- 9. Arched structures
- 10. Shell structures
- 11. Cylindrical structures
- 12. Folded plate roofs.

1.4 NATIONAL CODES AND HANDBOOKS

Most of the developed countries have prescribed their specific national codes based on the extensive research and practical knowledge. These codes serve as guidelines for the design of reinforced concrete structures. The principal objectives of the codes can be summarized as:

- 1. Provision of adequate safety by ensuring strength, serviceability and durability codifying design procedure, design tables to facilitate easy computations.
- 2. Protection of structural engineers from any liability due to failure of structures caused due to inadequate design and improper materials and lack of proper supervision during construction.
- 3. To provide a uniform set of design guidelines to be followed by various structural designers and engineers in the country.
- 4. To provide simple design procedures, design tables and formulae for easy computations.

The national building codes are periodically revised to reflect the improvements in the quality of materials and design practices evolved as a result of comprehensive research investigations conducted in various institutions in the country and abroad.

In India, the design of reinforced concrete structures should conform to the Indian national code IS:456-2000⁹. The corresponding national codes of the leading countries generally referred to are listed as:

- 1. British code: BS EN:1992-1-1, Euro code-2, Design of concrete structure, general rules and rules for buildings, British Standards Institution, 2004¹⁰.
- 2. American code: ACI:318M-11(metric), Building code requirements for structural concrete, American Concrete Institute, 2005¹¹.
- 3. AS:3800-1988, Concrete structures, Standards Association of Austraila, 1988¹².
- CSA standard: A23.1-00/A23.2-00, Concrete materials and methods of concrete construction/methods of test for concrete, Canadian Standards Associations, Toronto, 2000¹³.

In addition to the abovementioned codes, the following special publications and handbooks are very useful in the design offices of structural engineers:

- 1. SP:16-1980¹⁴: Design aids for reinforced concrete.
- 2. SP:34-1987¹⁵: Handbook of concrete reinforcement and detailing.
- 3. SP:10262-1982¹⁶: Recommended guidelines for concrete mix design.
- 4. Handbook of concrete engineering by Mark Fintel¹⁷.
- 5. Reynolds' reinforced concrete designers' handbook¹⁸.

1.5 PHILOSOPHY OF STRUCTURAL DESIGN

The design philosophy of structural concrete elements has seen significant changes during the last century due to the research investigations by several engineering

Table 1.2: Live loads on structures [(IS:876-1987 (part 2)]			
Loading class	Types of floors	Minimum live load kN/m²	
2	Floors in dwelling houses, tenements, hospital wards, bedrooms and private sitting rooms in hostels and dormitories	2	
2.5	Office floors other than entrance hall floors of light workrooms	2.5-4.0	
3.0	Floors of banking halls, office entrance halls and reading rooms	3.0	
4.0	Shop floors used for display and sale of merchandise, floors of workrooms, floors of classrooms, restaurants, machinery halls, power station etc. where not occupied by plant or equipment	4.0	
5.0	Floors of warehouses, workshops, factories and other buildings or similar category for light weight loads, office floors for storage and filling purposes. Assembly floor space without fixed seating, public rooms in hotels, dance halls and waiting halls	5.0	
7.5	Floors of warehouses, workshops, factories and other buildings or parts of buildings of similar category for medium weight loads	7.5	
10.0	Floors of warehouses, workshops, factories and other buildings or parts of buildings of similar category for heavy weight loads, floors of book stores and libraries	10.0	
Garages (l	ight)		
Floors us Slabs Beams	ed for garages for vehicles not exceeding 25 kN gross weight	4.0 2.5	
Garages ()	heavy)		
Floors used for garages for vehicles not exceeding 40 kN gross weight		7.5	
Stair cases Stairs, landings and corridors for class 2, but not liable to overcrowding Stairs, landings and corridors for class 2 loading but liable to overcrowding and for all other classes		3.0 5.0	
Balcony			
Balconi	es not liable to overcrowding for class 2 loading	3	
Loadin	g for other classes	5	
Balconi	es liable to overcrowding	5	
Roofs			
Types of ro	pofs	Live load in plan kN/m ²	
Flat, slop	ing or curved roofs with slopes upto and including 10 degrees		
a. Acce	ess provided	1.5	
b. Access not provided, except for maintenance			
c. Sloping roof with slope greater than $10^{\circ} - 0.75 \text{ kN/m}^2 \text{ less } 0.001 \text{ kN/m}^2$ for every increase in slope over 10° upto and including 20° and 0.002 kN/m^2 for every degree increase in slope over 20°			

1.6.5 Seismic or Earthquake Loads

Earthquake or seismic loads should be considered in the design of structures located in specific zones in the Indian subcontinent which experience earthquake resulting in lateral loads on the structures. Based on seismic studies, India has been divided into five zones depending upon the severity of the intensity of earthquake prevalent in the zone. Horizontal seismic forces induced due to the earthquake as specified in

Fig. 1.3: Reinforcement specifications in RC columns (IS:456-2000).

1.9 SPECIFICATIONS OF COVER REQUIREMENTS FOR STEEL REINFORCEMENTS

In reinforced concrete structures, sufficient cover of concrete is required to protect the steel reinforcements from exposure to aggressive environmental conditions and

consequent rusting and deterioration of the cross-sectional area. Nominal cover is the design depth of concrete cover to all steel reinforcements including links.

Minimum values of the nominal cover for reinforcement depends upon the exposure conditions and the IS Code requirements for cover are given in Table 1.8. In case of columns, the nominal cover for longitudinal bars should be not less than the diameter of the bar. However, in the case of columns of minimum dimension of 200 mm or less and whose bars do not exceed 12 mm, a nominal cover of 25 mm may be used. In the case of RCC footings under the column, the minimum cover is prescribed as 50 mm.

The Indian standard code also provides for nominal cover requirements to meet specified period of fire resistance as shown in Table 1.9. The values indicate the minimum cover requirements for beams, slabs, ribs and columns for fire resistance varying from 0.5 to 4 hours.

Table 1.8:Nomdurabilityrequi2000, Table 16)	inal cover to meet rements (IS:456-
Exposure	Nominal concrete
-	cover in mm
	not less than
Mild	20
Moderate	30
Severe	45
Very severe	50
Extreme	75

Notes:

- 1. For main reinforcement up to 12 mm diameter bar for mild exposure, the nominal cover may be reduced by 5 mm.
- 2. Unless specified otherwise, actual concrete cover should not deviate from the required nominal cover by +10 mm.
- 3. For exposure condition 'severe' and 'very severe', reduction of 5 mm may be made, where concrete grade is M35 and above.

CHAPTER

Elastic or Working Stress Theory of Reinforced Concrete Sections

2.1 ELASTIC THEORY OF RC SECTIONS

The earliest codified design philosophy by various countries is based on the elastic or working stress theory proposed by Francois Coignet¹ of France, who acquired a patent for reinforced concrete in 1855. The concept of bond between steel rods and the surrounding concrete was propounded by the American lawyer, Thaddeus Hyatt as mentioned by Turneaure² in 1877. Later Koenan of Germany developed the design rules in 1886 as mentioned by Taylor and Thompson³. These fundamental concepts were incorporated by the French Commission as reported by Faber and Bowie⁴ in their design rules for reinforced concrete in 1907 followed by the American Concrete Institute and the American Society of Civil Engineers, jointly developing the first design code for reinforced concrete in 1909 as reported by Adams and Mathews⁵. In the early 20th century, these design principles were recognized as the elastic or working stress theory of reinforced concrete sections^{6,7}.

The success of the elastic theory is attributed to the good bond^{8,9} between concrete and steel resulting in the composite behaviour of the material in an elastic manner under service loads. Working stress method is used not only for reinforced concrete, but also for steel, timber and other metallic structures.

2.2 BASIC ASSUMPTIONS IN ELASTIC THEORY

In the elastic theory, the materials are assumed to behave in a linear elastic manner and the required safety of the structure is ensured by restricting the stresses in concrete and steel to permissible stresses obtained by applying suitable factor of safety to the characteristic strength of the materials. The resulting permissible or working stresses under service loads will be well within the linear elastic range of the materials. The basic assumptions incorporated in the elastic theory of flexure according to the Indian standard code IS:456-2000¹⁰ are as follows:

1. At any cross-section, plane sections before bending remain plane after bending indicating that strain varies linearly over the depth of the section.

Contents

Prelace to the Fourth Edition	v
Preface to the First Edition	ix
Acknowledgements	x
List of Symbols	xvi
	1
1.1 Evolution of Reinforced Concrete	1
1.2 Applications for Reinforced Concrete	2
1.3 Reinforced Concrete Structural Systems	2
1.4 National Codes and Handbooks	3
1.5 Philosophy of Structural Design	3
1.6 Loading Standards	4
1.7 Materials for Reinforced Concrete	7
1.0 Reinforcement Specifications in Structural Concrete Members	13
References	14
Review Questions	16
Objective Questions	16
2. ELASTIC OR WORKING STRESS THEORY OF REINFORCED CONCRETE SECTIONS	18
2.1 Elastic Theory of RC Sections	18
2.2 Basic Assumptions in Elastic Theory	18
2.3 Neutral Axis Depth and Moment of Resistance of Sections	19
2.4 Stresses in Singly Reinforced Rectangular Sections	22
2.5 Balanced, Under-Keinforced and Over-Keinforced Sections	23
References	32
Assignment	32
Review Questions	33
Objective Questions	34
3. PRINCIPLES OF LIMIT STATE DESIGN	36
3.1 Evolution of Limit State Design	36
3.2 Application of Classical Reliability Theory to Limit State Design	37
3.3 Principles of Limit States	38
3.4 Satety Factors	39
3.5 Characteristic and Design Loads	39

xiv Design of Reinforced Concrete Structures	
 3.6 Characteristic and Design Strengths 3.7 Global Factor of Safety References Review Questions Objective Questions 	40 40 41 42 42
 4. FLEXURAL STRENGTH OF REINFORCED CONCRETE SECTIONS 4.1 Introduction 4.2 Flexural Strength of Rectangular Sections 4.3 Ultimate Flexural Strength of Flanged Sections 4.4 Ultimate Flexural Strength of Doubly Reinforced Concrete Sections References Assignment Review Questions Objective Questions 	44 45 49 55 59 60 61 62
 5. SHEAR STRENGTH OF REINFORCED CONCRETE SECTIONS 5.1 Introduction 5.2 Shear Failure Mechanisms 5.3 Nominal Shear Stress 5.4 Design Shear Strength of Concrete 5.5 Design of Shear Reinforcements 5.6 Minimum Shear Reinforcements 5.7 Enhanced Shear Near Supports 5.8 Influence of Axial Force on Design Shear Strength 5.9 Analysis Examples 5.10 Design Examples References Assignment Review Questions Objective Questions 	64 64 66 66 67 68 68 69 69 73 77 77 77 78 79
 6. TORSIONAL STRENGTH OF REINFORCED CONCRETE SECTIONS Introduction Primary and Secondary Torsion Design of Reinforcements for Torsion, Shear and Flexure Analysis Examples Design Examples Design Examples References Assignment Review Questions Objective Questions 	81 81 82 84 89 95 96 97 98
 7. BOND AND ANCHORAGE IN REINFORCED CONCRETE MEMBERS Introduction Mechanisms of Bond Hexural Bond Stress Flexural Bond Stress Factors Influencing Bond Strength Code Requirements for Bond Splicing of Reinforcement Buse of SP:16 for Checking Development Length Analysis Examples 7.10 Design Examples References Assignment Review Questions Objective Ouestions 	100 100 101 103 104 104 105 106 108 111 115 116 117 117

(Contents	XV	
 8. SERVICEABILITY LIMIT STATES 8.1 Introduction 8.2 IS:456 Codified Deflection Limits 8.3 Calculation of Deflections (Theoretical Method) 8.4 Cracking in Structural Concrete 8.5 Analysis Examples References Assignment Review Questions Objective Questions 9.1 Introduction 9.2 Dimensioning of Flexural Members 9.3 Design of Singly Reinforced Beams 9.4 Design of Doubly Reinforced Beams 9.5 Flanged Beams 9.6 Cantilever Beams 9.7 Continuous Beams 9.8 Deep Beams References Assignment Review Questions Objective Questions 10.1 General Aspects 10.1 General Aspects 10.2 Types of Slabs 10.3 Design of Continuous Slabs 10.5 Design of Continuous Slabs 10.7 Design of Flat Slabs 10.8 Yield Line Analysis of Slabs References Assignment Review Questions 	Contents	xv 119 119 120 122 124 126 134 135 136 137 139 140 140 140 144 147 155 165 165 165 167 167 169 169 169 170 173 179 181 184 191 214 214 216 217 219 219	
 Objective Questions 11. LIMIT STATE DESIGN OF COLUMNS AND FOOTINGS 11.1 Introduction 11.2 Failure Modes of Columns 11.3 Classification of Columns 11.4 Effective Length of Columns 11.5 Design of Short Axially Loaded Columns 11.6 Design of Compression Members With Helical Reinforcement 11.7 Columns Subjected to Combined Axial Load and Uniaxial Bendis 11.8 Columns Under Compression and Biaxial Bending 11.9 Slender Columns 11.10 Design Of Footings 11.11 Design Examples References Assignment Review Questions 	ing	217 219 219 220 221 228 228 228 228 230 230 230 232 233 252 252 254 254	
12. DESIGN OF STAIRCASES 12.1 General Features 12.2 Types of Staircases 12.3 Structural Behaviour of Staircases		256 256 256 258	

xvi Design of Reinforced Concrete Structures	
 12.4 Loads on Staircases 12.5 Design Examples 12.6 Design of Helicoidal Staircase References Assignment Review Questions Objective Questions 	261 261 268 274 274 276 277
13. DESIGN OF RETAINING WALLS	279
 13.1 Introduction 13.2 Types of Retaining Walls 13.3 Forces Acting on Retaining Walls 13.4 Stability Requirements 13.5 Design of Retaining Walls 13.6 Basic Design Steps 13.7 Design Examples References Assignment Review Ouestions 	279 279 281 283 285 287 289 300 301 303
Objective Questions	303
 14. PILE AND RAFT FOUNDATIONS 14.1 General Features 14.2 Types of Concrete Piles 14.3 Design of Pile Foundations 14.4 Design of Pile Caps 14.5 Design Examples of Piles and Pile Caps 14.6 Design of Raft Foundations References Assignment Review Questions Objective Questions 	305 305 306 308 311 315 319 320 321 322
15. DESIGN OF TENSION MEMBERS	324
 15.1 Introduction 15.2 Indian and British Standard Code Specifications 15.3 Design of Concrete Members under Direct Tension 15.4 Design Examples References Assignment Review Questions Objective Questions 	324 324 325 327 332 332 333 333 334
16. WORKING STRESS METHOD OF DESIGN	336
 16.1 Introduction 16.2 Working or Permissible Stresses 16.3 General Design Procedure 16.4 Design of Slabs 16.5 Design of Beams 16.6 Design of Columns and Footings 	336 336 337 339 342 347
16.7 Design of Retaining Walls 16.8 Design of Staircases	348
16.9 Design of Domes	353
16.10 Design of Water Tanks 16.11 Design of Rectangular Tanks	357
References	391
Assignment Review Questions	391
Objective Questions	397
Subject Index	399
Author Index	403