotating transformer (Induction motor). The trade names for synchros are Selsyn, Autosyn and Telesyn. 
Basically they are electro-mechanical devices or electromagnetic transducers which produces an output 
voltage depending upon angular position of the rotor.

A synchro system is formed by interconnection of the devices called the synchro transmitter and the 
synchro control transformer. They are also called Synchro pair. The synchro pair measures and compares 
two angular displacements and its output voltage is approximately linear with angular difference of the 
axis of both the shafts. They can be used in the following two ways,

1.	 To control the angular position of load from a remote place/long distance.
2.	 For automatic correction of changes due to disturbance in the angular position of the load.

SYNCHRO TRANSMITTER

Construction

The constructional features, electrical circuit and a schematic symbol of synchro transmitter are 
shown in fig 1.41. The two major parts of synchro transmitter are stator and rotor. The stator is identical to 
the stator of three phase alternator. It is made of laminated silicon steel and slotted on the inner periphery 
to accommodate a balanced three phase winding. The stator winding is concentric type with the axis of 
three coils 120º apart. The stator winding is star connected (Y-connection).

The rotor is of dumb bell construction with a single winding. The ends of rotor winding are terminated 
on two slip rings. A single phase ac excitation voltage is applied to rotor through slip rings.

Working principle

When the rotor is excited by ac voltage, the rotor current flows, and a magnetic field is produced. 
The rotor magnetic field induces an emf in the stator coils by transformer action. The effective voltage 
induced in any stator coil depends upon the angular position of the coil’s axis with respect to rotor axis.

Fig 1.41b : Schematic symbol of a synchro transmitter.
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Let,	 er	 =	 Instantaneous value of ac voltage applied to rotor.
	 eS1, eS2, eS3	 =	 Instantaneous value of emf induced in stator coils S1,S2, S3 with respect to 

neutral respectively. 
	 Er	 =	 Maximum value of rotor excitation voltage.
	 ω	 =	 Angular frequency of rotor excitation voltage.
	 Kt	 =	 Turns ratio of stator and rotor windings.
	 Kc	 =	 Coupling coefficient.
	 θ	 =	 Angular displacement of rotor with respect to reference.

Let, the instantaneous value of rotor excitation voltage, er = Er sin ωt		                    .....(1.45)

Let the rotor rotates in anticlockwise direction. When the rotor rotates by an angle,θ emfs are 
induced in stator coils. The frequency of induced emf is same as that of rotor frequency. The magnitude of 
induced emfs are proportional to the turns ratio and coupling coefficient. The turns ratio, Kt is a constant, 
but coupling coefficient, Kc is a function of rotor angular position.

	 ∴Induced emf in stator coil = KtKcEr sinωt       				    .....(1.46)

Let eS2 be reference vector. With reference to fig 1.41, when θ = 0, the flux linkage of coil S2 is 
maximum and when θ = 90º, the flux linkage of coil S2 is zero. Hence the flux linkage of coil S2 is function 
of cosθ (i.e., Kc= K1 cosθ for coil S2). The flux linkage of coil s3 will be maximum after a rotation of 120º 
in anticlockwise direction and that of S1 after a rotation of 240º.

 ∴ Coupling coefficient, Kc for coil-S2	  =  K1 cosθ

	 Coupling coefficient, Kc for coil-S3	  =  K1 cos(θ −120º)

	 Coupling coefficient, Kc for coil-S1	  =  K1 cos(θ −240º)

Fig 1.41c : Electrical circuit.

Fig 1.41 : Synchro transmitter.

Slip
rings

Rotor
winding

Stator
windings

AC
supply

R1

R2

S1

S2

S3

�

Slip
rings

Rotor
winding

Stator
windings

AC
supply

R1

R2

S1

S2

S3

�



1. 106 	 Control Systems Engineering

Hence the emfs of stator coils with respect to neutral can be expressed as follows.

	 eS2 = Kt K1cosθ Ersinωt = K Er cosθ sinωt				                      .....(1.47)

	 eS3 = Kt K1 cos(θ −120º) Ersinωt = K Er cos(θ −120º)sinωt     	                                .....(1.48)

	 eS1 =  Kt K1 cos(θ −240º) Ersinωt = K Er cos(θ −240º)sinωt  		                    .....(1.49)

With reference to fig 1.42 by kirchoff’s voltage law the coil-to-coil emf can be expressed as,

	 ( 240 )sin sine e e K E t3 o
S1S2 S1 S2 r θ ω= − = + 	 .....(1.50)

            ( 120 )sin sine e e K E t3 o
S2S3 S2 S3 r θ ω= − = +      	  .....(1.51) 

          sin sine e e K E t3S3S1 S3 S1 r θ ω= − = 	 .....(1.52)

		   
                    

                                    

                                      

                                          

                                          

                                          

                    

	                         

                                        			                         

           

                   

                   

When θ = 0, from equation 1.47 we can say that maximum emf is induced in coil S2. But from 
equation (1.52) it is observed that the coil-to-coil voltage eS3S1 is zero. This position of the rotor is defined 
as the electrical zero of the transmitter. The electrical zero position is used as reference for specifying the 
angular position of the rotor.

The input to the synchro transmitter is the angular position of its rotor shaft and the output is a set of 
three stator coil-to-coil voltages. By measuring and identifying the set of voltages at the stator terminals, it is 
possible to identify the angular position of the rotor. [A device called synchro/digital converter is available 
to measure the stator voltages and to calculate the angular measure and then display the direction and angle 
of rotation of the rotor].

Fig 1.42 : Induced emf in
stator coils.
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SYNCHRO CONTROL TRANSFORMER
Construction

The constructional features of synchro control transformer is similar to that of synchro transmitter, 
except the shape of rotor. The rotor of the control transformer is made cylindrical so that the air gap is 
practically uniform. This feature of the control transformer minimizes the changes in the rotor impedance 
with the rotation of the shaft. The constructional features, electrical circuit and a schematic symbol of 
control transformer are shown in fig 1.43.

	   
		          
                           			               

Working

The generated emf of the synchro transmitter is applied as input to the stator coils of control 
transformer. The rotor shaft is connected to the load whose position has to be maintained at the desired 
value. Depending on the current position of the rotor and the applied emf on the stator, an emf is induced 
on the rotor winding. This emf can be measured and used to drive a motor so that the position of the load 
is corrected.
SYNCHRO AS ERROR DETECTOR

The synchro error detector is formed by interconnection of a synchro transmitter and synchro control 
transformer. In this arrangement, the stator leads of the transmitter are directly connected to the stator leads 
of the control transformer. The angular position of the transmitter-rotor is the reference input (or the input 
corresponding to the desired output) and the rotor is excited by ac supply with frequency, ω.

Stator

Rotor

θ

R1

R2

S1

S2

S3

Shaft input θ

Fig 1.43a : Constructional features. Fig 1.43b : Schematic symbol of a synchro 
control transformer.

Fig 1.43c : Electrical circuit.

Fig 1.43 : Synchro control transformer.
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Fig 1.44 : Servo system using synchro error detector.
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The control transformer rotor is connected to a servo motor and to the shaft of the load, whose 
position is the desired output. The induced emf (error voltage) available across the rotor slip rings of 
control transformer is measured by a signal conditioning circuit. The output of signal conditioning circuit 
is used to drive motor so that desired load position is achieved.  A simple schematic diagram of synchros 
as error detector is shown in fig 1.44.

Initially the shafts of transmitter and control transformer are assumed to be in aligned position. In 
this position the transmitter rotor will be in electrical zero position and the control transformer rotor will 
be in null position and the angular separation of both rotor axis in aligned position is 90°. The null position 
of a control transformer in a servo system is defined as position of its rotor for which the output voltage 
on the rotor winding is zero with the transmitter in its electrical zero position.

When, the transmitter rotor is excited, the rotor flux is set-up and emfs are induced in stator coils. 
These induced emfs are impressed on the stator coils of control transformer. The currents in the stator 
coils set up flux in control transformer. Due to the similarity in the magnetic construction, the flux patterns 
produced in the two synchros will be the same if all losses are neglected. The flux patterns are shown in 
fig 1.45.

Let the rotor of the transmitter rotate through an angle θ from its electrical zero position. Now the rotor 
of the control transformer will rotate in the same direction through an angle α from its null position. 	

Fig 1.45 : Rotor positions and flux patterns.
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	   The net angular separation of the two rotors is equal to (90 −θ + α) and the voltage induced in 
the control transformer rotor is proportional to the cosine of this angle. The error voltage is amplified and 
used to drive a servo motor. The motor drives the shaft of the synchro control transformer until it comes 
to a newaligned position at which the error voltage is zero.

Voltage across slip rings of control
transformer (modulated error voltage)

cos sine K E t90m r
` θ α ω= − +l ^ h4                           
                                                              K cos sinE t90r θ α ω= − −l ^^ hh

                                                              sin sinK E tr θ α ω= −l ^ h
                                                              where Kl is a propotional constant
Let,   ( )tφ θ α= −                                                                                                                       .....(1.53)
For small values of ( )tφ , ( ) ( ) ( )sin sin t t.θ α φ φ− =

                                              ( )sine K E t tm r` φ ω= l                                                                   .....(1.54)
From the equation (1.53) we can say that the output voltage of the synchro error detector is a 

modulated signal with carrier frequency, ω (which is same as supply frequency of the transmitter rotor). The 
magnitude of the modulated carrier wave is proportional to φ(t) and the phase reversals of the modulated 
wave depend on the sign of φ(t). The signal conditioning circuit demodulates the voltage available across 
slip rings and develops a demodulated and amplified error voltage to drive the motor.
	 The demodulated error voltage, e = Ksφ(t)		            .....(1.55)
	                                               where Ks = Sensitivity of synchro error detector in Volts/deg.

On taking Laplace transform of equation (1.54)  We get,

              ( ) ( )E s K ssφ=              
( )
( )
s

E s
Ks`

φ
=

	 The equation (1.55) is the transfer function of the Synchro error detector.

Note : If the motor employed is an ac servomotor then the signal conditioning circuit will not 		
		          include a demodulator.

1.11  MULTIVARIABLE CONTROL SYSTEMS

Control systems with single input and single output are called SISO (Single-Input-Single-Output) 
systems. SISO systems will have a single variable to be controlled. The input is the set point or desired 
value of the variable and output is actual value of the variable maintained by the system. Examples of 
SISO systems are speed control of a motor, temperature control of a heating oven and angular position 
control of a servo motor.

When a control system has two or more variables to be controlled then it is called a multivariable 
control system. In multivariable control systems for each control variable there will be a reference input 
and an output which is the actual value of the variable maintained by the system. The multivariable 
control systems are also called MIMO (Multi-Input-Multi-Output) systems.

Controlling the supply voltage and speed of the motor is an example of multivariable control 
system with 2-inputs and 2-outputs. Controlling the temperature, pressure and liquid flow rate of a process 
control plant is an example of multivariable control system with 3-inputs and 3-outputs.

In multivariable control systems the variables may be interacting or non-interacting. The interacting 
variables are also called coupled variables and non-interacting variables are also called decoupled 
variables. When the variables are decoupled, controlling the variables is straight forward by designing a 
suitable independent controller for each variable.

When the variables are coupled, then there are two approaches in controlling the variables. In one 
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approach, the variables are decoupled by designing a decoupling controller and then the variables are 
controlled by designing a suitable independent controller for each variable. In another approach a single 
controller is designed by considering the interactions between variables.

The transfer function is defined between one input and one output. Therefore, in MIMO systems, 
if all the variables are interacting or coupled, then there will be a transfer function between each input 
and output.

Consider a multivariable control system with m-inputs and m-outputs.
           Let, U1(s), U2(s), U3(s), ……...., Um(s) be m-inputs.

           Let, Y1(s), Y2(s), Y3(s), ………., Ym(s) be m-outputs.

           Now, Gij(s)  =  Transfer function between output Yi(s) and input Uj(s).

         Therefore, the transfer function between all inputs and outputs of a multivariable control system 
when all the variables are interacting can be expressed in the matrix form as shown below.

From the above matrix representation, when m=3, we get the following equations. 

                 Y1(s) = G11(s) U1(s) + G12(s) U2(s) + G13(s) U3(s)

                  Y2(s) = G21(s) U1(s) + G22(s) U2(s) + G23(s) U3(s)

                  Y3(s) = G31(s) U1(s) + G32(s) U2(s) + G33(s) U3(s)
           Using the above equations, the open loop block diagram of 3-input and 3-output interacting 
multivariable control system can be drawn as shown in Fig 1.46. The closed loop control for interacting 
multivariable control system is quite complicated.
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When the variables are non-interacting, Gij(s) =0 for all values of i and j. Therefore, the transfer 
function matrix will be a diagonal matrix. Therefore, the matrix representation of non-interacting 
multivariable control system will be as shown below.

          

From the above matrix representation,when m=3, we get the following equations.
Y1(s)   =  G11(s) U1(s) 

Y2(s)   =  G22(s) U2(s)  

Y3(s)   =  G33(s) U3(s)  

Using the above equations, the open loop block diagram of 3-input and 3-output non-interacting 
multivariable control system can be drawn as shown in Fig 1.47. Here, the MIMO system is considered 
as three independent SISO systems.

             

              When the variables are non-interacting, separate controllers can be designed for closed loop 
control. Therefore the closed loop block diagram of 3-input and 3-output non-interacting multivariable 
control system can be drawn as shown in Fig 1.48, where Gc1(s), Gc2(s) and Gc3(s) are separate controllers 
to control the three variables of the multivariable control system.
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1.12	 SHORT-ANSWER QUESTIONS

Q1.1	 What is system?
	 When a number of elements or components are connected in a sequence to perform a specific function, 

the group thus formed is called a system.

Q1.2	 What is control system?
	 A system consists of a number of components connected together to perform  a specific function. In a 

system when the output quantity is controlled by varying the input quantity, then the system is called 
control system. The output quantity is called controlled variable or response and input quantity is called 
command signal or excitation.

Q1.3	 What are the two major type of control systems?
	 The two major type of control systems are open loop and closed loop systems.

Q1.4	 Define open loop system.
	 The control system in which the output quantity has no effect upon the input quantity are called open 

loop control system. This means that the output is not fedback to the input for correction.

Q1.5	 Define closed loop system.
	 The control systems in which the output has an effect upon the input quantity in order to maintain the 

desired output value are called closed loop control systems.

Q1.6	 What is feedback? What type of feedback is employed in control system?
	 The feedback is a control action in which the output is sampled and a proportional signal is given to 

input for automatic correction of any changes in desired output.

	 Negative feedback is employed in control system.

Q1.7	 What are the components of feedback control system?
	 The components of feedback control system are plant, feedback path elements, error detector and 

controller.

Q1.8	 Why negative feedback  is invariably preferred in a closed loop system?
	 The negative feedback results in better stability in steady state and rejects any disturbance signals. It 

also has low sensitivity to parameter variations. Hence negative feedback is preferred in closed loop 
systems.

Q1.9	 What are the characteristics of negative feedback?
	 The characteristics of negative feedback are as follows :

		  (i)	 accuracy in tracking steady state value.

		  (ii)	 rejection of disturbance signals.

		  (iii)	 low sensitivity to parameter variations.

		  (iv)	 reduction in gain at the expense of better stability.

Q1.10.	 What is the effect of positive feedback on stability?
	 The positive feedback increases the error signal and drives the output to instability. But sometimes 

the positive feedback is used in minor loops in control systems to amplify certain internal signals or 
parameters.

Controller+-+
–

Open loop
system (Plant)

Output

Feedback

error detector

Reference input
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Q1.11.	 Distinguish between open loop and closed loop system.

	 Open loop	 Closed loop

  	 1. Inaccurate & unreliable.	 1.  Accurate & reliable.

	 2. Simple and economical.	 2. Complex and costly.

	 3. Changes in output due to external  	 3.	Changes in output due to  external disturbances
	     disturbances are not corrected automatically.		  are corrected automatically.

	 4. They are generally stable.	 4. Great efforts are needed to design a stable system.

Q1.12	 What is servomechanism?
	 The servomechanism is a feedback control system in which the output is mechanical position (or time 

derivatives of position e.g. velocity and acceleration).

Q1.13	 State the principle of homogenity (or) State the principle of superposition.
	 The principle of superposition and homogenity states that if the system has responses c

1
(t)

 
and c

2
(t) 

for the inputs r
1
(t) and r

2
(t) respectively then the system response to the linear combination of these 

input a
1
r

1
(t) + a

2 
r

2
(t) is given by linear combination of the individual outputs a

1
c

1
(t) + a

2
c

2
(t), where a

1
 

and a
2
 are constants.

Q1.14	 Define linear system.
	 A system is said to be linear, if it obeys the principle of superposition and homogenity, which states 

that the response of a system to a weighed sum of signals is equal to the corresponding weighed sum 
of the responses of the system to each of the individual input signals. The concept of linear system is 
diagrammatically shown below.

Q1.15	 What is time invariant system?
	 A system is said to be time invariant if its input-output characteristics do not change with time. A linear 

time invariant system can be represented by constant coefficient differential equations. (In linear time 
varying systems the coefficients of the differential equation governing the system are function of time).

Q1.16	 Define transfer function.
	 The transfer function of a system is defined as the ratio of Laplace transform of output to Laplace 

transform of input with zero initial conditions. (It is also defined as the Laplace transform of the impulse 

response of system with zero initial conditions).

Q1.17	 What are the basic elements used for modelling mechanical translational system?
	 The model of mechanical translational system can be obtained by using three basic elements mass, 

spring and dashpot.

Q1.18	 Write the force balance equation of ideal mass element.
	 Let a force f be applied to an ideal mass M. The mass will offer an opposing force, f

m
 which is proportional 

to acceleration.
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System
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Fig Q1.14 : Principle of linearity and superposition.
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Q1.19	 Write the force balance equation of ideal dashpot.

	 Let a force f be applied to an ideal dashpot, with viscous frictional coefficient B. The dashpot will offer 
an opposing force, f

b
 which is proportional to velocity.

Q1.20	 Write the force balance equation of ideal spring.
	 Let a force f be applied to an ideal spring with spring constant K. The spring will offer an opposing 

force, f
k
 which is proportional to displacement.

Q1.21	 What are the basic elements used for modelling mechanical rotational system?
	 The model of mechanical rotational system can be obtained using three basic elements mass 

with moment of inertia, J, dash-pot with rotational frictional coefficient, B and torsional spring with 
stiffness, K.

Q1.22	 Write the torque balance equation of an ideal rotational mass element.
	 Let a torque T be applied to an ideal mass with moment of inertia, 

J. The mass will offer an opposing torque T
j
 which is proportional to 

angular acceleration.

Q1.23	 Write the torque balance equation of an ideal rotational dash-pot.
	 Let a torque T be applied to a rotational dash-pot with frictional coefficient B. The dashpot will offer an 

opposing torque which is proportional to angular velocity.

Q1.24	 Write the torque balance equation of ideal rotational spring.
	 Let a torque T be applied to an ideal rotational spring with spring constant K. The spring will offer an 

opposing torque T
k
 which is proportional to angular displacement.

Q1.25	 Name the two types of electrical analogous for mechanical system.
	 The two types of analogies for the mechanical system are force-voltage and force-current analogy.

M
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Q1.26	 Write the analogous electrical elements in force-voltage analogy for the elements of mechanical 
translational system.

	 Force, f	 →	 Voltage, e	 Frictional coefficient , B	 →	 Resistance, R

	 Velocity, v	 →	 Current, i	 Stiffness, K	 →	 Inverse of capacitance, 1/C

	 Displacement, x	 →	 Charge, q	 Newton’s second law, Σf = 0	→	 Kirchoff ’s voltage law, Σv = 0

	 Mass, M	 →	 Inductance, L

Q1.27	 Write the analogous electrical elements in force-current analogy for the elements of mechanical 
translational system.

	 Force, f	 →	 Current, i	 Frictional coefficient, B		  →	 Conductance, G =1/ R

	 Velocity, v	 →	 Voltage, v	 Stiffness, K		  →	 Inverse of Inductance, 1/L

	 Displacement, x	 →	 Flux, φ	 Newton’s second law, Σf = 0	 →	 Kirchoff ’s current law, Σi = 0

	 Mass, M	 →	 Capacitance, C	

Q1.28	 Write the analogous electrical elements in torque-voltage analogy for the elements of mechanical 
rotational system.

	 Torque, T	        →Voltage, e  Stiffness of spring, K	  → Inverse of capacitance, 1/C

	 Angular velocity, ω	        →Current, i	 Frictional coefficient, B	  → Resistance, R

	 Moment of inertia, J	   →Inductance, L  Newton’s second law, ΣT = 0 → Kirchoff ’s voltage law, Σv = 0.

	 Angular displacement, θ → Charge, q	 		

Q1.29	 Write the analogous electrical elements in torque-current analogy for the elements of mechanical 
rotational system.

	 Torque, T	 →	 Current, i	  Frictional coefficient , B	 → Conductance, G = 1/R

	 Angular velocity, ω	 →	 Voltage, v	  Stiffness of spring, K	 → Inverse of inductance, 1/L

	 Angular displacement, θ	 →	 Flux, φ 	 Newton’s second law, ΣT = 0 → Kirchoff ’s current law, Σi = 0

	 Moment of inertia, J	 →	 Capacitance, C

Q1.30	 What is block diagram? What are the basic components of block diagram?
	 A block diagram of a system is a pictorial representation of the functions performed by each component 

of the system and shows the flow of signals. The basic elements of block diagram are block, branch 
point and summing point.

Q1.31	 What is the basis for framing the rules of block diagram reduction technique?
	 The rules for block diagram reduction technique are framed such that any modification made on the 

diagram does not alter the input output relation.

Q1.32	 Write the rule for eliminating negative feedback loop.
									         Proof 
			   C = (R - CH) G
			   C = RG - CHG
			   C + CHG = RG
			   C(1 + HG) = RG

		   	 R
C

1 GH
G= +Q1.33	 Write the rule for moving the summing point ahead of a block.
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Q1.34	 What is a signal flow graph?
	 A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. By 

taking Laplace transform, the time domain differential equations governing a control system can be 
transferred to a set of algebraic equations in s-domain. The signal flow graph of the system can be 
constructed using these equations.

Q1.35	 What is transmittance?
	 The transmittance is the gain acquired by the signal when it travels from one node to another node in 

signal flow graph.

Q1.36	 What is sink and source?
	 Source is the input node in the signal flow graph and it has only outgoing branches. Sink is a output 

node in the signal flow graph and it has only incoming branches.

Q1.37	 Define non-touching loop.
	 The loops are said to be non-touching if they do not have common nodes.

Q1.38	 What are the basic properties of signal flow graph?
	 The basic properties of signal flow graph are,

	 (i)	 Signal flow graph is applicable to linear systems.

	 (ii)	 It consists of nodes and branches. A node is a point representing a variable or signal. A branch 
indicates functional dependence of one signal on the other.

	 (iii)	 A node adds the signals of all incoming branches and transmits this sum to all outgoing branches.

	 (iv)	 Signals travel along branches only in the marked direction and when it travels it gets  multiplied 
by the gain or transmittance of the branch.

	 (v)	 The algebraic equations must be in the form of cause and effect relationship.

Q1.39	 Write the Mason’s gain formula.

	 Mason’s gain formula states that the overall gain of the system [transfer function] as follows,

	 , POverall gain T 1

K
K KT
T= /

T  = T(s) = Transfer function of the system

K  = Number of forward paths in the signal flow graph

P
K
 =  Forward path gain of Kth forward path

sum of individual

loop gains
1 sum of gain products of all possible

combinations of two non touching loops

sum of gain products of all possible

combinations of three non touching loops

T = − +
−

−
......− +

> >

>

H H

H

D
K
 = D for that part of the graph which is not touching Kth forward path

Q1.40	 For the given signal flow graph, identify the number of forward path and number of individual loop.
	

	

	

	 Number of forward paths = 2
	 Number of individual loops = 4
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Q1.41	 What are the basic components of an automatic control system ?
	 The basic components of an automatic control system are, 

	 1.	 Error detector			  4.	 Plant

	 2.	 Amplifier and controller		  5.	 Sensor or feedback system

	 3.	 Actuator (Power actuator)

Q1.42	 What is automatic controller ?
	 The combined unit of error detector, amplifier and controller is called automatic controller.

Q1.43	 What is a Potentiometer?
	 A potentiometer is a device that can be used to convert linear or angular displacement into a voltage. 

Basically it is a variable resistance whose value varies according to the angular or linear displacement 
of the wiper contact.  

Q1.44	 What are the differences between AC and DC potentiometers?
1.	 The output of AC potentiometer is a modulated voltage and so it has to be demodulated to get the 

error or control signal. But the output of DC potentiometer need not be demodulated.

2.	 The AC potentiometer will have inductive effects. But the DC potentiometer will not have any 
inductive effects.

Q1.45	 What are the applications of Potentiometer?
	 The potentiometers are used to convert a linear or angular displacement into a proportional electrical 

signal. It is also used as error detector in which it produces an output voltage which is proportional to 
the difference between two linear or angular displacements.

Q1.46	 A 10KΩ potentiometer whose center point is grounded at the two fixed ends are excited by +10V 
and −10V. The potentiometer has a total angular motion of 350º. What is the gain constant of 
potentiometer.	

	 Gain constant, 
/

( )
350 /180

3.27 /K V rad
350 180
10 10 20

Total angular motion
Total excitation voltage

o op
# #π π

= = − − = = 	

Q1.47	 Determine the number of turns of wire needed to provide a potentiometer with the resolution of 0.05%..

	  %resolution
number of turns

100=      ;     .
N

0 05 100` = 	 ;     
.

N turns
0 05
100 2000= =

Q1.48	 A helical 5 turn pot has a resistance of 10KΩ and 9000 winding turns. If the measured resistance at its 
midpoint setting is 5050Ω, then what is the linearity?

	 Deviation from nominal at midpoint = 5050 - 5000 = 50

	 100 100 0.5%Linearity
10000

50
Total resistance

Deviation from nominal
# #= = =

Q1.49	 What is Synchro?
	 A synchro is a device used to convert an angular motion to an electrical signal or viceversa. It works 

on the principle of a rotating transformer (induction motor).

Q1.50	 What is synchro pair?
	 A synchro pair is a system formed by interconnection of the devices : synchro transmitter and synchro 

control transformer. A synchro pair is used to either transmit an angular motion from one place to 
another or employed to produce an error voltage proportional to the difference between two angular 
motions.
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Q1.51	 What are the differences between synchro transmitter and control transformer?
1.	 Rotor of synchro transmitter is of dumb bell shape. But rotor of control transformer is cylindrical.

2.	 The rotor winding of  synchro transmitter is excited by an AC voltage. In control transformer, the 
induced emf in the rotor is used as an output signal (error signal).

Q1.52	 What is electrical zero of a synchro?
	 The electrical zero of a synchro transmitter is a position of 

rotor at which one of the coil to coil voltage is zero. Any 
angular motion of the rotor is measured with respect to the 
electrical zero position of the rotor.

	 For the arrangement shown in fig Q1.52, the coil S
2
 will 

have maximum emf induced in it and the coil to coil voltage 
e

S3S1
will be zero and the rotor is in electrical zero position.

Q1.53	 What is Null position in Synchro?
	 The Null position of a synchro control transformer in a 

servo system is defined as, the position of its rotor for which 
the output voltage on the rotor winding is zero, with the 
transmitter in its electrical zero position.

Q1.54	 What is aligned position of a synchro pair?
	 In the aligned position of a synchro pair, the transmitter rotor will be in electrical zero position and the 

control transformer rotor will be in null position. The angular separation of both rotor axis in aligned 
position is 90o. The error signal is zero in the aligned position.

Q1.55	 What  are the applications of Synchro?
	 The synchros are used in positional control systems (servomechanism) as error detector and to convert 

angular displacements to proportional electrical signals. It is also used in control systems to transmit 
angular motions from one place to another.

Q1.56	 What are the trade names of Synchros?
	 The trade names for synchros are Selsyn, Autosyn and Telesyn.
Q1.57	 What is Servomotor?
	 The motors used in automatic control system or in servomechanism are called Servomotors. They are 

used to convert electrial signal to angular motion.

Q1.58	 What are the characteristic of servomotors?
1.	 Linear relationship between the speed and electric control signal.
2.	 Steady-state stability.
3.	 Wide range of speed control.
4.	 Linearity of mechanical characteristic throughout the entire speed range.
5.	 Low mechanical and electrical inertia.
6.	 Fast response.

Q1.59	 compare the AC and DC sevomotors?
			   DC servomotor	 AC servomotor

	 1.	 Higher power output.	 1.	 Relatively lesser power output than a
					     DC servomotor of same size.

	 2.	 Characteristics are linear.	 2.	 Characteristics are non-linear.

	 3.	 Fast response due to low electrical	 3.	 The response is relatively slower than
			   and mechanical time constant.		  DC servomotors due to higher values 
					     of time constants.

	 4.	 Suitable for large power applications.	 4.	 Suitable for low power applications.

S2

S1

S3

�

_
es3s1

+

Fig Q1.52 : Electrical zero position
of synchro transmitter.
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Q1.60	 What are the advantages of permanent magnet DC servomotors?
1.	 A simpler, more reliable motor because the field power supply is not required.
2.	 Higher efficiency due to the absence of field losses.
3.	 Field flux is less affected by temperature rise.
4.	 Less heating, making it possible to totally enclose the motor.
5.	 No possibility of over speeding due to loss of field.
6.	 A more linear torque Vs speed curve.
7.	 Higher power output at the same dimensions and temperature limitations.	

Q1.61	 What are the special features of DC servomotors ?
1.	 The number of slots and commutator segments is large to improve commutation.
2.	 Compoles and compensating windings are provided to eliminate sparking.
3.	 The diameter to length ratio is kept low to reduce inertia.
4.	 Oversize shafts are employed to withstand the high torque stress.
5.	 Eddy currents are reduced by complete lamination of magnetic circuit and by using low-loss steel.

Q1.62	 What is the difference between ac servomotor and two phase induction motor?
1.	 The ac servomotor has low value of X/R to achieve linear speed-torque characteristics. But 

conventional induction motor will have large values of X/R for higher efficiency.
2.	 The ac servomotor has low inertia rotor. The inertia of the rotor is reduced by reducing the diameter 

or by drag-cup construction.

Q1.63	 What are the different types of rotor that are used in ac servomotor?
	 The types of rotors of ac servomotor are squirrel-cage rotor and drag-cup rotor.

Q1.64	 Write the differential equation governing the ac servomotor.
	 The differential equation governing the ac servomotor is,  K eT K

dt
d

m 1 c 2
θ= −

where,	 T
m 

	=	 Torque developed by motor.
	 e

c
	 =	 Control signal.

	 θ	 =	 Angular displacement of rotor.
	 K

1
	 =	 Slope of Control-phase voltage Vs Torque characteristics.

	 K
2
	 =	 Slope of Speed Vs Torque characteristics.

1.13	 EXERCISES

E1.1	 For the mechanical system shown in fig E1.1derive the 
transfer function. Also draw the force-voltage and force-current 
analogous circuits.

E1.2 	 For the mechanical system shown in fig E1.2 draw the 
force-voltage and force-current analogous circuits. 

E1.3	 Write the differential equations governing the mechanical system shown in fig E1.3(a) & (b). Also draw 
the force-voltage and force-current analogous circuit.

B

K

M x, v

Fig E1.1v1
v2

K2f(t)

B2B1 Fig E1.2

M2
M1

K1
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v1
v2

K1 K2

B2
B1

M1

f (t)
1

f (t)
2

M2

B

K

Fig E1.3(a)

M2

K3
K2

K1

v1

v2

v3

Fig E1.3(b)

M1

f(t)

B

v1

v2

B1

f(t) K

Fig E1.4

M2

M1

B3

v3

B2

B
M3

T(t)

K1

Fig E1.5

B3B1
B2

J2J1 J3

�1 �� ��
K2

R C

i1

L

Fig E1.6

i2i3

+

–
E

i3 – i2 i2 – i1

~

CR
+-+

++-+
–

G1 G2

G3

+-+
+

H1

H2

Fig E1.7(a)

Fig E1.7(b)

CR
+-+ +-+

––
G2 G3

H2

G1
+-+

+
G4

+-+
+

H1

G5

E1.4	 Consider the mechanical translational system shown in fig E1.4, Draw(a) force-voltage and (b) force-
current analogous circuits.

E1.5	 Write the differential equations governing the rotational mechanical system shown in fig E1.5. 
Also draw the torque-voltage and torque-current analogous circuits.

E1.6	 In an electrical circuit the elements resistance, capacitance 
and inductance are connected in parallel across the 
voltage source E as shown in fig E1.6, Draw(a) Translation 
mechnical analogous system (b) Rotational mechanical 
analogous system.

E1.7	 Consider the block diagram shown in fig E.1.7(a), (b) (c) & (d). Using the block diagram reduction 
technique, find C/R.
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Fig E1.7(c)

CR
+-+ +-+

––
G2

G3

H2

G1
+-+

+

H1

+-+
–

Fig E1.7(d)

CR
+-+ +-+

––
G2 G3

H2

G1

H1

+-+

–

Fig E1.8

CR
+-+

–
G2

G3G1
+-+

+

H1

+-+
–

–

H2 1/G3

H3 1/G3

G4

a
b

c d e
f

R(S) C(S)

1 1 G1 G2

–H2

G3

1

–H1

–1 Fig E1.9(a)

R C(S)

1 1

Fig E1.9(b)

x1
x2 x3 x4 x5 x6

A12 A23

A13

A21

A34

A43

A45

A46

A56

A65

E1.8	 Convert the block diagram shown in  fig E1.8 to signal flow graph and find the transfer function of the 
system.

E1.9	 Consider the system shown in fig E1.9(a), (b), (c) & (d). obtain the transfer function using Mason’s 
gain formula.
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Fig E1.11(a)

C

R1

R2

e(t)i e (t)0

Fig E1.11(b)

C

R

R2

e(t)i e (t)0

L

Fig E1.11(c)

C

R1

R2
e(t)i e (t)0

L1
L2

i1 i2

Fig E1.11(d)

R1

R2
e(t)i e (t)0

C

R1

C L2

Fig E1.12

+-
+
–

e(t)i

i (t)1 i (t)2

R2

L1

e (t)0

R C1

1 1 1

111

–1

–1

–1

–1

G1
G2

G3

G4

G5 G6
G7

Fig E1.9(c)

G1
G2 G3 G4

G5

G6

G7

Fig E1.9(d)

x1 x2

x3

x4

x5

x6

x7
x8

G8

G9

G10

G11

G12

G13

E1.10	 Consider the signal flow graph shown in fig E.1.10 obtain 
x
x

x
x

and
l

8

2

8

E1.11	 Find the transfer functions of the networks shown in fig E1.11(a), (b), (c) & (d).

E1.12	 Find the transfer function of the circuit 
shown in fig E1.12.

G1

G2

G3

G4

G5

G6

G7

Fig E1.10

x1

x2

x3

x4

x5

x6

x7

x8

G8

G9
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E1.13E2.1Consider the positional servomechanism shown in fig E1.12. Assume that the input to the system is 
reference shaft position θ

R
 and the system output is the load shaft position θ

L
. Draw a block diagram 

of the system indicating the transfer function of each block. Simplify the block diagram to obtain 
θ

L
(s)/ θ

R
(s). The parameters of the system  are given below.

	 Sensitivity of error detector	 K
P
	 =	 10 Volts/rad

	 Amplifier gain	 K
A
	 =	 50 Volts/volt

	 Motor field resistance	 R
f
	 =	 100 Ohms

	 Motor field inductance	 L
f
	 =	 20 Henrys

	 Motor torque constant	 K
T
	 =	 10 Newton-m/amp

	 Moment of inertia of load	 J
L
	 =	 250 Kg-m2

	 Coefficient of viscous friction of load	 B
L
	 =	 2500 Newton-m/(rad/sec)

	 Motor to load gear ratio	 /L Mθ θo o 	 =	 1/50

	 Load to potentiometer gear ratio	 /P Lθ θo o 	 =	 1
	 Motor inertia and friction are negligible.

E1.14E2.4	The schematic diagram of a servo system is shown in fig E1.14. The two-phase servomotor 
develops a torque in accordance with the equation T

M
 = K

1
e

c
- K

2 Mθo  where K
1
 = 1×10-5 N-m/volt, 

K
2
 = 0.25 ×10-5 N-m/(rad/sec). The other parameters of the system are : Synchro sensitivity, 

K
s
 = 1 Volt/rad. Amplifier gain, K

A
 = 20 Volt/volt. Tachometer constant, K

t
 = 0.2 Volt/(rad/sec). Load 

inertia, J
L
 = 1.5 ×10-5 Kg-m2. Viscous friction, B

L
 = 1×10-5  N-m/(rad/sec). /M sθ θo o =1,  /M Tθ θo o  = 1. 

Motor inertia and friction are negligible. Draw the block diagram of the system and therefrom obtain   
transfer function /M sθ θ (s).

�R �P

�L

��

Rf Lf

KA

+

_

I = constanta

J , BL L

+

_

Fig E1.13.
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E1.15E2.5	An ac-dc servo system is shown in fig E1.15. The sensitivity of the synchro error detector is K
s
 Volt/

rad and the gain of the generator is K
g
 Volts/field amp. The dc motor is separately excited and has a 

back emf constant of K
b
 Volts/(rad/sec) and a torque constant of K

T
 N-m/amp. Motor inertia and friction 

are negligible. Draw the block diagram of the system indicating the transfer function of each block.  
Obtain θ

L
(s)/θ

R
(s).

	 The system parameters are given below :

	 K
s
	 =	 30 Volts/rad	 K

A
	 =	 5 Volts/Volts 

	 R
f
	 =	 100 Ohms 	 L

f
	 =	 2 Henrys

	 K
g
	 =	 100 Volts/field amp	 R

a
	 =	 1 Ohm

	 K
b
	 =	 1 Volts/(rad/sec) 	 J

L
	 =	 0.5 Kg-m2

	 B
L
	 =	 1 N-m/(rad/sec)	 / / 1L M s Mθ θ θ θ= =o o o o 	

J , BL L

aR

M�

Fig E1.15.

fR

fi

A

Amplifier
K

Demodulator

AC supply

R�

S�

L�

fL

Fig E1.14.

J , BL L

Load

AC Supply

Tachogenerator

Servomotor

Amp

ec

��

M�

Gear train
S�Synchros

A
C

S
u
p
p
ly

R�

AK

AC Supply
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Force-voltage analogous circuit Force-current analogous circuit

f(t) → i(t)	 M
1 
→ C

1	
B

2 
→ 1/R

2

  v
1 
→ v

1
	 M

2 
→ C

2	
K

1 
→ 1/L

1

  v
2 
→ v

2
	 B

1 
→ 1/R

1	
K

2 
→ 1/L

2

f(t)  → e(t)	 M
1 
→ L

1	
B

2 
→ R

2

  v
1 
→ i

1
	 M

2 
→ L

2	
K

1 
→ 1/C

1

  v
2 
→ i

2
	 B

1 
→ R

1	
K

2 
→1/C

2

CR

e(t)i

L

i~
f(t)�e(t) M�L K�1/C

B�Rv�i
Force-voltage analogous circuit

Ci(t)

f(t)�i(t) M�C K�1/L
B�1/Rv�v

Force-current analogous circuit

R

v

L

Re1

L1

i1

f1�e1

K1�1/C1

B1�R1v1�i1

Force-voltage analogous circuit

i1

Force-current analogous circuit

v2

+_ +_

R1 L2
R2

C1
C2

i1
C

e2

M1�L1

f2�e2

v2�i2

M2�L2

B2�R2

B�R

K2�1/C2

K�1/C

C1

v1

i2

R

R1

L1 L2

R2

C2

f1�i1
K1�1/L1

B1�1/R1v1�v1

M1�C1

f2�i2

v2�v2

M2�C2

B2�1/R2

B�1/R

K2�1/L2

K�1/L

L

C2i(t) R1

v1

C1

R

e(t)

L1

i1 i1
+_

R1 R2 L2

C2 R2
C1 L2

L1 v2

C2
i(t) L1

v1

C1

R
e(t)

L1

i1

i3
+_ L2

C2

C1

i2

v2
L3 R

v3

L2

C3

ANSWER FOR EXERCISE PROBLEMS

E1.1	 The transfer function is 
( )
( )

( )F s
X s

Ms Bs K
1

2=
+ +

E1.2	

E1.3(a)	
dt
dv

B v B(v ) ( ) ( )M v K v dt K v v dt f t1
1

1 1 1 2 1 1 1 2 1+ + − + + − =# #

	
dt

dv
B v B(v ) ( ) f ( )M v K v dt K v v dt t2

2
2 2 2 1 2 2 2 1 2+ + − + + − =# #

E1.3(b)	
dt
dv

. ( ) ( ) ( )M K v dt K v v dt K v v dt f t1
1

1 1 2 1 3 3 1 2+ + − + − =# # #
	 ( ) ( ) 0 ; M

dt
dv

( ) ( ) 0K v v dt B v v B v v K v v dt3 2 1 2 3 2
3

3 2 2 3 1− + − = + − + − =##
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i(t)

v1 v2
v3

+_
i1

i2

i3

L2

L3

R2L1

e(t) R3

R

R1

C

C1
C2

C3

RR2

R3

L
R1

R3
i(t) R1

v1

C1
e(t)

L1

i1 i2

+_

R1 R2 L3

C2

R2

C1 C3

L1 v2

L2

i3

R3

C2

v3
L2

J

T(t) �3 �2 �1B
K

M
f(t)

B K

v3 v2 v1

Force-current analogous circuit

f(t) → i(t)	 M
1
 → C

1	
B

1
 → 1/R

1

v
1
 → v

1
	 M

2
 → C

2	
B

2
 → 1/R

2

v
2
 → v

2
	 M

3
 → C

3	
B

3
 → 1/R

3

v
3
 → v

3	
B → 1/R	 K → 1/L

Force voltage-analogous circuit

f(t) → e(t)	 M
1
 → L

1	
B

1
 → R

1

v
1
 → i

1
	 M

2
 → L

2	
B

2
 → R

2

v
2
 → i

2
	 M

3
 → L

3	
B

3
 → R

3

v
3
 → i

3	
B → R	 K → 1/C

Torque-voltage analogous circuit

T(t) → e(t)	 J
1
 → L

1	
B

1
 → R

1
	 K

1
 → 1/C

1

ω
1
 → i

1
	 J

2
 → L

2	
B

2
 → R

2	
K

2
 → 1/C

2

ω
2
 → i

2
	 J

3
 → L

3	
B

3
 → R

3       
	 ω

3
 → i

T(t) → i(t)	 J
1
 → C

1	
B

1
 → 1/R

1
	 K

1
 → 1/L

1

ω
1
 → v

1
	 J

2
 → C

2	
B

2
 → 1/R

2	
K

2
 → 1/L

2

ω
2
 → v

2
	 J

3
 → C

3	
B

3
 → 1/R

3         
ω

3
 → v

3

Torque-current analogous circuit

Analogous mechanical translational system Analogous mechanical rotational system

e(t) → f(t)	 i
1
 → v

1
	 i

3
 → v

3 
	 R → B

                   i
2
 → v

2
     L → M      1/C → K

e(t) → T(t)     i
1
 →  ω

1
       i

3
 → ω

3        
R → B

                         i
2
 → ω

2
        L  →  J      1/C → K

E1.4

E1.5

E1.6

Force-voltage analogous circuit

f(t) → e(t)	 M
1
→ L

1	
K

1
 →1/C

1

v
1 
→ i

1
	 M

2
→ L

2	
K

2
 → 1/C

2

v
2 
→ i

2
	 B →R

	
K

3
 → 1/C

3

v
3 
→ i

3

f(t) → i(t)	 M
1
 → C

1	
K

1 
→ 1/L

1

v
1
 → v

1
	 M

2
 → C

2	
K

2
 → 1/L

2

v
2
 → v

2
	 B →1/R

	
K

3
 → 1/L

3

v
3
 → v

3	
Force-current analogous circuit
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E1.7	 ( )
1 G H G G G H G G H

G G G G
a

R
C

1 2 1 1 2 1 1 3 1

1 2 1 3=
+ + + +

+

	 ( )
1 (1 G )(G G )H (1 G )(G G )G H

G G (1 G )(G G )
b

R
C

3 4 5 2 3 4 5 2 1

1 2 3 4 5=
+ + + + + +

+ +

	 ( )
1 G G H G G G G G H G H

G G G G
c

R
C

1 2 1 1 2 1 3 2 2 3 2

1 2 1 3=
+ + + + +

+

	 ( )
1 G G H G G H G G G

G G G
d

R
C

2 3 2 1 2 1 1 2 3

1 2 3=
+ + +

E1.8	
1 G G H G H G G H

G G G G G G G H G G H G G G H

2 3 1 2 2 1 2 3

1 2 3 4 2 3 4 1 2 4 2 1 2 4 3

+ + +
+ + + +

E1.9	 ( )
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1 G G H G G H G G G
G G G

a
R s
C s

1 2 1 2 3 2 1 2 3

1 2 3=
+ + +
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1 (A A A A A A ) (A A A A A A A A

A A A A ) (A A A A A A )

A A A A A A A A A A A A A A A A
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R
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12 21 34 43 56 65 12 21 34 43 12 21 56 65

34 43 56 65 12 21 34 43 56 65

12 23 34 45 56 13 34 45 56 12 23 34 46 13 34 46=
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+ −

+ + +
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1 G G G G G G G G G G G G G G G G
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c

R
C

1 2 2 3 5 6 6 7 1 2 5 6 5 6 2 3

1 2 6 7 2 3 6 7

1 2 3 4 5 6 6 7 4 5 6 7 1 2 2 3+=
+ + + + + +

+ +

+ + + +
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x
x
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1
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+
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− + + + +
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− + + +

E1.10	
x
x

G G G G G G G G G G G G G ;
x
x

G G G G
1

8
1 4 6 9 1 4 7 9 1 3 5 8 9

1

8
2 5 8 9= + + =

E1.11	 ( )
E (s)
E (s)

1 s(R R )C
1 sR C

a
i

o

1 2

2=
+ +

+

	 ( )
E (s)
E (s)

1
1b

s LC s R C2
i

o =
+ +

	 ( )
E (s)
E (s)

(s L C s R C 1) (s L C s R C 1) 1

s R C
c

2 2
i

o

1 1 2 2

2=
+ + + + −

	 ( )
E (s)
E (s)

sR R C (R R )
sR R C R

d
i

o

1 2 1 2

1 2 2=
+ +

+



1. 128 	 Control Systems Engineering

E1.12	
( )
( )

[s R C 1] [s (L L ) C s R C 1] 1

s L C
R s
C s

2

2

1 1 2 2

2=
+ + + + −

E1.13

E1.14

E1.15
(s)
(s)

54 200 15 10
15 10

s s s3 2 3
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L

#

#
θ
θ

=
+ + +

(s)
(s)

. .
.

s s3 5 13 33
13 33

2
R

M
θ
θ

=
+ +

(s)
(s)
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L
θ
θ

=
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