Rule 2: If *M* is of the form $M = yf_1(x,y)$ and *N* is of the form $N = xf_2(x,y)$, and $Mx - Ny \neq 0$, then $(Mx - Ny)^{-1}$ be an integrating factor (I.F.).

Remark: If Mx - Ny = 0 *i.e.* $\frac{M}{N} = \frac{y}{x}$, then on substituting it in equation (1), we get $\frac{y}{x} dx + dy = 0 \implies y dx + x dy = 0$

On integrating, we get the required solution xy = c (always in this case).

Rule 3: If the given equation Mdx + Ndy = 0 is homogenous equation and $Mx + Ny \neq 0$, then $(Mx + Ny)^{-1}$ is an I. F.

Remark: If Mx + Ny = 0 *i.e.*, $\frac{M}{N} = -\frac{y}{x}$, then on substituting it in

equation (1), we get $-\frac{y}{x}dx + dy = 0 \Rightarrow \frac{dx}{x} = \frac{dy}{y}$

On integrating, we get the required solution x = cy (always in this case).

- **Rule 4:** If $\left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x}\right) / N$ is a function of *x* alone, say *f*(*x*), then I.F. is equal to $e^{\int f(x)dx}$.
- **Rule 5:** If $\left(\frac{\partial M}{\partial x} \frac{\partial N}{\partial y}\right) / M$ is a function of y alone, say f(y), then I.F. is equal to $e^{\int f(y)dy}$.
- **Rule 6:** If the equation $\frac{dy}{dx} = f(x, y)$ is of the form $x^a y^b [My \, dx + Nx \, dy] + x^r y^s [pydx + qxdy] = 0$, where a, b, M, N, r, s, p and q are all constants, then $I.F. = x^h y^k$, where h and k are chosen such that after multiplying the given differential equation by I.F. it becomes exact. This exact differential equation can be solved by the above described method.

Example 10: Solve $(x^{2} - ay)dx = (ax - y^{2})dy$.

Solution: Given equation can be written as

$$(x^{2} - ay)dx + (y^{2} - ax)dy = 0 \qquad ...(1)$$

1.2.6 Type 6. Standard Linear Differential Equations

A differential equation of the form $\frac{dy}{dx} + Py = Q$, where *P* and *Q* are the functions of *x* alone, is called a linear differential equation.

Solution of linear equation. To solve such type of differential equation we multiply both sides by $I.F. = e^{\int Pdx}$

We have
$$e^{\int Pdx} \cdot dy + e^{\int Pdx} \cdot Py \, dx = e^{\int Pdx} Q \, dx$$

Hence on integrating both sides, we get $y e^{\int Pdx} = \int \left[Q \cdot e^{\int Pdx}\right] dx + C$

which is the required solution of the given linear differential equation.

Example 18: Solve $(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$.

Solution: We can write $\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{4x^2}{1+x^2}$, which is linear differential equation.

Here $P = \frac{2x}{1+x^2}$, $Q = \frac{4x^2}{1+x^2}$.

Hence, integrating factor (*I.F.*) = $e^{\int Pdx} = e^{\int \frac{2x}{1+x^2}dx} = e^{\log(1+x^2)} = 1 + x^2$.

Hence, the solution is given by $I.F. \times y = \int I.F. \times Qdx + c$, which gives

$$(1+x^{2})y = \int (1+x^{2})\frac{4x^{2}}{(1+x^{2})}dx + c$$
$$(1+x^{2})y = \frac{4x^{3}}{3} + c.$$

Example 19: Solve $(1 + y^2)dx = (\tan^{-1} y - x)dy$.

Solution: We can write $\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2}$, which is linear equation

in x.

⇒

Thus $I.F. = e^{\int \frac{dy}{1+y^2}} dy = e^{\tan^{-1}y}.$

and the solution is $e^{\tan^{-1}y}x = \int \frac{\tan^{-1}y}{1+y^2}e^{\tan^{-1}y}dy + c$

Let
$$\log y = t$$
 and $\frac{1}{y} \frac{dy}{dx} = \frac{dt}{dx}$, then (2) becomes $\frac{dt}{dx} + \frac{t}{x} = e^x$...(3)
Now $I.F. = e^{\int \frac{1}{x} dx} = e^{\log x} = x$.
Hence, the solution is $x . \log y = \int x e^x dx + c$
 $\Rightarrow x \log y = x e^x - e^x + c$.
 $\frac{dy}{dx} = \tan y$

Example 24: Solve $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y.$...(1)

Solution: On dividing by sec *y*, we get $\cos y \frac{dy}{dx} - \frac{\sin y}{1+x} = (1-x)e^x \dots (2)$

Let
$$\sin y = t \implies \cos y \frac{dy}{dx} = \frac{dt}{dx}$$
, then (2) becomes

$$\frac{dt}{dx} - \frac{t}{1+x} = (1+x)e^{x}.$$
Now $I.F. = e^{\int -\frac{1}{1+x}dx} = e^{-\log(1+x)} = \frac{1}{1+x}.$
Hence, the solution is $\frac{1}{1+x}\sin y = \int \frac{1}{1+x}(1+x)e^{x} dx + c$
 $\Rightarrow \quad \frac{\sin y}{1+x} = e^{x} + c.$

Example 25: Solve $\frac{x \, dx + y \, dy}{x \, dy - y \, dx} = \sqrt{\frac{a^2 - x^2 - y^2}{x^2 + y^2}}$...(1)

Solution: Let $x = r \cos \theta$, $y = r \sin \theta$, then we have

$$\frac{\partial x}{\partial r} = \cos\theta, \frac{\partial x}{\partial \theta} = -r\sin\theta, \frac{\partial y}{\partial r} = \sin\theta, \frac{\partial y}{\partial \theta} = r\cos\theta$$

By advanced calculus $dx dy = J dr d\theta$

$$= \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} dr d\theta$$
$$= \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} dr d\theta$$
$$= r(\cos^2\theta + \sin^2\theta) dr d\theta = r dr d\theta$$

Steps for finding the orthogonal trajectory for cartesian curves are as follows: **Step 1.** Differentiate given family of curve f(x, y, c) = 0 with respect to x, where c is parameter.

Step 2. Find the differential equation of the curve by eliminating parameter *c* between the equation of the given family of curves and the equation obtained in step 1.

Step 3. Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ to obtain the differential equation of the orthogonal trajectories.

Step 4. Solve this new differential equation to obtain the equation of orthogonal trajectories.

(ii) Polar coordinates: If ψ is the angle from the polar radius to the tangent, then $\tan \psi = \frac{rd\theta}{dr}$, as shown in Fig. 1.2.

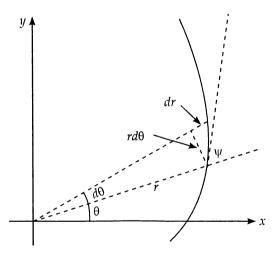


Fig. 1.2

Steps for finding the orthogonal trajectory for polar curves are as follows:

Step 1. Differentiate the polar equation of the family of curves $f(r, \theta, \alpha) = 0$, where α being the parameter with respect to θ .

Step 2. Find the differential equation of the curve by eliminating parameter α between the equation of the given family of curves and the equation obtained in step 1. Find $\frac{rd\theta}{dr}$.

Step 3. Replace expression $\frac{rd\theta}{dr}$ in the differential equation of the given family by its negative reciprocal $-\frac{dr}{rd\theta}$ to obtain the differential equations of the orthogonal trajectories.

Contents

Pref	ace		υ
Cha	pter 1: I	ntroduction to Differential Equations	1–31
1.1	Introd	uction	1
	1.1.1	Formation of Differential Equations	2
	1.1.2	Solution of Differential Equations	3
1.2	Differe	ential Equations of First Order and First Degree	3
	1.2.1	Type 1. Variables Separable Form	3
	1.2.2	Type 2. Homogeneous Equations	4
	1.2.3	Type 3. Equations Reducible to Homogeneous	6
	1.2.4	Type 4. Exact Differential Equations	9
	1.2.5		
	1.2.6		15
	1.2.7	Type 7. Equations Reducible to Linear	
		Differential Equations	16
	1.2.8	Type 8. Change of Variables	17
1.3	Ortho	gonal Trajectory	22
	1.3.1	Method of Finding Orthogonal Trajectories	22
Cha	pter 2: I	Differential Equations of First Order but not of	
	J	First Degree	32–51
2.1	Introd	uction	32
2.2	Equati	ions Solvable for <i>p</i>	32
2.3		ons Solvable for y	36
2.4	Equati	ions Solvable for <i>x</i>	39
2.5	Clairaut's Equation		
	2.5.1	Equations Reducible to Clairaut's Form	43
2.6	Singul	ar Solutions	45
	2.6.1	Method to Find the Singular Solution	45
	2.6.2	Singular Solution of Clairaut's Equation	46
Cha		Linear Differential Equations of <i>n</i> th Order with	
	(Constant Coefficients	52-104
3.1.	Introd	uction	52
	3.1.1	The Operator D	53
3.2	Depen	dent and Independent Solutions of Linear	
	Differential Equations		
	3.2.1	Linearly Dependent Solutions	53
	3.2.2		53
	3.2.3		
	3.2.4	The Wronskian	53
	3.2.5	Derivation of a Differential Equation	56

3.3		on of Linear Differential Equations	65
	3.3.1	Complementary Function	67
	3.3.2	Auxiliary Equation	67
	3.3.3	Rules for Finding the Complementary Function	67
3.4	Rules f	for Finding the Particular Integral (P.I.)	74
	3.4.1	Case I. Particular Integral when $Q = e^{ax}$	74
	3.4.2	Case II. Particular Integral when	
		$Q = \sin(ax+b)$ or $\cos(ax+b)$	77
	3.4.3	Case III. When $Q = x^m$, where <i>m</i> Being a Positive Integer	79
	3.4.4	Case IV. Particular Integral when $Q = e^{ax}V$	80
	3.4.5	Case V. When $Q = xV$	82
	3.4.6	Case VI. When Q is Any Other Function of x	82
3.5		geneous Linear Differential Equations	
		Cauchy Equations)	88
3.6		dre's Linear Differential Equations	88
3.7		aneous Linear Differential Equations with	
		unt Coefficients	93
Char	oter 4: I	Linear Differential Equations of Second Order	
	v	vith Variable Coefficients 105-	-153
4.1	Introd	uction	105
4.2	Compl	lete Solution of $y'' + Py' + Qy = R$ in Terms of	
	One K	nown Integral Belonging to the Complementary Function	105
	4.2.1	Rules for Getting an Integral <i>u</i> of	
		Complementary Function (C.F.)	106
	4.2.2	Working Rule for Finding Complete Primitive Solution	107
4.3	Norma	al Form (Removal of First Order Derivative)	116
4.4	Chang	e of Independent Variable	123
4.5	Metho	d of Variation of Parameters	132
4.6	Differe	ential Equations of Other Types	141
	4.6.1	Equations of the Form $y'' = f(y)$	141
	4.6.2	Equations of the Form $\frac{d^2y}{dx^2} = f(x)$	143
	4.6.3	Equations of the Form $\frac{d^n y}{dx^n} = f(x)$	144
	4.6.4	Equations of the Form Which Does Not Contain y Directly	144
	4.6.5	Equations of the Form Which Does Not Contain <i>x</i> Directly	145
	4.6.6	Equations of the Form $f\left(\frac{d^n y}{dx^n}, \frac{d^{n-1} y}{dx^{n-1}}, x\right) = 0$	145
	4.6.7	Equations of the Form $f\left(\frac{d^n y}{dx^n}, \frac{d^{n-2} y}{dx^{n-2}}, x\right) = 0$	145
4.7	Metho	d of Operational Factors	151

Chap	ter 5: Se	eries Solution of Second Order ODEs:	
•		egendre and Bessel Functions	154-251
5.1	Introdu	ction	154
5.2	Series S	olution of Differential Equations	155
	5.2.1	Ordinary Point	155
	5.2.2	Linearly Dependent and Linearly	
		Independent Series	155
	5.2.3	Method to Find the Series Solution When $x = 0$ is a	
		Ordinary Point of the Differential Equation	155
5.3	Singula		161
5.4		of Series Solution When $x = 0$ is a Regular Singular	
		the Equation (Method of Frobenius)	162
5.5		re's Equation	179
	5.5.1	Legendre's Polynomials of First Kind $P_n(x)$	181
	5.5.2	Legendre's Polynomials of Second Kind $Q_n(x)$	182
	5.5.3	Generating Function for $P_{\mu}(x)$	182
	5.5.4	Orthogonal Properties of Legendre's Polynomials	184
	5.5.5	Recurrence Formulae for Legendre's Polynomials	185
	5.5.6	Rodrigues' Formula for $P_n(x)$	187
	5.5.7	Beltrami's Result	192
	5.5.8	Christoffel's Expansion Formula	192
	5.5.9	Expansion of a Function	193
	5.5.10	Christoffel's Summation Formula	193
	5.5.11	Laplace's First Integral for $P_n(x)$	194
	5.5.12	Laplace's Second Integral for $P_n(x)$	195
5.6		Differential Equation	208
	5.6.1	Integration of Bessel's Equation in Series for $n = 0$	210
	5.6.2	Bessel Function of the Second Kind of Order <i>n</i>	212
	5.6.3	Recurrence Formula for $J_n(x)$	213
	5.6.4	Generating Function for $J_{n}(x)$	217
	5.6.5	Orthogonality of Bessel's Functions	218
	5.6.6	Bessel's Integral	220
	5.6.7	Equations Reducible to Bessel's Equation	222
	5.6.8	Jacobi Series	224
5.7		d Bessel's Equation	241
5.8		Bei Functions	242
5.9	Fourier	-Bessel Expansion of $f(x)$	243
Chap	ter 6: O	rthogonality of Functions and Sturm-Liouvill	e
•	P	roblems	252-270
6.1	Introdu	ction	252
6.2	Some B	asic Definitions	252
	6.2.1	Inner Product	252
	6.2.2	Orthogonality	252
6.3		onal Set of Functions	253
6.4		onal with Respect to a Weight or Density Function	253
6.5		onal Set of Functions with Respect to a	
		Function	253
6.6	Orthon	ormal Set of Functions	253

6.7	Orthon	ormal Set of Functions with Respect to a	
		t Function	254
6.8	Bounda	ary Value Problems	258
6.9	Sturm-Liouville's Equation		
6.10		onality of Eigen Functions	260
6.11		ljoint Operator	261
Chap	ter 7: P	artial Differential Equations of First Order	271–302
7.1	Introdu	-	271
7.2		ication of First Order PDEs	271
	7.2.1	Linear Equation	271
	7.2.2		272
	7.2.3		272
	7.2.4		272
	7.2.5		272
7.3		ication of Integrals	272
	7.3.1	0	272
	7.3.2	1 0	273
	7.3.3	General Integral	274
7.4		trical Interpretation of Three Types of Integrals	275
	7.4.1	Complete Integral	275
	7.4.2		275
	7.4.3	Singular Integral	276
7.5	Singula	ar Integral from PDEs Directly	276
7.6	0	tion of PDEs by the Elimination of Arbitrary Function	
7.7	Solution of Partial Differential Equations		278
	7.7.1	Equations Solvable by Direct integration	278
7.8	Lagran	ge's Equation	281
7.9		on of Non-linear PDEs of Order One	287
7.10	Standard Forms		
	7.10.1	Standard Form I	291
	7.10.2	Standard Form II	292
	7.10.3	Standard Form III	292
	7.10.4	Standard Form IV	293
Chap	ter 8: P	artial Differential Equations of Second Order	303-371
8.1	Introdu		303
8.2	Classif	ication of Second Order PDEs and Canonical Forms	303
	8.2.1	Classification of Second Order PDEs	303
	8.2.2	Classification of Second Order Linear PDE in \mathbb{R}^2	304
	8.2.3	Reduction to Canonical Forms	305
8.3	Homogeneous Linear Equations with Constant		
	Coefficients		
	8.3.1	To Find Complementary Function	316
8.4.		ılar Integral	317
	8.4.1	P.I. When $V(x, y)$ is Rational Integral of	
		Algebraic Function	318
	8.4.2	P.I. in Case $V(x,y) = \phi(ax+by)$	318
	8.4.3	General Method	319

8.5	Non-ho	mogeneous Linear Equations with Constant Coefficien	ts 320
8.6		lar Integrals	320
8.7	Equatio	ons Reducible to Homogeneous Linear Form	321
8.8	Monge'	's Methods	340
	8.8.1	Monge's Method I	340
	8.8.2	Monge's Method II	355
Chap	ter 9: La	aplace Transform 3	72–417
9.1	Introdu	letion	371
9.2	Some Ir	nportant Definitions	372
	9.2.1	Piecewise (or Sectionally) Continuous Function	372
	9.2.2		373
	9.2.3	Functions of Exponential Order	373
	9.2.4		373
	9.2.5	Null Function	373
9.3	Laplace	Transforms of Some Elementary Functions	375
9.4		y Property of Laplace Transformation	377
9.5		Transform of the Derivative of $F(t)$	385
9.6		alue Theorem	387
9.7	Final Va	alue Theorem	387
9.8	Leibnitz	z Rule for Differentiation	388
9.9	Laplace	Transform of Integrals	388
9.10	Multipl	ication by Powers of t	389
9.11		erse Laplace Transform	394
	9.11.1	Methods of Finding Inverse Laplace Transform	
		(Method of Partial Fractions)	395
	9.11.2	Inverse Laplace Transforms of Derivatives	396
	9.11.3	Multiplication by p	396
	9.11.4	Division by <i>p</i>	397
	9.11.5	Linearity Property	397
	9.11.6	First Shifting Property	397
	9.11.7	Second Shifting Property	398
	9.11.8	Change of Scale Property	398
9.12	Heavisi	de Expansion Formula for Inverse	
	Laplace	Transforms	401
9.13		ution Theorem	402
9.14		Transform of Periodic Function	406
9.15		Transform of Some Special Functions	409
9.16		de Unit Step Function	409
9.17	Unit Im	pulse Function (Dirac-delta Function)	410
	9.17.1	Laplace Transform of the Dirac-delta Function	410
	9.17.2	Laplace Transform of $f(t)\delta(t-a)$	411
Chap	ter 10: A	Applications of Laplace Transformation 4	18–449
10.1	Introdu		418
10.2		n of Differential Equations by Laplace Transform	418
10.3		ns Related to Solutions of Partial Differential Equations	
10.4		tion of Laplace Transform to Solve Integral Equations	437
	10.4.1	Integral Equation	437
	10.4.2	Abel's Integral Equation	438

	10.4.3	Volterra Integral Equation	438
	10.4.4	Fredholm Integral Equation	438
	10.4.5	Integro-differential Equation	438
Chara		ů i	50-487
-			
11.1			450
		c Functions	450
11.3	•	ometric Series	450
	11.3.1	Complex Form of Trigonometric Series	451
11.4	Fourier		451
		Euler's Formulae	452
		Fourier Series for the Functions with Arbitrary Perio	
		Fourier Series for Even Functions	454
		Fourier Series for Odd Functions	455
11.5		et's Conditions	455
11.6		ns with Points of Finite Discontinuities	455
11.7	-	ion of Functions in the Half Range	456
11.8		l's Theorem	457
11.9		ex Form of Fourier Series	458
11.10	Harmon	nic Analysis	459
Chap	ter 12: 🛛	Fourier Transforms and their Applications 4	88-546
12.1	Introdu	ction	488
12.2	Fourier	Integral Formula	488
12.3	Fourier	Transform	489
12.4	The Infi	inite Fourier Sine and Cosine Transforms	490
	12.4.1	Fourier Sine Transform	490
	12.4.2	Fourier Cosine Transform	490
12.5	Lineari	ty Property of Fourier Transform	492
12.6	Change	of Scale Property	493
12.7	Shifting	; Property	493
12.8	Modula	ition Theorems	494
12.9	Some Ir	nportant Integrals	495
12.10	Convol		511
12.11	Parseva	ıl's Identity	512
12.12	Fourier	Transform of the Derivatives	514
12.13	Applica	itions of Fourier Transforms	518
		To Solve Integral Equations	518
		To Solve Differential and Partial Differential Equatio	ns 520
12.14		Fourier Transforms	529
	12.14.1	Finite Fourier Sine and Cosine Transforms	529
	12.14.2	Inversion Formula for Finite Fourier Sine Transform	529
	12.14.3	Inversion Formula for Finite Fourier Cosine Transfor	m 530
	12.14.4	Multiple Finite Fourier Transform	530
	12.14.5	Operational Properties of Finite Fourier Transform	531
	12.14.6	Convolution of Finite Fourier Transform	532
	12.14.7	Finite Fourier Transforms of Partial Derivatives	533