
ö 4 Design and Analysis of Algorithms

1.2.3 Best Case Analysis
	 •	 The	best	case	analysis	of	an	algorithm	gives	a	lower	bound	on	

the	resources	required	by	the	algorithm.
	 •	 The	best	case	running	time	of	an	algorithm	determines	the	mini-

mum	amount	of	time	taken	by	the	algorithm	on	any	input.
	 •	 The	best	case	running	time	ensures	that	the	algorithm	runs	the	

fastest.
	 	 In	general	worst	case,	average	case	and	best	case	analyses	are	

done	to	determine	the	running	time	of	algorithms	but	they	can	
be	useful	for	determining	the	requirement	of	memory	or	other	
resources	as	well.

1.3 AMORTIZED ANALYSIS
•	 In	an	amortized	analysis	of	running	time	of	an	algorithm,	the	time	
required	to	perform	a	sequence	of	data	structure	operations	is	av-
eraged	over	all	the	operations	performed.

•	 Amortized	analysis	can	be	used	to	show	that	the	average	cost	of	an	
operation	is	small,	if	one	averages	over	a	sequence	of	operations,	
even	though	a	single	operation	within	the	sequence	might	be	ex-
pensive.

•	 Amortized	analysis	differs	from	average	case	analysis	in	the	sense	
that	amortized	analysis	does	not	 involve	probability.	Amortized	
analysis	guarantees	the	average	performance	of	each	operation	in	
the	worst	case.

1.3.1 Aggregate Analysis
•	 In	an	aggregate	analysis,	for	all	n,	a	sequence	of	n	operations	takes	
worst	case	time	T	(n)	in	total.

•	 Therefore,	 in	 the	worst	case,	 the	average	cost	or	amortized	cost,	
per	operation	is	T	(n)/n.	Here	the	amortized	cost	applies	to	each	
operation,	even	when	there	are	several	types	of	operations	in	the	
sequence.

1.3.2 The Potential Method
•	 The	potential	method	represents	 the	prepaid	work	as	 ‘potential’	
which	can	be	released	to	pay	for	future	operations.

•	 This	potential	is	associated	with	the	data	structure	as	a	whole	rath-
er	than	with	specific	objects	within	the	data	structure.

•	 Let	n	operations	are	performed,	starting	with	an	initial	data	struc-
ture	D0.	

ö 9 Data Structure

i.	 Enqueue	(Q,	10)
	

tail [] = 1Q head [] = 3Q

2 3 4 5

12 8 9

1

4

6 7

10

2 3 4 5

12 8 9

1

4

6 7

10

7 = = 7

ii.	 Enqueue	(Q,	5)
	 2 3 4 5

12 8 9

1

4

6 7

5 10

	 1		7
	 2 3 4 5

12 8 9

1

4

6 7

5 10

tail [] = 2Q head [] = 3Q

Algorithm
	 										Dequeue	(Q)
	 Line	1	 x		Q	[head	[Q]]
	 Line	2	 if			head	[Q]	=	=	length	[Q]
	 Line	3	 	 head	[Q]		1
	 Line	4	 else	 head	[Q]		head	[Q]	+	1
	 Line	5	 return		x

Analysis
•	 The	Dequeue	procedure	takes	O	(1)	time.

Explanation
•	 The	input	to	the	Dequeue	procedure	is	a	queue	Q.	This	procedure	
is	used	to	delete	elements	from	the	queue.

•	 Line	1	indicates	that	x	is	the	element	at	location	Q[head	[Q]].
•	 Line	2	checks	the	if	condition.	If	this	condition	is	true	then	the	ex-
ecution	of	Line	3	takes	place	else	the	control	goes	to	Line	4.

•	 The	if	condition	is	true	when	the	attribute	head	[Q]	is	equal	to	the	
length	of	Q.	It	means	head	[Q]	points	to	the	last	location	of	Q.

ö 16 Design and Analysis of Algorithms

	
7

4

5

16

After	the	execution	of	Line	11	and	Line	12

7

4

5
12

16

8

15

Algorithm
					Right-Rotate	(T,	x)
Line	1	 y		left	[x]
Line	2	 left	[x]		right	[y]
Line	3	 if				right	[y]		nil	[T]
Line	4	 								P	[right	[y]]		x
Line	5	 P	[y]		P	[x]
Line	6	 if				P	[x]	=	=	nil	[T]
Line	7	 								root	[T]		y
Line	8	 elseif				x	=	=	right	[P[x]]
Line	9	 								right	[P[x]]		y
Line	10	 else		 left	[P[x]]		y
Line	11	 right	[y]		x
Line	12	 P	[x]		y

Assumptions
Following	are	the	assumptions	made	from	the	above	algorithm:
	 i.	 y	is	left	child	of	x
	 ii.	 y	is	not	nil	[T]
	 iii.	 Parent	of	root	is	nil		[T]

ö 21 Data Structure

•	 Line	3	makes	pointer	y	to	point	to	the	right	child	of	the	parent	of	
parent	of	z.	It	means	that	y	points	to	the	right	child	of	the	grand-
parent	of	z,	or	in	other	words	y	points	to	z’s	uncle.

•	 Line	4	checks	the	if	condition.	This	condition	is	true	if	the	color	of	
node	y	is	red.	If	this	condition	is	true	then	the	execution	of	Lines	5,	
6,	7	and	8	takes	place.	If	this	condition	is	false	then	the	procedure	
checks	the	elseif	condition	of	Line	9.

•	 Line	5	paints	the	parent	of	z	black.
•	 Line	6	paints	node	y	black.
•	 Line	7	paints	grandparent	of	z	red.
•	 Line	 8	makes	 the	 earlier	 grandparent	 of	 z	 as	 the	 new	 z.	 So	 the	
pointer	z	moves	up	two	levels	in	the	tree.

•	 Line	9	checks	the	elseif	condition.	This	condition	is	true	if	z	is	the	
right	child	of	the	parent	of	z.	If	this	condition	is	false	then	the	con-
trol	goes	to	Line	12.

•	 Line	10	makes	the	earlier	parent	of	z	as	the	new	z.	So	the	pointer	z	
moves	one	level	up	in	the	tree.	

•	 Line	11	calls	the	procedure	Left-Rotate	(T,	z).
•	 Line	12	paints	the	parent	of	z	black.
•	 Line	13	paints	the	grandparent	of	z	red.
•	 Line	14	calls	the	procedure	Right-Rotate	(T,	P	[P[z]]).
•	 Line	15	makes	pointer	y	to	point	to	the	left	child	of	the	parent	of	
parent	of	z.	It	means	that	y	points	to	the	left	child	of	the	grandpar-
ent	of	z	or	in	other	words	y	points	to	z’s	uncle.

•	 Line	16	checks	the	if	condition.	This	condition	is	true	if	the	color	of	
node	y	is	red.	If	this	condition	is	true	then	the	execution	of	Lines	
17,	18,	19	and	20	takes	place.	If	this	condition	is	false	then	the	pro-
cedure	checks	the	elseif	condition	of	Line	21.

•	 Line	17	paints	the	parent	of	z	black.
•	 Line	18	paints	the	node	y	(z’s	uncle)	black.
•	 Line	19	paints	grandparent	of	z	red.
•	 Line	20	makes	 the	 earlier	grandparent	of	z	 as	 the	new	z.	 So	 the	
pointer	z	moves	up	two	levels	in	the	tree.

•	 Line	21	checks	the	elseif	condition.	This	condition	is	true	if	z	is	the	
left	child	of	the	parent	of	z.		If	this	condition	is	false	then	the	control	
goes	to	Line	24.

•	 Line	22	makes	the	earlier	parent	of	z	as	the	new	z.	So	the	pointer	z	
moves	one	level	up	in	the	tree.

•	 Line	23	calls	the	procedure	Right-Rotate	(T,	z).
•	 Line	24	paints	the	parent	of	z	black.

Contents

Preface vii

1. Algorithm 1

1.1 Asymptotic Notation 1
1.2 Worst Case, Average Case And Best Case Analysis 3

1.2.1 Worst Case Analysis 3
1.2.2 Average Case Analysis 3
1.2.3 Best Case Analysis 4

1.3 Amortized Analysis 4
1.3.1 Aggregate Analysis 4

1.3.2 The Potential Method 4

2. Data Structure 6

2.1 Linear Arrays 7

2.2 Queues 7
2.3 Linked Lists 11
2.4 Graphs 11
2.5 Red Black (RB) Trees 12
2.6 B-Trees 54
2.7 Fibonacci Heaps 84

2.8 Data Structures for Disjoint Sets 111

3. Techniques for the Design of Algorithms 112

3.1 Dynamic Programming Approach 112
3.1.1 Matrix Chain Multiplication 113
3.1.2 Longest Common Subsequence (LCS) 131
3.1.3 Knapsack Problem 135

3.2 Greedy Approach 139
3.2.1 Activity Selection Problem 140
3.2.2 Huffman Codes 142
3.2.3 Single-Source Shortest Paths 149

3.2.3.1 Bellman-Ford algorithm 150
3.2.3.2 Dijkstra’s algorithm 159

3.2.4 Minimum Spanning Trees 164
3.2.4.1 Kruskal’s algorithm 165
3.2.4.2 Prim’s algorithm 171

� x Design and Analysis of Algorithms

3.3 Divide and Conquer Approach 178
3.3.1 Quick Sort 178

3.4 Decrease and Conquer Approach 183
3.4.1 Insertion Sort 183
3.4.2 Breadth First Search (BFS) 189
3.4.3 Depth First Search (DFS) 199

3.5 Data Structure Based Approach 210
3.5.1 Heap Sort 211

3.6 Backtracking Approach 234
3.6.1 n-Queens Problem 235
3.6.2 Graph Coloring Problem 235
3.6.3 Hamiltonian Circuits Problem 237

4. Miscellaneous Topics 239

4.1 Counting Sort 239
4.2 Radix Sort 244
4.3 Bucket Sort 245
4.4 String Matching 247
4.5 Methods to Solve Recurrence Relations 250

4.5.1 The Recursion Tree Method 250
4.5.2 The Master Method 251

Bibliography 253

Index 255

