- *Notes:* 1. For main reinforcement up to 12 mm diameter bars for mild exposure the nominal cover may be reduced by 5 mm (i.e. 15 mm).
 - 2. Minimum concrete cover should not deviate from the required by (+) 10 mm to (-) 0 mm.
 - 3. Where concrete grade is M35 and above, for severe and very severe exposure conditions, a reduction of 5 mm may be allowed.

	Bea	ims	Slabs		Ribs		
Fire	Simply	Conti-	Simply	Conti-	Simply	Conti-	Columns
resistance	supported	nuous	supported	nuous	supported	nuous	(mm)
(hours)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
0.50	20	20	20	20	20	20	40
1.00	20	20	20	20	20	20	40
1.50	20	20	25	20	35	20	40
2.00	40	30	35	25	45	35	40
3.00	60	40	45	35	55	45	40
4.00	70	50	55	45	65	55	40

 Table 1.7(b):
 Nominal cover for specified period of fire resistance (IS:456-2000)

- *Notes:* 1. The nominal covers given relate to specifically to the minimum member dimensions.
 - 2. Cases below bold line require extra attention.

1.3.10 Mix Design (Mix Proportions), W/C Ratio and Concrete Grade

To achieve durability of cement concrete, we need careful selection of mix proportions and type of materials. Mix design for durability is based on various considerations as given in Tables 1.4–1.7 derived from IS:456-2000.

For 20 mm nominal maximum size of aggregate for different grades of cement concrete for various exposure conditions, minimum cement content and maximum W/C ratio limits are given in Table 1.8 for suitable durability.

Concrete ingredients shall be mixed in a mechanical mixer. The mixer should comply with Indian standards 1791 and 12119. The mixer shall be fitted with water measuring (metering) device. The mixing shall be continued until there is uniform distribution of ingredients and the mass is homogeneous and of uniform colour and consistency.

Exposure conditions	Grade of concrete	Minimum cement content (kg/m ³)	Maximum W/C ratio by mass
Mild	M20	300	0.55
Moderate	M25	300	0.50
Severe	M30	320	0.45
Very severe	M35	340	0.45
Extreme	M40	360	0.40

Table 1.8: Minimum cement content and maximum W/C ratio in RCC (IS:456-2000)

structures adjacent to the joint should preferably be supported on separate columns or walls but not necessarily separate foundations.

1.5.3 Stresses and Design

Various design stresses and permissible stresses are specified in different Tables 1.12–1.19.

Shear reinforcement is provided as per design shear strength of concrete (τ_c) in limit state design method (Table 1.12). In working stress method, the shear reinforcement is determined by considering permissible shear stress (Table 1.16).

% Steel	Grade of concrete						
$\frac{100 A_{\rm s}}{bd}$	M15	M20	M25	M30	M35	M40 and above	
≤ 0.15	0.28	0.28	0.29	0.29	0.29	0.30	
0.25	0.35	0.36	0.36	0.37	0.37	0.38	
0.50	0.46	0.48	0.49	0.50	0.50	0.51	
0.75	0.54	0.56	0.57	0.59	0.59	0.60	
1.00	0.60	0.62	0.64	0.66	0.67	0.68	
1.25	0.64	0.67	0.70	0.71	0.73	0.74	
1.50	0.68	0.72	0.74	0.76	0.78	0.79	
1.75	0.71	0.75	0.78	0.80	0.82	0.84	
2.00	0.71	0.79	0.82	0.84	0.86	0.88	
2.25	0.71	0.81	0.85	0.88	0.90	0.92	
2.50	0.71	0.82	0.88	0.91	0.93	0.95	
2.75	0.71	0.82	0.92	0.94	0.96	0.98	
3.00 and above	0.71	0.82	0.92	0.96	0.99	1.01	

Table 1.12: Limit state design shear strength of concrete (τ_c)

Table 1.13: Maximum limit state design shear stress, $\tau_{c max}$ (N/mm²)

Concrete grade	M15	M20	M25	M30	M35	M40 and above
$\tau_{c max} (N/mm^2)$	2.5	2.8	3.1	3.5	3.7	4.0

Shear reinforcement shall be provided to carry a shear force equal to $(V_u - \tau_c \cdot b \cdot d)$. V_u is the shear force and τ_c is the design shear stress for the given grade of concrete and % age of steel reinforcement. The strength of shear reinforcement V_{us} shall be calculated as below:

(a) For vertical stirrups:
$$V_{\rm us} = \frac{0.87A_{\rm sv} \cdot f_{\rm y} \cdot d}{S_{\rm v}}$$
 ... Eq. (1.5)

(b) For inclined stirrups:
$$V_{\rm us} = \frac{0.87 f_{\rm y} \cdot A_{\rm sv} \cdot d}{S_{\rm v}} (\sin \alpha + \cos \alpha)$$
 ... Eq. (1.6)

(c) For single bar or single group of bars: $V_{us} = 0.87 f_y \cdot A_{sv} \cdot \sin \alpha$... Eq. (1.7)

where,

- A_{sv} = Total cross-sectional area of stirrup legs or bent up bars within a distance (S_v)
- S_v = Spacing of the stirrups or bent up bars along the length (span) of the member
- τ_c = Shear strength of the concrete (design shear strength in limit state and permissible shear stress in working stress)
- b = Breadth of the member which for flanged beams shall be taken as the breadth of the web $(b_{\rm w})$
- d = Effective depth of the section
- σ_{sv} = Permissible tensile stress in shear reinforcement which shall not be taken greater than 230 N/mm² while in limit state it shall be taken as $0.87 f_v N/mm^2$
 - α = Angle between the inclined stirrups or bent up bars and the axis of the member not less than 45°

S.	Type of stress in steel	Perm	Permissible stresses (N/mm ²)				
No.	reinforcements	MS grade I	Medium tensile	HYSD Fe 415			
		(IS:432)	steel (IS:432)	(IS:1786)			
	Tensile stress (σ_{st}, σ_{sv})		Half yield stress				
1	(a) Diameters up to 20 mm	140	subject to a	230			
	(b) Diameters over 20 mm	130	maximum 190	230			
2	Compressive stress in						
	columns (direct) σ_{sc}	130	130	190			
3	Compressive stress in bars in	The calculated compressive stress in the sur-					
	bending elements (beams, slabs)	rounding concrete multiplied by 1.5 times the					
	when the compressive resistance	modular ratio ($\sigma_{cbc} \times 1.5$ m) or σ_{sc} whichever is					
	of the concrete is taken into	lower					
	account						
4	Compressive stress in bars in						
	bending elements (beams, slabs)						
	when the compressive resistance		Half the				
	of the concrete is not taken into		guaranteed yield				
	account		stress subject to				
	(a) Up to 20 mm diameter	140	a maximum of	190			
	(b) Over 20 mm diameter	130	190	190			

Table 1.18: Permissible stresses in steel reinforcement (working stress method)

- *Notes:* (i) For HYS deformed bars of grade Fe 500, the permissible stress in direct tension and flexural tension shall be $0.55 f_y$. The permissible stress for shear and compression reinforcement shall be same as for grade Fe 415.
 - (ii) For the purpose of standard IS:456, the yield stress of steels for which there is no clearly defined yield point, should be taken to be 0.20% proof stress.

and height above ground level. The wind load on the structure also depends on the shape of the structure and plan dimensions. Relevant wind pressure coefficients are adopted according to the shape of the structure in plan. These coefficients are also specified in IS:875-1987 (Part III). Wind loads on sloping roofs may vary according to the slope of the roof slab.

India is divided in different zones according to intensity of earthquake. Earthquake induces acceleration in the structure due to vibration. This causes horizontal and vertical forces on the structure. According to the location zone, the acceleration coefficients are specified in IS codes. From these coefficients, horizontal and vertical forces caused by earthquake are calculated by multiplying the mass with the respective acceleration coefficients (Fig. 1.1).

Force = mass	×	acceleration	coefficient
--------------	---	--------------	-------------

Fig. 1.1 Earthquake forces on the structure

Horizontal force (*H*) acting at $= \max \times \text{horizontal acceleration coefficient}$ mass centre of structure $= (m \times \alpha_H)$ Vertical force (*V*) acting at the $= \max \times \text{vertical acceleration coefficient}$ mass centre of structure $= (m \times \alpha_V)$

These loads shall be considered in design of tall structures, OHSR, multistoreyed buildings, etc.

1.7 ARRANGEMENT OF REINFORCEMENT

(a) Slabs

Minimum reinforcements, cover, and spacing of main and secondary (distribution) bars are shown in Fig. 1.2 as per IS:456-2000.

Fig. 1.2 Reinforcement details in RCC slab

Contents

<i>Foreword</i> by Ashok Kumar Basa <i>Preface</i>	v vii
Unit I: General Requirements of RCC Designs	
1. General Requirements of Reinforced Cement Concrete	
1.1 Introduction	1
1.2 Materials for Reinforced Cement Concrete	2
1.3 Cement Concrete	2
1.4 Steel Reinforcement	8
1.5 Requirements and Stresses of Steel Reinforcement	9
1.6 Design Loads	17
1.7 Arrangement of Reinforcement	22
Summary	25
Practice Questions	26
2. Design Philosophies	
2.1 Introduction	29
2.2 Working Stress Method (Linear Elastic Theory)	30
2.3 Ultimate Load Method	32
2.4 Limit State Method	33
2.5 Characteristic Strength and Design Strength	34
2.6 Idealised Stress–Strain Curves for Materials	36
Summary	38
Practice Questions	40
3. Working Stress Method	
3.1 Introduction	44
3.2 Assumptions in Linear Elastic Theory of RC Beam Sections	46
3.3 Equivalent Areas of Composite Sections	46
3.4 Neutral Axis in Bending Elements	48
3.5 Analysis and Design of Reinforced Beam Sections (Singly Reinforced)	51
3.6 Doubly Reinforced Beam Sections	59
3.7 Analysis and Design of T-beam Sections	69
Summary	85
Practice Questions	88

Unit II : Limit State Design of Beams

4. Limit State Design of Beam Section for Bending Moment 4.1 Introduction 98 4.2 Limit States of Safety and Serviceability 99 4.3 Characteristic and Design Values with Partial Safety Factors 99 4.4 Assumptions in Limit State of Collapse in Flexure 101 4.5 Stress Block Parameters 104 4.6 Design Parameters of Stress Block (IS:456-2000) 106 4.7 Analysis of Singly Reinforced Rectangular Sections 107 4.8 Moment of Resistance $(M_{\rm u})$ as per (IS:456–2000) 109: 4.9 Design of Beam Section (Singly Reinforced) 111 4.10 Doubly Reinforced Rectangular Sections 118 4.11 Design of Doubly Reinforced Beam Sections 121 4.12 Analysis and Design of Flanged Beam Sections 127 Summary 143 Practice Questions 146 5. Limit State Design for Shear, Torsion, Bond and Development Length of Reinforcement in Beams 5.1 Limit State Design for Shear 160 5.2 Limit State Design for Torsion 169 5.3 Limit State Design for Bond 177 Summary 189 Practice Questions 191 Limit States of Serviceability for Bending Elements 6.1 Introduction 200 6.2 Limit State for Deflection 201 6.3 Cracking in Concrete Elements 206 217 Summary Practice Questions 218

Unit III: Limit State Design of Slabs

7. Limit State Design of Slabs	
7.1 Limit State Design of One-Way Simply Supported Slabs	222
7.2 Limit State Design of One-Way Continuous Slab	230
7.3 Limit State Design of Two-Way Simply Supported Slabs	237

349 355

367 378

380

7.4	Flat Slab	249
	Summary	264
	Practice Questions	267

Unit IV: Design of Compression Members (Columns)

8. Limit State Design of Columns

8.1	Introduction	274
8.2	Limit State Design of Columns	278
	Summary	298
	Practice Questions	300

Unit V: Design of Foundations

9. Limit State Design of Footings	
9.1 Introduction	306
9.2 Design of Shallow Foundations	309
9.3 Pile Foundation	331
Summary	338
Practice Questions	341

Unit VI: Retaining Structure

10. Limit State Design of Retaining Walls 10.1 Introduction 10.2 Design of Cantilever Retaining Walls 10.3 Counterfort Retaining Walls Summary Practice Questions

11. Water Retaining Structures (Tanks)

11.1	Introduction	388
11.2	Design of Circular Tanks Resting on Ground	391
11.3	Rectangular Tanks Resting on Ground	396
11.4	Underground Tanks	405
11.5	Overhead Service Reservoirs (OHSR)	413
11.6	Design of Tower/ Shaft for OHSR	441
	Summary	464
	Practice Questions	470

UNIT VII: Miscellaneous Structures

12. Introduction to Prestressed Structural Concrete	
12.1 Introduction	490
12.2 Basic Concepts	491
12.3 Classification and Types of Prestressing	496
12.4 Pretensioning and Post-tensioning Systems	497
12.5 End Anchorages and Prestressing Systems	498
12.6 Post-tensioning System and Anchorages	499
12.7 Losses of Prestress	504
Summary	528
Practice Questions	530
13. Design of RCC Staircases	
13.1 Introduction	539
13.2 Design of Staircase	540
13.3 Loads on Staircase	540
13.4 Effective Span of Stairs	541
Summary	551
Practice Questions	552
14. Design of RCC Culverts	
14.1 Introduction	558
14.2 Loads	559
14.3 Design of Slab Culvert	565
14.4 Box Culvert	571
Summary	581
Practice Questions	582
15. Yield Line Analysis of Slabs	
15.1 Introduction	587
15.2 Assumptions	589
15.3 Characteristics	589
15.4 Sign Conventions and Yield Line Patterns	589
15.5 Moment Capacity across a Yield Line	589
15.6 Analysis of Ultimate Load Capacity of Slabs	592
15.7 Isotropically Reinforced SS Square Slab with U.D.L.	593
Summary	611
Practice Questions	613
Key to Objective Questions	619
Glossary	623
Index	628