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Thus the optical and other properties of gold nanoshells are similar to those of colloidal gold
particles. The optical properties of gold nanoshells change as the relative dimensions of the silica
core and gold shell change.
The gold nanoshells find a potential use in the treatment of cancer. The gold nanoshells can be
injected into the body. When they are concentrated to the targeted cancer cells, they are illuminated
with a laser beam to produce heat that can destroy the heat sensitive cancer cells (cf. cell-
killing effect at a temperature above ca. 45°C). The plasmonic gold nanoshells or gold
nanoparticles resonant with the NIR (near infrared) light (biologically transparent window)
being irradiated with the NIR light can rapidly convert the absorbed light energy into the localised
heat energy to raise the temperature which can destroy the cancer cells (hyperthermia treatment).

Here it is worth mentioning that the magnetic nanoparticles can also be used in hyperthermia
treatment (i.e. thermal treatment of cancer) of cancer cells (Sec. 10.3.9). In fact, the superparamagnetic
particles (e.g. iron oxide particles or the magnetite (Fe3O4) particles having the diameter about 10 nm)
when subjected to an alternating magnetic field (AC - magnetic field) undergo Brownian relaxation
in which heat is generated by the rotation of particles in the suspending viscous medium under the
applied field. Thus the Brownian relaxation mechanism actually represents the mechanical friction in
the given viscous suspending medium.

2.3 BULK OR 3D-NANOMATERIALS

The bulk nanomaterials do not have any dimension at the nanoscale but they exhibit the features
at nanoscale. The bulk nanomaterials represent the different types of materials like nanocrystalline
material, nanocomposites, nanoporous materials (e.g. metal organic frameworks, MCM-zeolites)
and inorganic-organic hybrid nanocomposites. The bulk nanomaterials find versatile types of
applications. The properties and characteristics of these materials are separately discussed in Sec. 2.4.

The level of understanding the properties and structures of bulk nanomaterials is relatively lower
compared to that of isolated nanoparticles.

2.4 3D-NANOMATERIALS OR BULK NANOMATERIALS: NANOCRYSTALLINE
MATERIALS, NANOCOMPOSITES, NANOPOROUS MATERIALS INCLUDING METAL-
ORGANIC FRAMEWORKS, INORGANIC-ORGANIC HYBRID NANOCOMPOSITES

2.4.1 Nanocrystalline Material: Three Dimensional Nanocrystalline Material in Bulk Form

It is a single or multiphase polycrystalline solid material having the grain size of a few nanometers
(size less than 0.1 µm or 100 nm). Thus bulk or 3D-nanomaterial is composed of multiple arrangement
of nanosize crystals (called crystallites). It may be noted that a polycrystalline coarse-grained material
is full dense aggregate of crystals or grains having size in the range 10–100 µm.
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or nanocrystalline

bulk

(Grain size
in nanorange)

( bulk dimension)l �
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l l

l

Fig. 2.4.1.1  Comparison of the structural features of coarse-grained and nanograined polycrystalline solids.
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(iii) Classical and historical examples of nanocomposites

zzzzz Gold-Ruby-Glass: This ancient material consists of gold nanoparticles dispersed into the
glass matrix (i.e. inorganic-inorganic nanocomposite) (cf. Fig. 1.1.2).

zzzzz Damuscus Steel: This historical material consists of the dispersion of CNTs and iron carbide
(Fe3C) nanowires in high carbon steel. This steel is of unique mechanical properties
(cf. Fig. 1.1.2).

zzzzz Lycurgus Cup: This historical object represents the dispersion of Ag- and Au-nanoparticles
in glass (cf. Fig. 1.1.2).

zzzzz Polymer Nanocomposites (PNCs): These are industrially very much important because of
their exciting mechanical strength and thermal stability. They are now occupying the
multibillion dollar market.

zzzzz Polymer-phyllosilicate Nanocomposites (developed by Toyota Company in 1989) in the
Automotive Industry: Nylon-6 polymer is treated as the matrix forming phase and
montmorillonite (MMT) (a 3-layered silicate) is used as the nanofillers. Such PNCs with
the polymer matrix and defoliated phyllosilicates are so industrially important that now they
possess a multibillion dollar business only in automotive industry.

(iv) Material composition: In terms of chemical composition, the nanocomposite may be the
combinations like: organic with organic, organic with inorganic and inorganic with inorganic
(e.g. dispersion of zirconia nanoparticles within the alumina matrix). In the nanocomposite, the
matrix phase may be constituted by metal, ceramic or polymer. Among these, polymer
nanocomposites (PNCs) consisting of the polymer or copolymer (e.g. thermosets, i.e.
thermosetting plastics, thermoplastics, elastomers) as the matrix having the dispersion of
nanomaterials as the nanofillers, have been widely used. The PNCs may have the different
structural shapes. In PNCs, the most commonly used nanofillers are:
montmorillonite (MMT) clay (layer silicate consisting of 2D-platelets), metal nanoparticles
including the plasmonic nanoparticles; CNTs; nanosilica; nanoalumina; nanoceria; nanotitania;
nanozirconia; etc.
The commonly used polymers as the matrix forming bulk phase are:
nylon; polystyrene; polyolefin; polyurethane; poly methyl methacrylate (PMMA); polyethylene
terephthalate (PET), etc.

zzzzz Inorganic-organic nanocomposites: This synthesized material is a chemically hybrid material
and they find many important applications in paint and polymer industries where the inorganic
nanofillers and nanosized-pigments are dispersed into the organic material acting as the
matrix. The representative examples of organic matrix are organic solvents, polymers, etc.

(v) Common routes of the synthesis of PNCs: In the PNC, the polymer matrix can be incorporated
as the polymer species itself or the polymer can be generated in situ from its precursors (i.e.
polymerization of its monomer) as in the TOYOTA PROCESS of synthesis of nylon-6-clay
nanocomposite widely used in the automotive industry. The nanofillers may be directly
incorporated into matrix or the nanoparticles like metal nanoparticles may be generated in situ
(e.g. reduction of AgI- or AuIII- salts by the suitable reducing agents) for incorporation into the
matrix. These common routes of synthesis of PNCs are illustrated in Fig. 2.4.2.2–4.
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zzzzz Class-II hybrids are synthesized through the simultaneous hydrolysis followed by condensation
of organic and inorganic precursors. The inorganic oxide precursors are Si(OR)4, Al(OR)3,
Ti(OR)4, SiCl4, etc. while the organic precursors are RAl(OR)2, R2Si(OR)2, RSi(OR)3, etc. bearing
at least one nonhydrolysable group (e.g. Al—R, Si—R). Sometimes, in organic precursors, the
nonhydrolysable organic groups may bridge two inorganic centres (e.g. Si—CH2—R—CH2—Si). A
typical example of synthesis of Class-II hybrid is illustrated here.

               ( ) ( )+ +4 42Si OR 4H O Si OH 4ROH

         ( ) ( )¢ ¢+ +3 32R — Si OR 3H O R — Si OH 3ROH.

     ( ) ( ) ( ) ( )4 3 3 2 2Si OH R —Si OH HO Si—O—Si OH R H O¢ ¢+ +

                  ( ) ( ) ( )¢ ¢ ¢ +3 2 2 22R —Si OH R HO Si—O—Si OH R H O

(Si—R′ bond is nonhydrolysable; in the polymer, R′ provides the organic part)
Commercial importance of inorganic-organic nanocomposites: These hybrid materials find many

uses in commercial products because of the improved material property including the material strength,
thermal stability, photostability, ultrafast photochromic response, etc. The products now occupy the
multibillion dollar business market. Some representative examples of polymer nanocomposites (PNC)
having the 2D-silicate layers (constituting the ceramic phase) dispersed in the organic polymer matrix
have been discussed in (B) of this section. Some other representative examples are:

(i) inorganic pigments as the nanofillers dispersed in organic matrix including organic solvents and
polymers finding applications in paint and polymer industries;

(ii) production of fire-retardant and stain-resistant clothing in textile industry;
(iii) production of sunscreens and cosmetics;
(iv) nylon-6/montmorillonite PNC in automotive industry;
(v) indigo dyes dispersed in silica/zirconia matrix used in making TV-screens.
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The de Broglie wavelength (λDB) of the particle for its thermal motion along the x-axis given by:
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Thus the condition of quantum confinement of a particle along a particular direction is:

the dimension of confinement must be of the order the de Broglie wavelength (λλλλλDB) for
the thermal motion of the particle in the direction.

The above condition tells us how small the dimension must be if we want to observe the size-
dependent quantum confinement.

In general, it can be stated that a nanomaterial is in the state of quantum confinement when its size
is in the order of de Broglie wavelength (λλλλλDB) of the charge carrier (i.e. electron or hole).

In a semiconducting nanoparticle like quantum dot (QD), its size must be comparable to that of
the Bohr radius (rB) of the exciton (i.e. bound electron-hole pair produced by the absorption of a
photon in a semiconductor). This aspect will be discussed later in detail in Sec. 6.1.2.

Conditions of quantum confinement: Size ≈ λDB of electron or hole; size ≈ exciton Bohr radius
(rB) in a semiconductor nanoparticle.

3.1.3 2D-Quantum Well: Quantum Confinement along One Direction

Let us consider a 2D-quantum well, where the carrier is allowed to move freely in the xy-plane while
its motion is restricted along the z-axis. Then the quantised energy levels of the carrier (say electron)
can be obtained by solving the following 1D-form of the time-independent Schrödinger equation.
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Fig. 3.1.3.1  Particle in a box model to describe the fate of electrons in nanoparticles.

It is a problem similar to ‘particle in a box’ (Fig. 3.1.3.1) and V(z) is zero within the box which
extends z = 0 to z = Lz. Solving the Schrödinger equation under the boundary conditions and infinite
depth approximation, we get:
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