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Rule 2: If /\'1 is of the form M = yfl (x.y) and N is of the form

N = Xf2 (x.y), and Mx - Ny ~ 0, then (Mx - Ny)-l be an
integrating factor (LF.).

Remark: If Mx - Ny = 0 i.e. M = Y, then on substituting it in equation
N x

(1), we get Y.dx+dy=O =) y.dx+xdy=O
x

On integrating, we get the required solution xy = c (always in this
case).

Rule 3: If the given equation Mdx+ Ndy=O is homogenous

equation and Mx + Ny ~ 0 , then (Mx + Ny)-t is an I. F.

Remark: If Mx + Ny =0 i.e., M =_Y, then on substituting it in
N x

equation (1), we get -Ydx+dy= 0 ~ dx = dy
x x Y

On integrating, we get the required solution x =cy (always in this
case).

Rule 4: If (aa~-~~ )/N is a function of x alone, say f(x), then I.E

is equal to eJf(x)dx •

Rule 5: If (aa~-~~ )!M is a function of y alone, say fey), then

LF. is equal to eJf(y)dy •

Rule 6: If the equation :~ = f(x, y) is of the form

Xnyb [My dx + Nx dy] + xTyS [pydx + qxdy] = 0,

where a, h, M, N, r, s, p and q are all constants, then

I.F.=xl'yk, where hand k are chosen such that after
nlultiplying the given differential equation by LF. it becomes
exact. This exact differential equation can be solved by the
above described method.

Example 10: Solve (x2- ay)dx = (ax - y2)dy.

Solution: Given equation. can be written as

(x2 - ay)dx + (y2 - ax)dy = 0 ...(1)
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1.2.6 Type 6. Standard Linear Differential Equations

A differential equation of the form dd
Y

+Py=Q, where P and Q are
r

the functions of x alone, is called a linear differential equation.
Solution of linear equation. To solve such type of differential

equation we multiply both sides by I.F. =eJPdX

JPdx JPdx fPdx
Wehavee .dy+e .Pydx=e Qdx

Hence on integrating both sides, we get

JPdx J[Q JPdxJd Cye = .e x+

which is the required solution of the given linear differential
equation.

2 dy 2
Example 18: Solve (1 + x )-+ 2xy - 4x = O.

dx

dy 2x 4x2

Solution: We can write -d +-12 Y= -1--2 , which is linear differen-
x +x +x

tial equation.

2x 4x2

Here P=--2' Q=--2·
l+x l+x

JPdx f~dX 2

Hence, integrating factor (I.F.) = e =e l+x = e1og(1+x ) =1+ x2
•

Hence, the solution is given by I.F. x Y =JI.F. x Qdx + c , which
gives

Example 19: Solve (1 + y2)dx =(tan-1 y - x)dy.

S I · W . dx x tan -1 Y h· h· 1· .o utlon: e can wrIte - + --2 = 2 ' W IC IS Inear equatIon
dy 1+ Y 1+ Y

inx.
J dy

Thus I F 1+y2 d tan-til..=e .y=e·"

-1 tan-1 y-1
and the solution is etan Yx=J--e tan Ydy+c

1+y2
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1 dy dt dt t .
Let logV =t and - - =-, then (2) becomes - +- = eX ••. (3)

.. Y dx dx dx X

J!dx
Now I.F. =e x = e10gx = x.

Hence, the solution is x .log Y = fxe'dx + c

==> x log Y = xex
- eX + c.

dy tan y
Example 24: Solve - - -- = (1 + x) eX sec y.

dx l+x
... (1)

Solution: On dividing by sec y, we get cosydy - siny ==(l-x)e' ...(2)
dx l+x

. dy dt
Let SIn y =t ==> cos Y- =-, then (2) becomes

dx dx

dt t.., ----=(l+x)e X

~ dx 1+ x .

J--!.-.dx 1
Now I.F. = e l+x =e- 1og(1+x) =--.

l+x

Hence, the solution is _1_ siny = f-1-(1 + x)eX dx + c
l+x l+x

siny x
--=e +c.
l+x

xdx+ydy
Example 25: Solve =

xdy-ydx
...(1)

=

=

Solution: Let x=rcose, y = rsine, then we have

ax ax . ay . ay- = case - = -rSIne - = SIne - = rcose
ar ' ae I ar ' ae

By advanced calculus dx dy= J drde

ax ax
ar ae dr de
ay ay
ar ae

I

cose -rsinel
drde

sine rcose
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Steps for finding the orthogonal trajectorY.for cartesian curves are as fo1101us:
Step 1. Differentiate given family of curve!(x, y, c) = a\vith respect to
x, where c is parameter.

Step 2. Find the differential equation of the curve by eliminating
parameter cbetwee11 the equatio11 of the given family of curves and the
equation obtained in step 1.

Step 3. Replace dy by - dx to obtain the differential equation of the
dx dy

orthogonal trajectories.
Step 4. Solve tl1is new differential equation to obtain the equation of
orthogonal trajectories.
(ii) Polar coordinates: If \V is the angle from t11e polar radius to the

tangent, then tan 'If = r:: ' as shown in Fig. 1.2.

y

rde

,,,,,,,,,,,,,,,,

Fig. 1.2

Steps for finding the orthogonal trajectory for polar curves are as .(OUOIUS:

Step 1. Differentiate the polar equation of the family of curvesf(r, 8, a) =0,
where a. being the parameter ,vith respect to 8.

Step 2. Find the differential eqllation of the curve by eliminating
parameter a between the equation of the given family of curves and

the equation obtained in step 1. Find r:re.

Step 3. Replace expression rde in the differential equation of the
dr

dr
given family by its negative reciprocal --d to obtain the differential

r e
equations of the orthogo11al trajectories.
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