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Computer Arithmetic

and Errors

1
 1.1  introduction

When we solve a mathematical problem on a computer, a step-by-step procedure utilising the 
characteristics of a computer should be evolved. It should be observed that only the arithmetic 
operations may be used even when solving problems involving the operations of calculus.

In numerical analysis, the analysis of error is of great importance. So far we have used various 
data on the assumptions that they are pure and the techniques of their computations are perfect, but 
this is not the case all the time, either the data can be impure or there can be error in the computational 
procedure. In this chapter we shall discuss different types of errors, their determination along with 
the computer arithmetic. This chapter is divided into two sections namely
	 (i)	 Computer arithmetic
	 (ii)	 Errors in Numerical Computations

Now, before discussing the above sections, let us recall some mathematical preliminaries.

 1.2  some mathematical preliminaries
In this section we state some certain mathematical results which are very useful.

	 1.	 Intermediate Theorem. If f(x) is a continuous function in a closed interval [a, b] i.e. 
a [ x [ b and if f(a) and f(b) are of opposite signs then there must exist a number c lies 
between a and b such that f(c) = 0.

	 2.	 Rolle's Theorem. Let f(x) be a function defined on [a, b] such that it is
	 (i)	 continuous in a closed interval [a, b]
	 (ii)	 differentiable in the open interval (a, b)
	 (iii)	 f(a) = f(b)

		  Then there exists at least one value of x say c in (a, b) such that f´(c) = 0
	 3.	 Lagrange's mean value Theorem. Let f(x) be a function defined on (a, b) such that it is 

	 (i)	 continuous in a closed interval [a, b]
	 (ii)	 differentiable in the open interval (a, b)

		  Then there exists at least one value of x say c between a and b such that
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	 4.	 Taylor's series for a function of one variable. If f(x) is continuous and possesses 

continuous derivatives of order n in an interval including x = a, then in that interval.
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			  where Rn(x) is the remainder term given by
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	 5.	 Maclaurin's series. Taking a = 0 in the above Taylor's series we have the following 
Maclaurin's series
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	 6.	 Taylor's series for a function of two variables. We have
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	 7.	 Some important expansions
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 Section A : Computer Arithmetic 
 1.3  Number system 

It is a machine language which provides a facility to make the numbers. We may define a number 
system as a system which consists of,

zz a set of symbol used for formation of numbers.
zz a set of rules which may be used to form numbers from these symbols and assign values to 

them.
zz a set of rules performing common arithmetic operations on this system.
There are many types of number system. Some important number systems are as follows:

	 (i)	 Decimal number system	 (ii)	 Binary number system.
	 (iii)	 Octal number system	 (iv)	 Hexadecimal number system

1.3.1  Decimal number system
This number system has a base of 10, i.e., 0, 1,2,3,4,5,6,7,8,9, number of digits needed to 

represent a number are changed after every 10n intervals, where n is an integer. A number can be 
written in expanded notation form by breaking every digit according to its place value.
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For examples
	 1.	 The number 456 can be written as 4 × 102 + 5 × 101 + 6 × 100

	 2.	 The number 6428.31 can be written as
				   6 × 103 + 4 × 102 + 2 × 101 + 8 × 100 + 3 × 10–1 + 1 × 10–2

1.3.2  Binary number system
In binary number system, numbers can be represented using 2 digits only so the base of binary 

numbers system is 2. The two digits that are used in binary number system are 0 and 1. A binary 
number can be written in expanded notation form by breaking the number into digits according to 
their place value.

e.g.,		     1010 = (1 × 23) + (0 × 22) + (1 × 21) + (0 × 20)
			               = 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1 = 8 + 2 = 10
This means (1010)2 = (10)10

1.3.3  Octal number system
Octal number system is the number system with base 8. This means; in this number system, there 

are 8 symbols or digits which are used for formation of the numbers. These symbols are 0, 1, 2, 3, 4, 5, 6 
and 7. The place value in octal number system are the power of 8. Consider, a number (156)8. This can 
be written in the expanded form as,

		                (156)8 = 6 × 80 + 5 × 81 + 1 × 82

			             = 6 × 1 + 5 × 8 + 1 × 64 = 6 + 40 + 64
The means, (156)8 = (110)10

1.3.4  Hexadecimal number system
This number system is number system with base 16. Using the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

A, B, C, D, E and F. In number system, in addition to decimal digits 0 to 9, the symbols A, B, C, D, E 
and F are used to represent the numbers 10, 11, 12 ,13, 14 and 15 respectively.

Consider a number (13BD)16. This number can be written in expanded form as 
		  (13BD)16 = 1 × 163 + 3 × 162 + B × 161 + D × 160

			    = 4096 + 768 + 11 × 16 + 13 × 1
			    = 4096 + 768 + 176 + 13 = (5053)10.

 1.4  Base conversion 

1.4.1  Decimal to Binary (To convert the Integer part)
To convert the number in decimal number system to the number in binary number system, we 

apply the method of repeated division. The division is done by 2.

WORKING PROCEDURE

	Step 1.	 Divide the given number by 2.
	Step 2.	 Note the quotient and remainder. Remainder will be either 0 or 1.
	Step 3.	 If quotient is not 0, then divide the quotient by 2 and go to step 2.
	Step 4.	 If quotient is 0, then stop the process of division.
	Step 5.	 The process of first remainder is called least significant digit (LSD) and last remainder is 

called most significant digit (MSD).
	Step 6.	 Arrange all the remainders from MSD to LSD in a sequence from left to right.

Then the combination of 0 and 1 thus obtained is the required binary equivalent of given number.
For example: Convert (45)10 into binary number system.
Solution: Performing repetitive division by 2.
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2 45 remainder

2 22 1 LSD

2 11 0

2 5 1

2 2 1

2 1 0

0 1 MSD
Thus		       (45)10 = (101101)2
To convert the fractional part: For converting a fractional decimal number in binary, we use 

the method of repeated multiplication. The multiplier is 2.

WORKING PROCEDURE

	Step 1.	 Multiply the given number by 2 and separate the integral part.
	Step 2.	 Multiply the fractional part again by 2 and separate the integral part.
	Step 3.	 Continue this process, till the fractional part reduces to zero.
	Step 4.	 Write the integral parts and prefix the binary point.

This will be the desired binary fraction.

Example 1.		  Convert (0.8176)10 to binary number system.
Solution.

0 0.8176 × 2

MSD 1 0.6352 × 2

1 0.2704 × 2

0 0.5408 × 2

LSD 1 0.0816 × 2

0 0.1632 × 2
					    (08176)10 = (0.11010 ...)2
Example 2.		  Convert (67.25)10 to binary number system.
Solution.	 First we convert the integral part into binary equivalent.

2 67 remainders

2 33 1

2 16 1

2 8 0

2 4 0

2 2 0

2 1 0

0 1
	 Now we convert the decimal part

MSD 0 0.25 × 2

0 0.50 × 2

LSD 1 0.00 × 2

	 Thus			  (67.25)10 = (1000011.01)2
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1.4.2  Binary to Decimal
To convert the binary number to decimal number, use the following procedure

WORKING PROCEDURE

	Step 1.	 Multiply the digit of whole binary number with powers of 2. The power for integral part 
of number are positive and negative for fractional part of number.

	Step 2.	 Add the total result which are obtained by multiplying the power of digits. 
		  We obtain the final result after addition.

   For example: Convert the following binary numbers to decimal number
	 (i)	 (1100111)2	 (ii)	 (11001101.01)2
 Solution.	 (i)	 (1100111)2

				    = 1×26+1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

	 			   = 64 + 32 + 0 + 0 + 4 + 2 + 1 = (103)10
	 (ii)	 (11001101.01)2 = 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22

							       + 0 × 21 + 1 × 20 + 0 × 2–1 + 1 × 2–2

					          = 128 + 64 + 0 + 0 + 8 + 4 + 0 + 1 + 0 + 0.25 = (205.25)10

1.4.3  Binary to Octal
To convert a binary number into octal number system, use the following procedure

WORKING PROCEDURE

	Step 1.	 Firstly we convert binary number to decimal and then decimal to octal. We make the 
groups of three digits. We start the grouping from right to left.

	Step 2.	 Now each group of three digits converts the decimal number system. After that written 
the decimal numbers combinedly.

The group of three binary digits from an octal number as shown the table given below:

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111
For example: Convert the following binary number to octal

	 (i)	 (101011101)2			   (ii)	 (111100011)2
	 (iii)	 (10011011101010)2
Solution.	(i)	 Grouping these into three bits each we get

101 011 101 Group of three bits from 
right octal equivalent.III II I

5 3 5
		  Thus (101011101)2 = (535)8
	 (ii)

111 100 011 Group of three bits from 
right octal equivalent.III II I

7 4 3
		  ⇒	 (111100011)2 = (743)8
	 (iii)

010 011 011 101 010 Group of three bits from 
right octal equivalent.V IV III II I

2 3 3 5 2
		  ⇒	 (10011011101010)2 = (23352)8
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1.4.4  Binary to Hexadecimal (To convert an integer)

WORKING PROCEDURE

	Step 1.	 For this conversion we divide all binary digit of the number to be converted in the groups 
of four bits each and start the grouping from right to left.

	Step 2.	 Now each of these groups of four bit each will be converted to decimal number system 
and written below the groups.

A group of four binary digits forms one hexadecimal as shown in the table below:

Hexadecimal digit Binary equivalent

0
1
2
3
4
5
6
7
8
9

10 or A
11 or B
12 or C
13 or D
14 or E
15 or F

0000
0001
0010
0011
0100
0101
0110
1111
1000
1001
1010
1011
1100
1101
1110
1111

For example: Convert (1110101101)2 to hexadecimal equivalent.
Solution.	Grouping these into four bits each we each 

11 1010 1101
	 Here, we see that 11 is alone so we have written two zero’s to its lefts.
	 Now we have four groups as

0011 1010 1101
III II I
3 10 or A 13 or D

		 Thus (1110101101)2 = (3AD)16
To convert a fraction:

WORKING PROCEDURE

	Step 1.	 For this conversion we divide all binary digit of the fraction part to be converted in the 
groups of four bits each. Start the grouping from left to right.

	Step 2.	 Now each of these groups of four bits each will be converted to decimal number system. 
After that these numbers written in groups.

For example:  Convert  (100011.01)2 to hexadecimal equivalent.
Solution.	After grouping of 100011.01, we get

0100 0011 0100
III II I
4 3 4

	 Thus (100011.01)2 = (43.4)16

1.4.5  Decimal to Octal (To convert the integer)
For converting the decimal number to octal we apply the following process step by step as
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WORKING PROCEDURE

	Step 1.	 Divide the number by 8.
	Step 2.	 Note down the quotient and remainder. Remainder will be any digit from 0 to 7.
	Step 3.	 If quotient is not 0, then divide the quotient again by 8 and go to step 2.
	Step 4.	 If quotient is 0, then stop the process of division.
	Step 5.	 Write all remainder from left to right.

The combination of digit 0 to 7 thus obtained is the required octal equivalent of number.
For example:	 Convert (8765)10 to octal number system.

Solution.

8 8765 remainders
8 1095 5
8 136 7
8 17 0
8 2 1

0 2
	 Thus		 (8765)10 = (21075)8

To convert the fraction: To convert a fractional decimal number in octal, use the method of 
repeated multiplication. The multiplier is 8.

WORKING PROCEDURE

	Step 1.	 Multiply the number by 8.
	Step 2.	 Note down the integer part and fractional part of the result separately.
	Step 3.	 If the fractional part of the result satisfies any two conditions, stop the process of 

multiplication.
		  Conditions are:

	 (i)	 fractional part is 0.
	 (ii)	 fractional part achieved has already appeared before that position.

	Step 4.	 If the resultant fraction does not satisfy any of the above conditions, then go to step 1.
Write all carries from left to right. The combination of digit 0 to 7 thus obtained is the required 

result.

Example 1.		  Convert (0.1015625)10 to octal number system.
Solution.	 Multiply repeated by 8.

MSD 0 0.1015625 × 8

0 0.8125000 × 8

6 0.5000000 × 8

LSD 4 0.0000000 × 8

	 Thus	(0.1015625)10 = (0.064...)8.
Example 2.		  Convert (1093.21875)10 to octal number system.
Solution.	 Converting both integral part and fractional part separately

8 1093 remainders
8 136 5 0 0.21875 × 8
8 17 0 1 0.75000 × 8
8 2 1 6 0.00000 × 8

8 0 2
	 ⇒	 (1093)10 = (2105)8		  ⇒		  (0.21875)10 = (0.16)8
	 Thus	(1093.21875)10 = (2105.16)8.
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1.4.6  Decimal to hexadecimal
To convert an integer: For converting the number in decimal number system to the number 

in hexadecimal number system, use the method of repeated division.

WORKING PROCEDURE

	Step 1.	 Divide the number by 16.
	Step 2.	 Note down the quotient and remainder. Remainder will be from 0 to 9 or A to F.
	Step 3.	 If quotient is not 0, then divide the quotient by 16, and go the step 2.
	Step 4.	 If quotient is 0 or any digit or symbol less than 16 then stop the process of division.
	Step 5.	 Write all remainder from left to right. The combination obtained is the desired 

Hexadecimal number.
For example:  Convert (198275)10 to hexadecimal equivalent.
Solution.

16 198275 remainders

16 12392 3

16 774 8

16 48 6

16 3 0

0 3

	 Thus	(198275)10 = (30683)16.
To convert a fraction: To convert a fraction decimal number in hexadecimal, use the method 

of repeated multiplication.

WORKING PROCEDURE

	Step 1.	 Multiply the fraction part by 16.
	Step 2.	 Note down the integer part (carry) and fractional part of the result separately.
	Step 3.	 If the fractional part is 0 or achieved has already appeared before that position, stop the 

process of multiplication.
	Step 4.	 If the resultant fraction, does not satisfy the condition of step 3, then go to step 1.

After this process we write first carry to last carry in the sequence. This sequence obtained is the 
required result.

For example: Convert 0.6875875 to hexadecimal number system.
Solution.

0 0.6875875 × 16
11 0.00110000 × 16
0 0.0176 × 16
0 0.2816 × 16
4 0.5056 × 16
8 0.896 × 16

	 Thus		 (0.68756875)10 = (0.110049)16 = (B0049)16

1.4.7  Octal to decimal
For the conversion of octal number to decimal number, multiply the whole octal number with 

power of 8. These powers are positive for integral part of number and negative for fractional part of 
number.

For example: Convert (1727)8 to decimal equivalent.
Solution.	(1727)8 = 1 × 83 + 7 × 82 + 2 × 81 + 7 × 80 = 512 + 448 + 16 + 7  = (983)10
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Example:  Convert (3027.105)8 to decimal equivalent.

Solution.	(3027.105)8 = 3×83 +0×82+2×81+7× 80 +1× 8–1 +0×8–2+5×8–3

			           = (1559.124765625)10

1.4.8  Octal to Binary
The conversion octal to binary is very easy. Every digit of the number which is to be converted 

from octal to binary, is individually converted to the 3-bit binary equivalent. The combination of 0 
and 1 is our desired result.

For example: Convert (103.2)8 to binary equivalent.
Solution.				 

(103.2)8 = 1 0 3 2

001 000 011 010 Binary equivalent

Thus (103.2)8 = (001000011.010)2.

1.4.9  Octal to hexadecimal
For converting an octal number to hexadecimal number, use the following procedure

WORKING PROCEDURE

	Step 1.	 Convert the octal number to binary equivalent.
	Step 2.	 Now convert this binary equivalent to hexadecimal number system. The number obtained 

is the required result.
For example: Convert (72232321)8 to hexadecimal equivalent.

Solution.	Firstly we convert the given octal number to Binary equivalent.
				    (72232321)8 = 7 → 111
							         2 → 010
							         2 → 010
							         3 → 011
							         2 → 010
							         3 → 011
							         2 → 010
							         1 → 001

	 Thus,	 (72232321)8 = (111010010011010011010001)2
	 Now we convert this number into hexadecimal equivalent. Grouping these into four 

bits each we get

1110 1001 0011 0100 1101 0001

14 or E 9 3 4 13 or D 1

	 Thus (111010010011010011010001)2 = (E934D1)16.

1.4.10  Hexadecimal to Binary
For converting an hexadecimal number to binary equivalent, we individually convert to the 4-bit 

binary equivalent. Then the combination of 0 and 1 thus obtained the desired result.
For example: Convert (A92)16 to Binary equivalent.

Solution.	(A92)16 = A × 162 + 9 × 161 + 2 × 160

		 	      = 10 × 256 + 9 × 16 + 2 × 1  = 2560 + 144 + 2  = (2706)10
	 Now
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2 2706 Remainder

2 1353 0

2 676 1

2 338 0

2 169 0

2 84 1

2 42 0

2 21 0

2 10 1

2 5 0

2 2 1

2 1 0

0 1

	 Thus	(2706)10 = (101010010010)2

	 Hence (A92)16 = (101010010010)2

	 Alternate Method:

A 9 2

10 9 2

1010 1001 0010 Binary equivalent

	 ⇒	 (A92)16 = (101010010010)2.

1.4.11  Hexadecimal to Decimal
For converting hexadecimal to decimal equivalent. We individually separate the number and 

multiply the whole number with power of 16. After this process add the total resultant numbers, 
which will be desired decimal number.

Example 1.		  Convert (5009B)16 to Decimal equivalent.

Solution.			  (5009B)16 = 5 × 164 + 0 × 163 + 0 × 162 + 9 × 161 + B × 160

				         = (327680 + 0 + 0 + 144 + 11)	  = (327835)10
	 Thus	(5009B)16 = (327835)10
Example 2.		  Convert (BCD)16 to Decimal equivalent.

Solution.			     (BCD)16 = B × 162 + C × 161 + D × 160

				         = B × 256 + C × 16 + D = 11 × 256 + 12 × 16 + 13
				         = 2816 + 192 + 13 = (3021)10

1.4.12  Hexadecimal to Octal
For converting the hexadecimal number to octal number system, firstly convert the hexadecimal 

number to binary equivalent. After this process, convert this binary equivalent to octal number 
system. The number thus obtained is the desired result.

For example:  Convert (E934D1)16 to hexadecimal number system.
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Solution.

(E934D1)16 = E 9 3 4 D 1

1110 1001 0011 0100 1101 0001

	 ⇒	 (E934D1)16 = (111010010011010011010001)2
	 Now we convert this binary number to octal equivalent.
	 Grouping these into three bits each, we get

111 010 010 011 010 011 010 001

7 2 2 3 2 3 2 1

	 Therefore  (111010010011010011010001)2 = (72232321)8
	 This implies (E934D1)16 = (72232321)8
	 A conversion table between decimal, hexadecimal octal and binary relation is given 

below:

Decimal ()10 Hexadecimal ()16 Octal ()8 Binary ()2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 1.5  Binary Arithmetic 
Arithmetic operations additions, subtraction, multiplication and division on binary numbers 

constitute binary arithmetic.

1.5.1  Binary Addition
The rules of binary addition are
			   0 + 0 = 0
			   0 + 1 = 1
			   1 + 0 = 1
			   1 + 1 = 10 Sum 0 with carry 1.
Like in decimal system when the sum of two digits exceed the highest digit, 1 is carried to the 

next higher bit position in binary system when the sum exceeds 1 a one is carried to the next higher 
bit position.

Example 1.		  Add the binary numbers (10110)2 and (1101)2.
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Solution.			     _ _ _ 1 _ ← carry
				        10110
				       +1101
				    100011

Example 2.		  Add the binary numbers (11001)2 and (10011)2.

Solution.			   	     
11001

10011

101100

+

1.5.2  Binary subtraction
The rules for binary subtraction are
			   0 – 0 = 0
			   1 – 0 = 1
			   0 – 1 = 1
			   1 – 1 = 0
with borrow or 1 from the next column to the left.
If we need to borrow from a digit which is 0, then two or more borrows must be made toward the 

left. We borrow from the first non zero digit to the left and each. intervening 0 becomes 1 in the process.
Example 3.		  Subtract (1111)2 from 1110101.

Solution.				 
1110101

1111

1100110

− i.e., (1100110)2

Example 4.	 	 Subtract (101111)2 from (110101)2.

Solution.				 
110101

101111

000110

−

	                                     i.e.,(110)2.

 Exercise 1.1 
	 1.	 Convert the following binary numbers to 

decimal equivalent:
	 (i)	 110111	 (ii)	 0.101
	(iii)	 11010111.1101

	 2.	 Convert the following decimal numbers to 
binary:

	 (i)	 5233	 (ii)	 0.8125
	(iii)	 9342.982

	 3.	 Convert the following number into octal 
system:

	 (i)	 (9786)10	 (ii)	 (8765.27)10
	(iii)	 (100000000)2	 (iv)	 (1110111011)2

	 4.	 Convert the following number into 
hexadecimal:

	 (i)	 (19)10	 (ii)	 (286)10
	(iii)	 (100110101111)2
	 (iv)	 (360.13)8

	 5.	 Convert the following number into octal:
	 (i)	 (1011101)2	 (ii)	 (A985B)16
	(iii)	 (5834E.B93)16

	 6.	 Fill in the blanks:
	 (i)	 (FA9B)16 = ( _____ )10
 	(ii)	 (217)10 = ( _____ )8

	(iii)	 (1046.25)10 = ( _____ )16
	 (iv)	 (A92)16 = ( _____ )10
	 (v)	 (1100110)2 = ( _____ )10
	 (vi)	 (42.25)10 = ( _____ )2

	 7.	 What is the decimal equivalent to the 
hexadecimal number (BCDE)16 ?

	 8.	 Find the sum of following binary numbers:
	 (i)	 1001, 101010
	 (ii)	 10110, 1101
	(iii)	 110101, 101111
	 (iv)	 111011, 10111000
	 (v)	 1001011, 1101001

	 9.	 Find the difference of following binary 
numbers:

	 (i)	 1000 – 1	 (ii)	 11010 – 101
	(iii)	 1110001 – 100110
	 (iv)	 11011 – 1101100	(v)	 110.110 – 1.1011

	10.	 Calculate the following:
	 (i)	 (100111)2 – (111010)2
	 (ii)	 (111111)2 + (10101)2 + (11011)2
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AnswersAnswers
	 1.	 (i) (55)10				    (ii)	 (0.625)10			   (iii)	 (215.15)10
	 2.	 (i) 1010001110001			   (ii)	 0.1101			   (iii)	 10011001110010.11111011
	 3.	 (i) (23072)8			   (ii)	 (21075.212...)8	 (iii)	 (400)8	(iv)	 (733)8
	 4.	 (i) (13)16				    (ii)	 (AF9)16			   (iii)	 (9AF)16
	 5.	 (i) (135)8				   (ii)	 (2514133)8	 (iii)	 (3701516.5623)8
	 6.	 (i) (64155)10			   (ii)	 (330)8			   (iii)	 (416.4)16			   (iv)	(2706)10
	 6.	 (v) (102)10			   (vi)	 (101010.01)2	 7.	 (3021.875)10
	 8.	 (i) 	110011	 (ii)	 100011			   (iii)	 1100100			   (iv)	 11110011	(v) 10110100
	 9.	 (i) 111			   (ii)	 10101			   (iii)	 1001011			   (iv)	 1010001		 (v)  101.0001
	 10.	 (i) 1101			   (ii)	 1011111

 Section B : Errors in Numerical Computations 
 1.6  Approximations and Errors

Approximations and errors are on integral part of our life. These are exist everywhere, and 
sometime are unavoidable. A number of different types of errors arise during the process of numerical 
computing. These errors contribute to the total error in the final result.

Also the numerical data used in solving the problems are usually not exact, and the numbers 
expressing such data are therefore not exact. They are merely approximations, two to three, four 
or more figures. Not only are the data of practical problems usually result is to be obtained are 
also approximate. Therefore, an approximate calculation is one which involves approximate data, or 
approximate methods or both. Therefore, it is evident that the error in a computed result may be due 
to one or both sources, i.e.,
	 (i)	 error in data				    and	 (ii)	 error in calculation.

The first type of error can not be decrease, but the second type can be made as small as we please, 
by taking the number to as many figure as we desired. Therefore, we can assume that the calculations are 
always carried out in such a manner as to make the errors of calculation negligible.

In this section, we examine the sources of various types of computational errors and their 
subsequent propagation.

 1.7  Accuracy of numbers 
1.7.1  Exact numbers

The numbers in which, there is no uncertainty and no approximation, is said to be exact numbers. 
For example: 8 1

5,6,7, , ,...
2 5

are exact numbers.

1.7.2  Approximate numbers

These are numbers which are not exact. 
For example: 1.41421 .... 3.141592.... are not exact numbers, since they contains infinitely 

many digits, are called approximate numbers.


 Remarks

¯¯ The approximate number is a number which can not be expressed by a finite number of digits.
¯¯ Although, the numbers , 2,π etc. are exact numbers, they can not be expressed exactly by a finite 
number of digits. But when we expressed these numbers in digital form 3.141592, 1.41421, etc. 
such numbers are therefore only approximation to the true values and in such cases are called 
approximate numbers.

¯¯ Some authors always insist that one must say “approximate value” of a number in place of 
approximate number.

¯¯ Here, we used the symbol  for approximately equal to.
¯¯ Such numbers which represents the given numbers to a certain degree of accuracy are called 
approximate numbers.
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1.7.3  Rounding-off a Number

If we divide 22 by 7 we get 22
3.142857143...

7
= a quotient which a non-terminating decimal 

fraction. For use this type of number in practical computation, it is to be cut-off to a manageable size 
such as 3.14, 3.143,... . The process of cutting-off superfluous digits and retaining as many digits as 
desired is known as rounding off a number.



 Remark

¯¯ To round off a number is to retain a certain number of digits, counted from the left and dropped 

the others. Thus, to round off p  to three, four or five and six figures respectively, we have 3.14, 

3.142, 3.1416, 3.14159.

WORKING PROCEDURE

To rounding off a number or digit to n significant figures, discard all digits to the right of the nth 
place using the following concepts.
	Step 1.	 If this number is less than half a unit in the nth place, leave the nth digits as it is.
	Step 2.	 If the discarded number is greater than half a unit in the nth place, add 1 to the nth digit.
	Step 3.	 If the discarded number is exactly half a unit in the nth place, leave the nth digit 

unchanged.
For Example : The following numbers are rounded off correctly to four significant figures

	 (i)	 38.63243 becomes 38.63		  (ii)	 91.8773 becomes 91.88
	 (iii)	 21.64489 becomes 21.64		  (iv)	 87.495 becomes 87.50.

The old rule of rounding off the number says that when a 5 is dropped the preceding digit should always 
be increased by 1. It is not a good exercise and give inaccuracy in computations. Since, it is obvious that 
when a 5 is cut off, the preceding digit should be increased by one in only half the cases and should be 
left unchanged in the other half.



 Remark

¯¯ The numbers rounded off to n significant figures are said to be correct to n significant figures.

1.7.4  Significant Figures
Here, all the digits 1, 2 ... upto 9 are significant figures and 0 is a significant figure except when 

it is used to fix the decimal point or to fill the places of unknown digits, i.e., 0 may or may not be 
a significant figure. It depends upon the position in which zero has been used. As discussed earlier 
when zero is used to fixup the decimal point or to fill up the places of discarded digits, it is not a 
significant figure.

For example: Consider the numbers 0.00086 and 5800, correct to two significant figures. 

Then all zeros, which are used are insignificant. On the other hand, zero used in 430 correct to three 

significant figures, is a significant figure.


 Remarks

¯¯ The zeroes used between two non-zero digits are always significant figure e.g. 408.
¯¯ To round off a number or figure to r significant digits, discard all the digits or replace by zeros 
to the right of rth digit according as the number to be rounded off is a decimal fraction or whole 
number. Then rth digit to be increased by 1 or to be left unaltered, according as the portion to 
be discarded or replaced by zeroes as greater than or less than half of the unit at the rth places 
(counted from the left). In case the discarded portion is exactly half of the rth unit, then the rth 
unit is to be increased by 1, if it is odd, otherwise it is left unchanged.
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WORKING PROCEDURE

	Step 1.	 Significant digits are counted from left to right starting with the left most non-digits.
	Step 2.	 The significant figure in a number in positional notations consists of

	 (a)	 all non-zero digits
	 (b)	 zero digits which
	 –	 lie between significant digits
	 –	 lie to the right of decimal points and at the same time, to the right of a non-zero 

digit.
	 –	 are specifically indicated to be significant

	Step 3.	 The significant figure in a  number written in scientific notation e.g. M × 10k consists of 
all the digits explicitly in M.

For Example
	 (1)	 The number 8.3678235, when rounded to three places of decimal, we get it as 8.368. 

Because, we leave the portion 0.0008235 which is more than half of 0.001.
	 (2)	 The number 83988235, when rounded to five significant digits, we get as 83988. Because 

the portion left out is 235, which is less than half of 1000.
	 (3)	 The number 8.6325 when rounded to three decimal places, we get 8.632 as the rounded 

number.
	 (4)	 83675, rounded to four significant figures as obtained as 83680. Here the fourth place, 

when we counted from the left is 7 which is odd and the portion left out is exactly half of 
the unit at this place. Therefore we increase 7 by one.

Example 1.		  Round-off the following numbers correct to four significant figures
				                	 68.3643, 878.367, 8.7265, 56.395
Solution.	 Here, we have to retain first four significant figures. Therefore
	 (i)	 68.3643 becomes 68.36
	 (ii)	 878.367 becomes 878.4
	 (iii)	 8.7265 becomes 8.726 (Because the digit in the fourth place is even).
	 (iv)	 56.395 becomes 56.40 (Because the digit in fourth place is odd).
Example 2.		  Find the sum of the following approximate numbers, each being correct 

to its last figures
					     396.56, 657.2, 758.9826, 3.052
Solution.	 Since the number 657.2 is correct to one decimal place. Therefore, it is not worth 

while to retain digits beyond two decimal places. Hence, we rounded off the given 
numbers to two decimal places, and then found the sum.

	 Therefore, the required sum
	 			   = 396.56 + 657.20 + 758.98 + 3.05 = 1815.79 j 1815.8



 Remarks

¯¯ When we deal with the approximate numbers of unequal accuracies, retain one more significant 
figure is more accurate numbers then are contained in the least accurate number as it being done 
in above example. In the end the sum has been rounded to one decimal place.

The concept of accuracy and precision are closely related to the significant digits, as follows:
	(a)	 Accuracy refers to the number of significant digits in a value. For example, the number 86.498 is 

accurate to five significant digits.
	(b)	 Precision refers to the number of decimal positions, i.e., the order of magnitude of the last digit in a 

value. Here the number 86.498 has a precision of 0.001 or 10–3.
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 1.8  ERRORS AND THEIR ANALYSIS 
Definition : The difference between true value and approximate value is called the error.

1.8.1  Sources of Errors 
Following are some sources of error in numerical computations.

	 (i)	 Input Errors: The input information is rarely exact. It comes from the experiments and any 
experiment can give results of any limited accuracy.

	 (ii)	 Algorithmic Errors: Sometimes, the direct algorithms based on a finite sequence of 
operations are used. Errors due to limited steps don’t amplify the existing errors. Since the 
application of some formula is not possible for a infinite number of times, algorithm has to 
be stopped after a finite number of steps. Hence, the obtained results are not exact.

	 (iii)	 Computational Errors: Sometimes, when we performing elementary operations, the 
number of digits increases greatly. Therefore, the result can not be held fully in a register 
available in the given system.

1.8.2  Types of Error 
	 (i)	 Absolute error: If xA is the approximate value of exact number xT, then the absolute error 

denoted by Ea is defined by
									          Ea = Dx = |xT – xA|
		  ⇒						        Ea = |xT – xA|



 Remark

¯¯ In error analysis, the magnitude of the error is not important, not the sign of error. Therefore, we 
consider the absolute error generally.

	 (ii)	 Relative Error: In many cases, absolute error may not reflect its influence correctly as it 
does not take into account the order of magnitude of the value under consideration.

		  For example: An error of 1 gram is much more significant in the weight of 10 grams Gold, that 
in the weight of a bag of sugar. Due to this reason the concept of relative error is introduced.

		  The relative error is the absolute error divided by the true value of the given quantity.
		  It is denoted by Er and defined as

									        Absolute error
True value

T A

r T
x x

E
x

−= =

The relative error of a product of n numbers is approximately equal to the algebraic sum of their relative 
errors.

	 (iii)	 Percentage Error: The percentage error in xA, which is the approximate value of xT is

			   100 100
T A

p r T
x x

E E
x

−= × = ×



 Remarks

¯¯ The relative error is also known as normalized absolute error.
¯¯ If x  be a number such that ,T Ax x x− ≤  then x  is said to be an upper limit on the magnitude 

of absolute error and measures the absolute accuracy.
¯¯ If a number is correct to n significant figures then its absolute error can not be greater than half 
a unit in a nth places.

¯¯ If a number is correct to n decimal places then the error
1

10 .
2

n−= ⋅

�� For example: If the number 8.869 correct to three decimal points its absolute error is not 

greater than 31 1
0.001 10 0.0005.

2 2
−× = × =

¯¯ The relative and percentage errors are independent of the units of measurement, while absolute 
errors are expressed in terms of unit used.
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Example 1.		  Find the sum of 392, 780.56, 64320, 72300, 23657 assuming that the 
number 72300 is known to only three significant figures.

Solution.	 Since the number 72300 is known to hundred places.
	 Therefore, we round off other numbers correct to tens places and then find the sum, 

i.e.,
				           Sum, S = 390 + 780 + 64320 + 72300 + 23660
						        = 161450 j 161400
	 Here, we observe that, the last significant digit (counting from left) is 4 which is 

uncertain by one unit of this place.

Theorem 1.		  If the first significant figure of a number is r and the number is correct to 

n significant figures, then the relative error is less than −× 1
1

.
10nr

Proof.	 Let us suppose that N be any given exact number which contains n significant figures 
and m denotes the number of correct decimal places.

	 Then, there are following three cases :
	 Case (i): If m < n
	 In this case the number of digits in the integral part of N is given by (n – m). Let us 

denote the first significant figure of N by r. Then, we have

	 Absolute error		  1 1
210

a mE ≤ ×

	 and				     1 1 1
10

210
n m

mN r − −≥ × − ×

	 which gives			    
1

1 1
210

1 1
10

210

m
r

n m
m

E
r − −

×
≤

× − ×

			          			 
1
10

2 10 10 10

m

r n m mE
r

−

− − −=
× × −

			               		       
1 1

1 1
12 10 1 2 10
2

n nr r
− −

= =
 × − × −  

	 Now, since n is any positive integer and r stands for any digits 0, 1, ..., 9. Then we 

have 2r × 10n – 1 > r × 10n – 1 in all cases except r = 1 and n = 1. (We can ignore this 

case, because it is a trivial case when N = 1, 0.001, 0.0001 etc., i.e., the case in which 

N contains only one digit different from zero, which would not occur in common 

practice). Therefore, we may assume that

				   2r × 10n – 1 – 1 > r × 10n – 1 for all cases

	 Then, the relative error
1

1

10
r nE

r −<
×

	 Case (II): If m = n
	 Here we have N is a decimal and r is the first decimal figure, then we have

	 the absolute error	 1 1
210

a mE ≤ ×
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	 and				     1 1 1
10

210mN r −≥ × − ×

	 ⇒			    	
1

1
10

2
1

10 10
2

m

r
m

E
r

−

− −

×
≤

× − ×

			          			        
1 1

10 1

2 10 10 2 10 1

m

m mr r

−

− − −= =
× − × −

			               		       
1 1

1 1

2 10 1 10m mr r− −= <
× − ×

	 Case (III): If m > n
	 Here we have m > n, therefore, r occupies the (m – n + 1)th decimal place.

	 ⇒			            ( 1) 1 1
10

210
m n

mN r − − +≥ × − ×  and 1 1
210

a mE ≤ ×

	 Therefore,		  	
1

1
10

2
1

10 10 10
2

m

r
m n m

E
r

−

− − −

×
≤

× × − ×

						          
1

10

2 10 10 10

m

m n mr

−

− − −=
× × −

						          
1 1

1 1

2 10 1 10n nr r− −= <
× − ×

	 Here, we can say that the theorem is true in all the three possible cases.


 Remarks

¯¯ Except in the case of approximate numbers of the form r(1.000...) × 10k, in which r is the only 

digit from zero, the relative error is less than
1

1
.

2 10nr −×

¯¯ If r m 5 then the given approximate number is not of the form r(1.000...) × 10k, then
1

;
10

r nE <

for in the case 2r m 10 and therefore 2r × 10n – 1 m 10n.

Theorem 2.			  If the relative error in an approximate number is less than 1
1

,
( 1) 10nr −

 
 

+ × 
the number is correct to n significant figures or at least is in error by less 
than a unit in the nth significant figures.

Proof.	 Let us assume
			  		     	   N = The given number, i.e., the exact value,
			   			     n = number of correct significant figure in N,
					      	    r = first significant figure in N,
					     	    k = number of digits in the integral part of N.
	 Then, we have
				                 n – k = number of decimal in N,

	 Also, given     		    N [ (r + 1) × 10k – 1

	 Now, let the relative error

				    		   −<
+ × 1

1

( 1) 10
r nE

r
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	 Then, we have the absolute error

				    1
1

1 1
( 1) 10

( 1) 10 10
k

a n n kE r
r

−
− −< + × × =

+ ×

	 Now, 1

10n k− is one unit in (n–k)th decimal places or in the nth significant figure. 

Therefore, the absolute error Ea is less than a unit in the nth significant figure.

	 Now, let us suppose that the given number is pure decimal number. Also let k be 

the number of zero between the decimal point and the first significant figure. Then 
(n + k) is equal to the number of decimals in N. 

	 and		    
1

( 1)

10k
r

N +
+≤

	 Therefore, if 
1

1

( 1) 10
r nE

r −<
+ ×

then, we have

				    
1 1

( 1) 1 1

10 ( 1) 10 10
a k n n k

r
E

r+ − +
+< × =

+ ×

	 Now, 1

10n k+ is one unit in (n+k)th  decimal places or in the nth significant figure. Hence 

the absolute error Ea is less than a unit in the nth significant figure.


 Remarks

¯¯ If
1

1
,

[2( 1) 10 ]
r nE

r −<
+ ×

then Ea is less than half a unit in the nth significant figures and the given 

number is correct to nth significant figures.

¯¯ If the relative error of any number is not greater than
1

,
(2 10 )n×

the number is certainly  correct 

to n significant figures.

The absolute error is always connected with the number of decimal places, whereas the relative error is 
connected with the number of significant figures.

Example 1.		  Verify the theorem (1) for the number 875.32 correct to five significant 
figures.

Solution.	 The given number N = 875.32
	 We observe that r = 8 and n = 5

	 Since, we have the absolute error 1
| 0.01 0.005

2aE > × = .

	 Therefore, the relative error 0.005 5
875.32 875320

≤ =

							        
4

1 1 1
2 87532 2 80000 2 8 10

= < =
× × × ×

							        
4 1

1 1

8 10 10nr −
 < =  × × 

	 Hence, the theorem is verified.
Example 2.		  Round off the numbers 865250 and 37.46235 to four significant figures 

and compute Ea, Er and Ep.� [meerut–2018; delhi–2007]
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Solution.	 Here, the given numbers are (i) 865250 and (ii) 37.46235
	 (i)	 865250
	 If we rounded off the given number to four significant figures, then we get 865200.
	 Therefore, the absolute error
						     865250 865200 50T A

aE x x= − = − =

	 Now, the relative error

						     −= = = × 550
5.78 10

865250
a

r T
E

E
x

	 Also, the percentage error
						     − −= × = × × = ×5 3100 5.78 10 100 5.78 10 .p rE E
	 (ii)	 37.46235

	 If we rounded off the given number to four significant figures, then we get 37.46.

	 Then			         37.46235 37.46 0.00235aE = − =

			  		         50.00235
6.27 10

37.46235
a

r T
E

E
x

−= = = ×

	 and	 		         3100 6.27 10p rE E −= × = ×

Example 3.		  If 0.333 is the approximate value of
1

,
3

find the absolute, relative and 

percentage errors.� [meerut–2011]
Solution.	 Here, we have

			                            1
, 0.333

3
T Ax x= =

	 Therefore,

	 (i)	 Absolute error

					           1 1 333 1
0.333 0.00033

3 3 1000 3000
T A

aE x x= − = − = − = =

	 (ii)	 Relative Error

					         0.00033
0.00099

1 / 3
a

r T
E

E
x

= = =

	 (iii)	 Percentage error
				   100 100 0.00099 0.099p rE E= × = × =

Example 4.		  Let x = 0.005998. Find the relative error if x is truncated to three decimal 
digits.� [UPTU MCA–2006; UPTU B.Tech.–2004]

Solution.	 Given that     x = 0.005998 = 0.5998 × 10–2.
	 Now,		  xa = 0.599 × 10–2 (after truncating to three decimal places)

	    Relative error
2 2

2
0.5998 10 0.599 10

0.5998 10
ax x

x

− −

−
− × − ×= =

×
				       = 0.001337 = 0.133 × 10–2.

Example 5.		  If 1.414 is used as an approximation to 2 . Find the absolute and relative 
errors.� [meerut–2012]

Solution.	 We have
		       True value = 2 = 1.41421356
	 and approximate value = 1.414
	 Therefore, 	     Error = True value – Approximate value
				       	      2 1.414= − = 1.41421356 – 1.414 = 0.00021356
	 Then, absolute error = |0.00021356| = 0.21356 ×10–3.
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	 Finally, the relative error
3

3Absolute error 0.21356 10
0.151 10 .

True value 2

−
−×= = = ×

Example 6.		  Find the sum 3 5 7S = + + to 4 significant digits and find its absolute 
and relative errors.� [meerut–2015]

Solution.	 It is known that

				   3 1.732, 5 2.236, 7 2.646= = =

	 		     S = 1.732 + 2.236 + 2.646 = 6.614

	 Now, absolute error Ea = 0.0005 + 0.0005 + 0.0005 = 0.0015
	 The total absolute error shows that the sum is correct to 2 decimal places, so S is 

correct to 3 significant figures only.
	 Thus, we take  S = 6.61

	 Then, we have relative error 0.0015
0.0002

6.61
= =

Example 7.		  It is required to obtain the roots of x2 – 2x + log102 to four decimal 
places. To what accuracy should log102 be given?

Solution.	 The roots of the given equation are

					  
± −

= = ± −10
10

2 4 4 log 2
1 1 log 2

2
x

	 Then		      −∆∆ = < ×
−

4

10

1 (log 2)
0.5 10

2 1 log 2
x

					        4 1/2 4(log 2) 2 0.5 10 (1 log 2) 0.83604 10− −= ∆ < × × − < ×

					        = 8.3604 × 10–5

Example 8.		  If a = 10.00 ! 0.05, b = 0.0356 ! 0.0002, c = 15300 ! 100, d = 62000 ! 500.
			  Find the maximum value of absolute error in a + b + c + d.�[MDU(BE)–2005]
Solution.	 We have
				   Absolute error in a = |! 0.05| = 0.05
				   Absolute error in b = |! 0.0002| = 0.0002
	  		  Absolute error in c = |! 100| = 100
				   Absolute error in d = |! 500| = 500
	 Hence, the maximum absolute error in a + b + c + d
							             = 0.05 + 0.0002 + 100 + 500 = 600.0502

Example 9.		  Three approximated values of number
1
3

are given as 0.30, 0.33 and 0.34. 

Which of these three is the best approximation?
Solution.	 We know that the best approximation will be the one which has the least absolute 

error.

	 Here,        true value 1
0.33333

3
= =

	 Case I. Approximate value = 0.30
	 	  Absolute error = |True value – Approximate value| = |0.33333 – 0.30|
					         = 0.03333
	 Case II. Approximate value = 0.33
	 	  Absolute error = |True value – Approximate value| = |0.33333 – 0.33|
					         = 0.00333
	 Case III. Approximate value = 0.34
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	 	  Absolute error = |True value – Approximate value| = |0.33333 – 0.34|
					         = |– 0.00667| = 0.00667
	 We observe that, absolute error is least in case II. Hence, 0.33 is the best approximation.
Example 10.		  Given the solution of a problem as xA = 35.25 with the relative error in 

the solution atmost 2%. Find, to four decimal digits, the range of values 
within which the exact value of the solution must lie.� (UPTU MCA–2002)

Solution.	 It is given that
	 (i)	 Maximum relative error in the solution = 2% = 0.02
	 (ii)	 Approximate value of the solution is xA = 35.25.
	 Let x be the exact value of the solution, then as per given, we have

				   0.02Ax x
x

− < , i.e., 1 0.02Ax
x

− <

	 ⇒	 	    0.02 1 0.02Ax
x

 − < − <  

	 If 1 0.02Ax
x

 − > −  
then

				       1 0.02Ax
x

− > − − 	 ⇒	 1.02Ax
x

− > −

	 ⇒	 	        1.02Ax
x

< 		  ⇒	 1.02Ax x< .

	 ⇒	 	 	   35.25
34.558823594

1.02 1.02
Ax

x > = =

	 Also, if 1 0.02Ax
x

 − <  
, then we have

				       1 0.02Ax
x

− < − + 	 ⇒	 0.98Ax
x

− > −

	 ⇒	 	        0.98Ax
x

> 		 ⇒	 0.98Ax x>

	 ⇒	 	 	   35.25
35.9693877551

0.98 0.98
Ax

x < = =

	 Thus, we have
			  34.558823594 < x < 35.9693877551
	 Hence, the range of values within which the exact value of the solution lies, correct to 

four decimal places is given by
			            34.5588 < x < 35.9694.

 Exercise 1.2 
	 1.	 Round off the following numbers correct to 

four significant figures :
	  (i)	 58.3643	 (ii)	 979.267
	(iii)	 7.7265	 (iv)	 0.065738
	 (v)	 3.26425	 (vi)	 35.46735
	(vii)	 7326583000	 (viii)	 18.265101

	 2.	 Find the relative error if 2/3 is approximated 
to 0.667.� [meerut–2013]

	 3.	 If the number r is correct to 3 significant 

digits, what will be the maximum relative 
error.

	 4.	 A carpenter measures a 10-foot beam to the 
nearest eighth of an inch and a mechanist 

measures a 
1
2

 inch bolt to the nearest 

thousandth of an inch. Which measurement 
is more correct ?

	 5.	 The following numbers are all approximate 
and are correct as far as their last digit only. 
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Find their sum 136.421, 28.3, 321, 68.243, 
17.482.

	 6.	 If the number p is correct to three significant 
digits, what will be the maximum relative 
error ?

	 7.	 The height of an observation tower was 
estimated to be 47 m whereas it’s actual 
height was 45 m. Find the percentage relative 
error in the measurement.

	 8.	 If true value =
10

,
3

approximate value = 3.33. 

Then, find absolute and relative errors.
	 9.	 Round off the number 75462 to four 

significant digits and then calculate the 
absolute error and percentage error.

� (UPTU–2004)

	10.	 Find the relative error in taking p = 3.141593 
as 22/7.� (VTU–2007)

	11.	 Suppose that you have a task of measuring the 
lengths of a bridge and a rivet, and come up 
with 9999 and 9 am, respectively. If the true 
values are 10,000 and 10 cm. respectively, 
compute the percentage relative error in each 
case.� (Pune–2004)

	12.	 Given a = 9.00 ! 0.05, b = 0.0356 ! 0.0002, 
c = 15300 ! 100, d = 62000 ! 500. Find 
the maximum value of absolute error in                       
a + b + c + d.� (PTU–2001)

	13.	 Find the absolute error and the relative error 
in the product of 432.8 and 0.12584 using 
four digit mantissa.� (Kerala–2003)

AnswersAnswers

	 1.	 (i) 58.36			  (ii)	 979.3			   (iii)	 7.726			   (iv)	 0.06574			  (v)	3.264
		  (vi) 35.45		 (vii)	 7327 × 106	 (viii)	 18.26	 2.	 0.0005			   3.	0.0005
	 4.	 Beam measurement			   5.	 571			   6.	 0.0005			   7.	4.44%
	 8.	 0.003333, 0.000999			  9.	 0.7546; – 0.0002 × 105; 0.00265			   10.	– 0.0004
	 11.	 0.01%; 10%	 12.	 600.0002			  13.	 0.17312; 0.0003178

 1.9  INHERENT ERRORS
The errors which are already present in the statement of a problem before its solution are called 

Inherent errors. These types of errors arise either due to the given data being approximated or due 
to limitations of the mathematical measurements.

The inherent error contains two components.

1.9.1  Data errors

The data error arises when data are obtained by some experimental methods with limited 
accuracy and precision. This may be due to some special limitations in instrument or in reading.

1.9.2  Conversion errors

The conversion error arise due to the limitations of the computer to store the data exactly. 
Generally, it occurs in the floating- point representation which retains only a specified number of 
digits. The digits which are not retain gives the round off error.



 Remarks

¯¯ The inherent errors is also known as input errors.
¯¯ Data errors is also known as empirical errors.
¯¯ Conversion errors are also known as representation errors.

 1.10  rOUNDING OFF ERROR 
It occurs from the process of rounding off the numbers during the computations, i.e., it occur when 

a fixed number of digits are used to represent exact numbers. Such types of errors are unavoidable 
in most of the calculations due to the limitations of the computing aids.

If a number x has the floating point representation of the form
		  x = d1d2 ... dtdt+1 ... × Be� ...(1)
where d1, d2 ,..., dt ... are integers and satisfies 0 [ di [ B and e is the exponent. Then
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Rounding a number can be done by the following two ways :

1.10.1  Chopping
Here, we neglect dt+1, dt + 2 ... in (1) and obtain the number = d1d2 ... dt × Be

1.10.2  Symmetric rounding

Here the fractional part in (1) is written as 1 2 1
1

...
2t td d d d B+ +  and the first t digits are taken to 

write the floating point number.
For Example- Find the sum of 0.223 × 103 and 0.556 × 102 and write the result in three digit 

mantissa.
Solution. Here, the number of the smaller magnitude is adjusted so that its exponent is same 

as that of the number of larger magnitude. We have

			 

3

3

3

0.2230 10

0.0556 10

0.2786 10

×

×

×

⇒	 	
3

3

0.278 10 , for chopping

0.279 10 , for rounding

 ×


×


 Remarks

¯¯ In chopping, the extra digits are dropped, which is called truncating the number.
¯¯ In symmetric round off method, the last retained significant digit is rounded up by 1 if the first 
discarded digit is larger or equal to 5, otherwise the last retained digits is unchanged.

�� For example: The numbers 83.8893 becomes 83.89 and the number 86.6431 would become 86.64.

The rounded off error can be reduced by retaining at least one more significant figure at each step than 
that given in the data and rounded off at the last step.

 1.11  TRUNCATION ERRoR 
The truncation errors arises by using some approximations in place of an exact mathematical 

procedure.
For example- When we calculate the sine of an angle using the following series

			 
3 5 7

sin ...
3! 5! 7!
x x x

x x= − + − +

Then, we can not use the infinite terms of above series. After a certain number of terms, we 
terminate the process. Then, an error which is introduced here, is called truncation error.



 Remarks

¯¯ Truncation error is a type of algorithm error.
¯¯ In numerical computing, we used many iterative procedures, which are infinite. Therefore, a 
knowledge of the truncation error is very much important.

¯¯ This error can be reduced by using a better numerical model which increases the number of 
arithmetic operations.

¯¯ When we use a number of discrete steps in the solution of a differential equation, then the error 
which is introduced here, is called discretisation error.

Example 1.		  Obtain a second degree polynomial approximation to
						    f(x) = (1 + x)1/2, x c [0, 0.1]
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			  Using the Taylor series  expansion about x = 0. Use the expansion to 
approximate f(0.05) and found the truncation error.

Solution.	 Here, the given function is
					    f(x) = (1 + x)1/2

	 Then, we get		 f(x) = (1 + x)1/2	    ⇒	 f(0) = 1

				           1/21
( ) (1 )

2
f x x −′ = + 	  ⇒	 1

(0)
2

f ′ =

				          3/21
( ) (1 )

4
f x x −′′ = − +  ⇒	 1

(0)
4

f ′′ = −

				          5/23
( ) (1 )

8
f x x −′′′ = +    ⇒     3

(0)
8

f ′′′ =

	 Now, using the Taylor series expansion, we get

				     
2

1/2(1 ) 1
2 8 n
x x

x R+ = + − +

	 where Rn is the remainder term and given by

					      = ⋅ < θ <
+ θ

3

1/2 5
1

,0 0.01
16 [(1 ) ]

n
x

R

	 Then the truncation error is given by

					        
2

1/2(1 ) 1
2 8
x x

T x
 

= + − + −   

3

1/2 5
1

16 [(1 ) ]

x= ⋅
+ θ

	 Now,		     
2

10.05 (0.05)
(0.05) 1 0.10246875 10

2 8
f = + − = ×

	 Then, the bound of the truncation error for x c [0, 1] is given by

					       
3 3

4
1/2 5

(0.1) (0.1)
0.625 10

1616[(1 8) ]
T −≤ ≤ = ×

+

Example 2.		  Find the truncation error in the result of the following functions for = 1
5

x
when we use

	 (a)	 First three terms			  (b)	First four terms

					     
2 3 4 5 6

1
2! 3! 4! 5! 6!

x x x x x x
e x= + + + + + +

Solution.	 (a)	 Let T denote the truncation error. If we add first three terms then

				       
2 6 2

1 ... 1
2! 6! 2!
x x x

T x x
   

= + + + + − + +         

3 4 5 6

3! 4! 5! 6!
x x x x= + + +

		  Now, T at
3 4 5 6

21 (0.2) (0.2) (0.2) (0.2)
0.1402755 10

5 6 24 120 720
x −= = + + + = ×

	 (b)	 Now, we find the truncation error, when first four terms are added

				       
2 6 2 3

1 ... 1
2! 6! 2! 3!
x x x x

T x x
   

= + + + + − + + +         

4 5 6

4! 5! 6!
x x x= + +

		  Now, T at
4 5 6

41 (0.2) (0.2) (0.2)
0.694222 10

5 24 120 720
x −= = + + = ×
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 1.12  the general formula for errors 

Let Y = f(x1, x2, ..., xn) be a function of n variables x1, x2, ..., xn. Suppose, DY is the error in Y due 

to the errors Dx1,  Dx2, ..., Dxn in x1, x2, ..., xn respectively.

Then we have

	               Y + DY = f(x1 + Dx1, x2 + Dx2, ..., xn + Dxn)� …(1)
Expanding by Taylor series, we get

	                1 2 1 2
1 2

( , ,..., ) ...n n
n

Y Y Y
Y Y f x x x x x x

x x x
 ∂ ∂ ∂+ ∆ = + ∆ + ∆ + + ∆ ∂ ∂ ∂ 

	                           
2 2 2 2

2 2 2
1 2 1 22 2 2

1 21 2

1
( ) ( ) ... ( ) 2 ... ...

2 n
n

Y Y Y Y
x x x x x

x xx x x

 ∂ ∂ ∂ ∂+ ∆ + ∆ + + ∆ + ∆ ∆ + + 
∂ ∂∂ ∂ ∂  

� …(2)

Now, since the errors Dx1, Dx2, ..., Dxn all are very small. So, that we can neglect (Dxi)
2 and 

higher order terms of Dxi.
Then, we have

	                 1 2 1 2
1 2

( , ,..., ) ...n n
n

Y Y Y
Y Y f x x x x x x

x x x
 ∂ ∂ ∂+ ∆ = + ∆ + ∆ + + ∆ ∂ ∂ ∂ 

� …(3)

⇒                                 1 2
1 2

... n
n

Y Y Y
Y x x x

x x x
∂ ∂ ∂∆ = ∆ + ∆ + + ∆
∂ ∂ ∂

� …(4)

� [ Y = f(x1, x2, ..., xn)]
Now, divide the equation (4) by Y, we get the relative error as

	                     1 2

1 2
... n

n

x x xY Y Y Y
Y Y x Y x Y x

∂ ∂ ∂∆ ∂ ∂ ∂= ⋅ + ⋅ + + ⋅
∂ ∂ ∂

� …(5)

Now, taking the modulus of (4) and (5), the maximum absolute error and relative error are given 
by

	                     1 2
1 2

... n
n

Y Y Y
Y x x x

x x x
∂ ∂ ∂∆ ≤ ∆ + ∆ + + ∆
∂ ∂ ∂

and                  
∆ ∆ ∆∆ ∂ ∂ ∂≤ ⋅ + ⋅ + + ⋅

∂ ∂ ∂
1 2

1 2
... n

n

x x xY Y Y Y
Y Y x Y x Y x

Example 1.		  In a DABC, a = 6 cm, c = 15 cm and ∠B = 90°. Find the possible error in 
the computed value of A, if the errors in the measurement of a and c are 
1 mm and 2 mm respectively.

Fig. 1

90°

B A

C

15 cm

6
 c

m

Solution.	 Here, we have a = 6 cm
				       c = 15 cm
				    ∠B = 90°
	 Then, we have the triangle given by fig. 1.

	 From figure 1, we have 1tan
a

A
c

−=

	 ⇒	     A A
A a c

a c
∂ ∂∆ = ∆ + ∆
∂ ∂

			            
2 2 2 2

( )
( ) ( )

c a
a c

a c a c
= ∆ ⋅ − ⋅ ∆

+ +
� …(1)
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	 or	    
2 2 2 2

c a
A a c

a c a c
∆ ≤ ∆ ⋅ + ∆ ⋅

+ +
	 Given that Da = 1 mm = 0.1 cm, Dc = 2 mm = 0.2 cm, a = 6 cm and c = 15 cm.
	 Putting all these values in equation (1), we get

			     
2 2 2 2

0.1 15 0.2 6

(6) (15) (6) (15)
A

× ×∆ ≤ +
+ +

1.5 1.2 2.7
0.0103

261 261
+= = =  Radians

	 ⇒      |DA| [ 0.0103 radians 

	 or 	  |DA| [ 35´25˝

Example 2.		  If
2 3

4
4x y

u
z

= and Dx = Dy = Dz = 0.001, compute the relative maximum 

error in u when x = y = z = 1.� [meerut–2018; purvanchal–2012]

Solution.	 Here, we have a = 6 cm

			            =
2 3

4
4x y

u
z

� …(1)

	 From eq. (1), we have

	 		         
3 2 2

4 4
8 12

,
u xy u x y
x yz z

∂ ∂= =
∂ ∂

 and 
2 3

5
16u x y

z z

∂ = −
∂

	 Now, we have

			          u u u
u x y z

x y z
∂ ∂ ∂∆ = ∆ + ∆ + ∆
∂ ∂ ∂

� …(2)

	 Now, putting the values of ,
u u
x y

∂ ∂
∂ ∂

and u
z

∂
∂

in eq. (2), we get

			          
3 2 2 2 3

4 4 5
8 12 16xy x y x y

u x y z
z z z

∆ = ∆ + ∆ − ∆

	 Now, 
3 2 2 2 3

max 4 4 5
8 12 16

( )
xy x y x y

u x y z
z z z

∆ = ∆ + ∆ + ∆

				    = 8(0.001) + 12(0.001) + 16(0.001) = 0.036

	 Therefore, the maximum relative error is

				       
= = =

∆
= = =max

at 1

( ) 0.036
0.009

( ) 4x y z

u
u

Example 3.		  In a DABC, a = 30 cm, b = 80 cm, ∠B = 90°. Find the maximum error in 

the computed value of A, if possible errors in a and b are
1

%
3

and
1

%
4

respectively.

Solution.	 Here, we have

Fig. 2

90°

B A

C

80 cm

3
0
 c

m

	 In DABC, a = 30 cm, b = 80 cm, ∠B = 90°

	 From figure 2, we have

			        sin
a

A
b

=

	 ⇒	             1sin
a

A
b

−= � …(1)

	 Therefore, we have

			          A A
A a b

a b
∂ ∂∆ < ∆ ⋅ + ∆ ⋅
∂ ∂

� …(2)
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	 Now, we have the possible errors in a and b are 1/3% and 1/4% respectively, then

			  1
100

3
a

a
∆ × = 		 ⇒		  Da = 0.1

	 and	 1
100

4
b

b
∆ × = 		 ⇒		  Db = 0.2

	 Also, from equation (1)

			          
2 2

1A
a b a

∂ =
∂ −

 and 
2 2

A a
b b b a

∂ =
∂ −

.

	 Putting all these values in equation (2), we get

			       |DA| < |0.00135 + 0.00100| = 0.00235 radians

	 ⇒	         DA < 8´5˝

Example 4.		  Find the relative error in the function = 1 2
1 2 ... nm m m

ny ax x x

Solution.	 Here, we have
				     1 2

1 2 ... nm m m
ny ax x x= � …(1)

	 Taking log of both sides, we get
			         1 1 2 2log log log log ... logn ny a m x m x m x= + + + + � …(2)
	 Now, differentiating eq.(2), we get

			      1

1 1

1 my
y x x

∂⋅ =
∂

			      2

2 2

1 1
,... n

n n

m my y
y x x y x x

∂ ∂⋅ = ⋅ =
∂ ∂

	 Therefore, the error

			             1 2

1 2
... n

r
n

x x xy y y
E

x y x y x y
∆ ∆ ∆∂ ∂ ∂= ⋅ + ⋅ + + ⋅

∂ ∂ ∂

				      1 2
1 2

1 2
... n

n
n

x x x
m m m

x x x
∆ ∆ ∆= + + +

	 Hence, 1 2
max 1 2

1 2
( ) ... n

r n
n

x x x
E m m m

x x x
∆ ∆ ∆≤ + + +



 Remark

¯¯ The relative error of a product of n numbers is approximately equal to the algebraic sum of their 
relative errors. This result can be verified easily by taking a = 1, m1 = m2 = ... = mn = 1, then

��                                    1 2

1 2
... .n

r
n

x x x
E

x x x
∆ ∆ ∆= + +

 1.13  floating point arithmetic and errors
Generally, there are two types of numbers, which we used in calculations

	 (i)	 Integers : 0, !1, !2, !3, ....
	 (ii)	 Real numbers : Such as numbers with decimal.

Since, we used finite digit arithmetic in computers, therefore all the integers can be represented 
easily with finite digits. On the other hand, all real numbers can not be represented as a finite digits 

numbers like 2
0.666...

3
  =  

Hence, we use floating point representation.

	 (iii)	 Floating Point Numbers:
		  An n digit floating point number b has the form 
						         	        x = !(d1d2...dn)b∙b

e, 0 [ di < b, m [ e [ M
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		  where (d1d2...dn)b is a b fraction called mantissa and its value is given by

	    	 	   1 2 1 2 2
1 1 1

( ... ) ...n n nd d d d d dβ = × + × + + ×
β β β

		  Also e is called the exponent.


 Remarks

¯¯ A floating point number is said to be normalised if d1 g 0 or else d1 = d2 = ... = dn = 0.
¯¯ The precision or length n of floating-point numbers on any computer is usually determined by 
the word length of the computer. For example: IBM 1130, in single precision 6 decimal digits 
and inextend precision, i.e., double precision, nine decimal digits are used.

¯¯ Calculation in double precision usually doubles the storage requirements and running time as 
compared with single precision.

¯¯ The exponent e is also limited to range m<e<M, where m and M are integers varying from 
computer to computer.

 1.14  Computer Storage 
Computer storage has its own limitations. Storage is provided into locations. Each location or 

word has a storage capacity which means a finite number of digits. The limitation causes errors and 
concept of floating point becomes more important. To discuss it, we must keep in mind the constants 
of number of digits that can be stored in one word or location i.e., it would be very difficult to store 
a number as 1, 2, 3, 4, ...., 10.

The solution to this problem to some extent can be used of floating point, i.e., representation 
of this number to same digits of accuracy and with power of 10. For example, say representing this 
number to 4 digits of accuracy as 1.234 × 109.

Although, these two are not same, yet second option will be significantly accurate for most 
application purpose.

To convert to floating point, the major concern is number of digits of accuracy to return.
To discuss this concept let us assume that each location can store 6 digits:

• • • • • •

Location or word
Initially we can assume, first 3 digits represents integer portion of a fractional number and last 

3 as fractional part. For example: to store 123.456

1 2 3 4 5 6

                                             ↑assumed decimal position
Decimal point is assumed in middle and this sign does not exist physically. In this system 

range is very limited. Tracking of decimal point will be more difficult in this system as we perform 
mathematical operations like +, –, *, /.

Range is !999.999 to 000.001.
To improve this range concept, most usual representation is to use 4 digits for integers and 2 for 

floating, i.e., 1234.56 is stored as

1 2 3 4 5 6

                                                                                                      ↑assumed decimal position
Range is increased from 9999.99 to 0000.01 still is very inadequate for most of computations. To 

remove this problem we use concept of floating point in power notation form.
For example : 1234.56 is represented as 0.1234 × 107 and written as 1234 E07 is i.e.,
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1 2 3 4 07

                                                                                     ↑

Clearly range is increased

		  0.9999 × 1099 to 0.1000 × 10–99

This is much larger. Problem still arise as sign is not a available. If sign bit is used then 

representation of negative numbers will be reduced to 10–9 only as one bit will be consumed as sign 

bit. To avoid this a concept of Excess method is used. This is a split range of exponent with 50 as base 
from 00 to 99.

50 is centre so all exponent > 50 are positive and < 50 are negative. Range will be from –50 to 49.

Excess –50. Method says add 50 to exponent.

For example: 0.123456 × 103 will be stored as

1 2 3 4 5 6

	       

 1.15  Concept of Normalized Floating Point 
Consider a number 0.001234 × 10–5, which is to be stored. It will be stored as

0 0 1 2 45

                                                                                                     ↑
We loose 2 significant digits. If we represent this number as 0.1234 × 10–7, the storage will be 

which is much reliable representation.

1 2 3 4 43

                                                                                                      ↑
So removing zeroes in beginning is termed as normalized floating. In normalized floating range 

is further increased.
 1.16  Pitfalls of Floating Point Representation

We know that mantissa have to be truncated to four digits in order to fit into the normalized 
floating-point format of the hypothetical system.

For example.

			   4x = x + x + x + x� ...(1)

When arithmetic is performed using normalized floating point representation, equation (1) may 
not hold true.

Example 1.	 (i)	 Add 0.1234 × 10–3 and 0.5678 × 10–3 using concept of normalized 
floating point.

Solution.	 We have	 0.1234 × 10–3 + 0.5678 × 10– 3
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0.1234 3

0.5678 3

0.6912 3

E
E

E

⇒
+

  ⇒	 0.6912 × 10–3

6 9 1 2 47

                                      ↑
	 (ii)	 Add 0.2315 × 102 + 0.9443 × 102

			             

0.2315 02

0.9443 02

1.1758 02

E
E

E

⇒
+

⇒	 0.1175 × 103

1 1 7 5 53

                                      ↑
	 (iii)	 For different base 0.1234 × 103 + 0.4567 × 102

			             
0.1234 3

0.4567 2

0.5801 3

E
E

E

⇒
+

		 Make base as same

				 

0.1234 3

0.0456 3

0.1690 3

E
E
E

⇒
+

  ⇒	 0.1690 × 103

1 6 9 0 53

                                     ↑Example 2.		  Subtract the following :
	 (i)	 0.4567 × 108 – 0.1234 × 108

			  	

0.4567 8

0.1234 8

0.3333 8

E
E
E ⇒	 0.3333 × 108

	 (ii)	 Different base 0.4567 × 108 – 0.1234 × 107

				   0.4567  E8
				   0.1234  E7 ⇒ 0.4567 8

0.0123 8

0.4444 8

E
E
E						      	                 ⇒	 0.4444 × 108

	 (iii)	 Normalized answer 0.4567 × 108 – 0.4566 × 108

					    	

0.4567 8

0.4566 8

0.0001 8

E
E
E ⇒	 0.1 × 105

	 (iv)	 Condition of overflow :

						   

49

49

0.4568 10

0.7767 10

0.4568 49

0.7767 49

0.12335 49

E
E
E

×

×

⇒	 0.1233 × 1050 over flow
	 (v)	 Condition of underflow:

						   

0.4567 52

0.4500 52

0.0067 52

E
E
E ⇒	 0.67 × 10–52

									        	 	  ↓ under flow
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 Remarks

¯¯ In multiplication, exponents are added and mantissa multiplied. If added expanded >99 overflow
�� For example: Multiply 0.55432 * 0.4111 E7
��                                        = 0.22787273*E9
��                                            decreased
��                                  = 0.22789 E9

¯¯ In division, exponents are subtracted
�� For example: Divide 0.9380  E5 by 0.3500 E2

��                                        
0.9380 5
0.3500 5

E
E

=

��                                        = 0.2680 E3

Example 3.			  Apply the procedure of multiplication of two floating point numbers for 
the following multiplications :

				  		  (0.5334 × 109) × (0.1132 × 10–25)

			  and		  (0.1111 × 1074) × (0.2000 × 1080)
			  indicate if the result is overflow or underflow.

Solution.	 The procedure for multiplication of two floating point numbers is
	 (i)	 multiply the mantissas of the two normalized floating point numbers.
	 (ii)	 and their exponents.

	 (iii)	 Resultant mantissa is normalized.

	 Therefore, (0.5334 × 109 ) × (0.1132 × 10–25)
						     = (0.5334) × (0.1132) × (109 × 10–25)
						     = 0.06038038 × 10–16

						     = (0.6038 E –17)
	 and (0.1111 × 1071) × (0.20000 × 1080)
						     = (0.1111) × 9.20000 × (1074 × 1080)
						     = (0.02222) × 10154

						     = (0.2222 E 153)
	 Since exponent is greater than 99, therefore, the result is “overflow”.
	Example 4.		  In normalized floating point mode, carry out the following mathematical 

operations

	 (i)	 (0.4546 E3) + (0.5454 E8)

	 (ii)	 (0.9432 E – 4) – (0.6353 E – 5)
Solution.	 We have

	 (i)	 0.5454 8

0.0000 8

0.5454 8

E
E
E

+
		�   ( 4546 E 3 = 0.0000 E8)

	 (ii)	 0.9432 4

0.0635 4

0.8797 4

E
E
E

−
− −

−						�      ( 6353 E –5 = 0.0635 E – 4)

Example 5.	 	 Multiplying the following floating point number 0.1111 E10 and 0.1234 
E15.
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Solution.	 We have 0.1111 E 10 × 0.1234 E 15 = 0.1370 E 24.
Example 6.		  For e = 2.7183 calculate the value of ex when x = 0.5250 E1, where

					 
2 3

1 ...
2! 3!

x x x
e x= + + + +

Solution.	 We have e0.5250 E1 = e5 × e0.25

	 Now	     5 (0.2718 1) (0.2718 1) (0.2718 1) (0.2718 1) (0.2718 1)e E E E E E= × × × ×
			          = 0.1484 E3.

	 Also, 
2 3

0.25 (0.25) (0.25)
1 (0.25)

2! 3!
e = + + +

		   	          = 1.25 + 0.03125  +0.002604 = 0.1284 E1
	 Therefore,

		  0.5250 1 (0.1484 3) (0.1284 1) (0.1905 3)Ee E E E= × =

Example 7.		  Find the smallest root of equation x2 – 400x + 1 = 0 using four digit 
arithmetic.

Solution.	 It is known that, roots of equation ax2 – bx + c = 0 are

				 
2 4

2
b b ac

a
− +  and 

2 4
2

b b ac
a

− −

	 Also, product of roots are .
c
a

	 	 smaller root is 

				    
22

/ 2

44
2

c a c

b b acb b ac
a

=
  + −+ − 
  

	 Here,     1 0.1000 1, 400 0.4000 3, 1 0.1000 1a E b E c E= = = = = =

	 Now, b2 – 4ac = 0.1600 E6 – 0.4000 E1 = 0.1600 E6

	 ⇒   2 4 0.4000 3b ac E− =

	 Hence, smaller root 2 (0.1000 1)
0.4000 3 0.4000 3

E
E E

×=
+

0.2000 1
0.25 2 0.0025

0.8000 3
E

E
E

= = − =

Example 8.		  Determine the number of terms of the exponential series.

					      
2 3

1 ... ...
2! 3! !

n
x x x x

e x
n

= + + + + + +

			  such that this gives the values of ex correct to six decimal places for 
0 ≤ x ≤ 1.� [rohilkhand–2004, 10]

Solution.	 Given that 	
−

= + + + + + +
−

2 3 1
1 ... ( )

2! 3! ( 1)!

n
x

n
x x x

e x R x
n

	 Where    ( ) ,0
!

n

n
x

R x e x
n

θ= < θ <

	 Max, absolute error (at q = x) 
!

n
xx

e
n

=

	 and the maximum relative error
!

nx
n

=

	 Hence		      (Er)max at 1
1

!
x

n
= =

	 For a six decimal accuracy at x = 1 we have
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					    61 1
10

! 2n
−< × or n! > 2 × 106

	 Which gives n = 10
Example 9.		  In case of normalized floating point representations, associative 

and distributive laws are not always valid. Give example to prove the 
statement.

		 Or
			  If the normalization on floating point is carried out at each stage, prove 

the following
	 (i)	 a(b – c) + ab – ac, where a = 0.5555 E1, b = 0.4545 E1, c = 0.4535 E1.
	 (ii)	 (a + b) – c ≠ (a – c) + b, where a = 0.5565 E – 1, b = 0.5556 E – 1, 

c = 0.5644 E1.

Solution.	 In normalized floating point representations, the associative and the distributive laws 
of arithmetic are not always valid.

	 Consider the following examples:
	 Non-distributivity of Arithmetic

	 Since a = 0.5555 E1, b = 0.4545 E1, c = 0.4535 E1

	 		         (b – c) = 0.0010 E1 = 0.1000 E –1

	 ⇒		       a(b – c) = (0.5555 E1) × (0.1000 E –1)

				     	           = (0.0555 E0) = 0.5550 E –1

	 Also, 		       ab = (0.5555 E1) × (0.4545 E1)

						      = 00.2524 E2

			   		       ac = (0.555 E1) × (0.4535 E1)

						      = 0.2519 E2
	 ⇒		       a(b – c) g ab – ac
	 Non-Associativity of Arithmetic
	 Let a = 0.5665 E1,  b = 0.5556 E–1, c = 0.5644 E1
	 Therefore,     (a + b) = 0.5665 E1 + 0.5556 E –1
						     = 0.5665 E1 + 0.0055 E1 = 0.572 E1
	 	           (a + b) – c = 0.5720 E1 – 0.5644 E1
					            = 0.0076 E1

						     = 00.7600 E –1

			                  (a – c) = 0.5665 E1 – 0.5644 E1

						      = 00.0021 E1 = 0.2100 E –1

	 ⇒	          (a – c) + b = 0.2100 E –1 + 0.5556 E –1

					          = 0.7656 E –1

	 ⇒	           (a + b) – c g (a – c) + b

Example 10.		  Calculate the value of polynomial x3 – 4x2 + 0.1x – 0.5 for x = 4.011, 
using floating point arithmetic with 4 digit mantissa in two different 
ways. Find the relative errors in the two methods.
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Solution.	 We have		       x = 4.011
	 Value of x in floating point representation is

		         		      x = 0.4011 E1
	 Now value of given polynomial in real arithmetic is
		  x3 – 4x2 + 0.1x – 0.5 = (4.011)3 – 4(4.011)2 + 0.1(4.011) – 0.5
						     = 64.529453 – 4(16.088121) + (0.4011) – 0.5
						     = 0.0780693� ...(1)
	 Now, in normalised floating point
		  x3 – 4x2 + 0.1x – 0.5 = x∙x∙x – 4∙x∙x +0.1x – 0.5

						     = (0.4011 E1)(0.4011 E1)(0.4011 E1) – 4(0.4011 E1)

	                         �                           (0.4011 E1) + 0.1(0.4011 E1) – 0.5000 E0

						     = 0.6452 E2 – 0.6435 E2 + 0.4011 E0 – 0.5000 E0

						     = 0.0017 E2 – 0.0989 E0

						     = 0.1700 E0 – 0.0989 E0

						     = 0.0711 E0� ...(2)
	 Now relative error in two methods
						     = (1) – (2) = 0.0780 – 0.0711 = 0.0069

 1.17  Error in a series approximation 
The Taylor’s series for f(x) at x = a is

	                 
2 1

1( ) ( )
( ) ( ) ( ) ( ) ( ) ... ( ) ( )

2! ( 1)!

n
n

n
x a x a

f x f a x a f a f a f a R x
n

−
−− −′ ′′= + − + + + +

−

where Rn(x) is the remainder term and given by

	              ( )
( ) ( ),

!

n
n

n
x a

R x f a x
n
−= θ < θ <

Here, if the series is convergent, Rn(x) → 0 as n → ∞. Now, if f(x) is approximated by the first n 

terms of this series, then the maximum error will be given by the Rn(x). Also if the accuracy required 

in a series approximation is preassigned, then we can find the number of terms which gives the 

desired accuracy.

 1.17.1  Series with Remainder Terms 
	 (1)	 The Binomial series

		  2 3( 1) ( 1)( 2)
(1 ) 1

2! 3!
m m m m m m

x m x x x
− − −+ = + ⋅ + + + ...

									        			   1( 1)...( 2)
( 1)!

n
n

m m m n
x R

n
−− − ++ +

−
		  where

	 (a)	 ( 1)( 2)...( 1)
(1 ) ,0 1

!
n m n

n
m m m m n

R x x
n

−− − − += + θ < θ <

	 (b)	 If x > 0 then ( 1)...( 1)
!

n
n

m m m n
R x

n
− − +< ⋅
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	 (c)	 If x < 0 and n > m then ( 1)( 2)...( 1)
! (1 )

n

n n m
m m m m n x

R
n x −

− − − +< ⋅
+

	 (2)	 Exponential Series

	 (a)	
2 3 1

1 ...
2! 3! ( 1)!

n
x

n
x x x

e x R
n

−
= + + + + + +

−
with  

!

n
x

n
x

R e
n

θ= � [MDU(BE)–2005]

		  In general e < 3 and q  1

		 ⇒	 	 3
!nR

n
<

	 (3)	 Logarithmic Series					  

				           
3 5

1 1 1
log ( 1) log 2 ...

2 1 3(2 1) 5(2 1)
e em m

m m m


+ = + + + + + + +

	  			  	                     				             
2 1

1

(2 1)(2 1)
nn R

n m −


+ +− + 

		  where		
2 1 2 3

1 1
2 ...

(2 1)(2 1) (2 3)(2 1)
n n nR

n m n m+ +
 

= + + 
+ + + + 

		  Also, we have 
2 1

1 1
2 ( 1)(2 1)(2 1)

n nR
m m n m −< ⋅

+ + +
	 (4)	 Series ax

				     
2 1( log ) ( log )

1 log ...
2! ( 1)

n
x

n
x a x a

a x a R
n

−
= + + + + +

−
  where  ( log )

!

n
x

n
x a

R a
n

θ=

 1.18  Error in determinants 
If the elements of a determinant are not exact due to rounding or otherwise, then the value of 

the determinant may be seriously affected, due to the loss of some important significant figures. The 
amount of such type of losses can not be determined in advance. Here we determine the upper limit 
of the error in a determinant as follows:

Let us define a determinant as

			 
1 2 3

1 2 3

1 2 3

x x x
D y y y

z z z
= � ...(1)

Now, let Dxi, Dyi and Dzi are the errors in xi, yi and zi respectively and DD is the error in D, then 
we have

		         
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

x x x x x x
D D y y y y y y

z z z z z z

+ ∆ + ∆ + ∆
+ ∆ = + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆
� ...(2)

From eq.(1), we have

	                 
1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

dx x x x dx x x x dx
dD dy y y y dy y y y dy

dz z z z dz z z z dz
= + +

⇒	                  2 3 3 2 1 2 3 3 2 1 2 3 3 2 1( ) ( ) ( )dD y z y z dx x z x z dy x y x y dz= − − − + −

		  1 3 3 1 2 1 3 3 1 2 1 3 3 1 2( ) ( ) ( )y z y z dx x z x z dy x y x y dz− − + − − −

	           	 1 2 2 1 3 1 2 2 1 3 1 2 2 1 3( ) ( ) ( )y z y z dx x z x z dy x y x y dz+ − − − − − � ...(3)

Here, we observe that, the maximum possible error would occur when the signs of the elements 
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and the signs of the errors are such that all the eighteen terms in equation (3) are of the same sign.
Now, equation (3) shows that the error in a determinant composed of non-exact elements may 

be anything from zero upto a number of sufficient magnitude.

 1.19  Application of error formula to the fundamental operations of Arithmetics

1.19.1  Error in Addition of Numbers
		  Let y = x1 + x2 + ... xn be a function.
		  Let us suppose Dxi to denote the error in xi. Then we have
				    	  y + Dy = (x1 + Dx1) + (x2 + Dx2) + ... + (xn + Dxn)
							       = (x1 + x2 + ... + xn) + (Dx1 + Dx2 + ... + Dxn)
		  			      Dy = Dx1 + Dx2 + ... + Dxn
		  Now, dividing by y, we get

						        1 2 ... nx x xy
y y y y

∆ ∆ ∆∆ = + + +

		  ⇒		        1 2 ... nx x xy
y y y y

∆ ∆ ∆∆ ≤ + + +

		  Then, the absolute error is obtained by the relation given by

					                y
y y

y
∆∆ = ⋅ = Product of Relative error and the number y.

1.19.2  Error in subtraction of Numbers
		  Let y = x1 – x2 be given.
		  Let us suppose Dy, Dx1 and Dx2 denote the errors in y, x1 and x2 respectively.
		  Then, we have
					     	   y + Dy = (x1 + Dx1) – (x2 + Dx2) = (x1 – x2) + (Dx1 – Dx2)
		  ⇒	 	 	          Dy = Dx1 – Dx2� ( y = x1 – x2)

		  ⇒	 	 	 	 1 2x xy
y y y

∆ ∆∆ = −

		  But, we have

						          |Dy| [ |Dx1| + |Dx2|  ⇒  
∆ ∆∆ ≤ +1 2x xy

y y y

		  Therefore, the relative error and absolute errors are given by

			         Relative error =
∆ ∆∆ ≤ +1 2x xy

y y y

		  and	Absolute error = |Dy| [ |Dx1| + |Dx2|

1.19.3  Error in Product of Numbers
		  Let 				      y = x1x2 ... xn

		  Now, suppose that Dy, Dx1, Dx2, ..., Dxn denote the errors in y, x1, x2, ..., xn respectively.
		  Then, we have

							      1 2

1 2
... n

n

x x xy y y y
y y x y x y x

∆ ∆ ∆∆ ∂ ∂ ∂= ⋅ + ⋅ + + ⋅
∂ ∂ ∂

		  Now		   2 3

1 1 2 3 1

...1 1
...

n

n

x x xy
y x x x x x x

∂⋅ = =
∂

						      1 3

2 1 2 3 2

...1 1
...

n

n

x x xy
y x x x x x x

∂⋅ = =
∂
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			                 ................................................
			                 ...............................................

						      −∂⋅ = =
∂

1 2 1

1 2

...1 1
...

n

n n n

x x xy
y x x x x x

		  			   	 1 2

1 2
... n

n

x x xy
y x x x

∆ ∆ ∆∆ = + + +

		  Therefore, the Relative error and absolute error are given by

				    Relative error = 1 2

1 2
... n

n

x x xy
y x x x

∆ ∆ ∆∆ ≤ + + +

			        Absolute error = 1 2( ... )n
y y

y x x x
y y

∆ ∆⋅ = ⋅

1.19.4  Error in Division of Two Numbers

		  Let 1

2

x
y

x
= . Since, we have

				                  1 2 1 2 1 1 2
2

1 2 1 2 2 1 2 1 22

1
/ /

x x x x x x xy y y
y y x y x x x x x x x xx

 ∆ ∆ ∆ ∆ − ∆ ∆∆ ∂ ∂= ⋅ + ⋅ = × + = −  ∂ ∂  

		      		         	 1 2

1 2

x xy
y x x

∆ ∆∆ ≤ +

		  Thus, the relative error is given by

		       Relative Error 1 2

1 2

x x
x x

∆ ∆≤ +

1.19.5  Error in Evaluating xk

		  Let y = xk, where k is any integer or a fraction. Then, we have the relative error

							            y x dy
y y dx

∆ ∆= < ⋅

		  i.e.,			         1k
k

y x x
k x k

y xx
−∆ ∆ ∆< ⋅ ⋅ = ⋅

		  Thus, relative error in evaluating k x
x k

x
∆= ⋅

1.19.6  Inverse Problem
		  Let y = f(x1, x2, ..., xn) be a function, which have a desired accuracy, i.e., if Dy is error in y. 

Then we have to determine errors Dx1, Dx2, ..., Dxn in x1, x2, ..., xn.
		  Since, we have

							      1 2
1 2

... n
n

y y y
y x x x

x x x
∂ ∂ ∂∆ = ∆ ⋅ + ∆ ⋅ + + ∆ ⋅
∂ ∂ ∂

		  Now using the principle of equal effects, we have

			     	      1 2
1 2

... n
n

y y y
x x x

x x x
∂ ∂ ∂∆ ⋅ = ∆ ⋅ = = ∆ ⋅
∂ ∂ ∂

						      	 1 1 1 1
1 1 1 1

...
y y y y

y x x x n x
x x x x

∂ ∂ ∂ ∂∆ = ∆ ⋅ + ∆ ⋅ + + ∆ ⋅ = ∆ ⋅
∂ ∂ ∂ ∂

		  			          1

1

y
x

y
n

x

∆∆ = ∂
∂
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		  Similarly     2

2

... n

n

y y
x x

y y
n n

x x

∆ ∆∆ = ∆ =∂ ∂
∂ ∂

		  Thus 	          1 2

1 2

, ,..., n

n

y y y
x x x

y y y
n n n

x x x

∂ ∂ ∂∆ = ∆ = ∆ =∂ ∂ ∂
∂ ∂ ∂

Example 1.		  Find the possible relative error and absolute error in the sum of 0.1429 
and 0.0909, where 0.1429 and 0.0909 are the approximate values of 1/7 
and 1/11, correct to four decimal places.

Solution.	 Since, we consider the approximation in four decimal places, therefore in each case, 
the maximum error is

	 				   1
0.0001 0.00005

2
× =

	 Now

	 (i)	 The relative error 0.00005 0.00005
0.2338 0.2338

y
y

∆= < +

	 	�  ( y = x1 + x2 = 0.1429 + 0.0909 = 0.2338)

	 	 		            
∆ < =0.0001

0.00043
0.2338

y
y

	 (ii)	 The absolute error
∆= = × =0.0001

0.2338 0.0001
0.2338

y
y

y

Example 2.		  Find the relative error in the difference of following two numbers, given 

by 5.5 2.345≈ and 6.1 2.470,≈  correct to four significant figures.

Solution.	 Here we have          1 2
1

(0.001) 0.0005
2

x x∆ = ∆ = =

	�  ( we consider the approximation into four significant figures)

	 	      The relative error 1 2x x
y y

∆ ∆< +

						           1 0.0005
2 2

2.470 2.345
x
y

∆= =
−

� ( y = x1 – x2)

						           0.0005 0.001
2 0.0008

0.125 0.125
= = =

	 Hence, the possible maximum error is = 0.0008.
Example 3.		  Find the product of 346.1 and 865.2 and state how many figures of 

the results are trustworthy, given that the numbers are correct to four 
significant figures.

Solution.	 Since we consider the approximation in one decimal place, therefore

						     1 2
1

(0.1) 0.05
2

x x∆ = = ∆ =

	 and	 346.1 865.2 299446y = × =
	 which is correct to six significant figures.

	 Then,    the relative error 1 2

1 2

0.05 0.05
346.1 865.2

x x
x x

∆ ∆≤ + = +



Applied Numerical Analysis40

						          = 0.000144 + 0.000058 = 0.000202
	 Therefore, the absolute error = Relative error [ 0.000202 + 299446 ≈ 60
	 The true value of the product of the numbers lies between
					    299446 – 60 = 299386 and 299446 + 60 = 299506

	 Now, the mean of these values is 299386 299506
299446

2
+ =  which can be written as 

299.4 × 102 correct to four significant figures.
Example 4.		  Find the number of trustworthy figures in (0.491)3 assuming that the 

number is 0.491 is correct to last figure.

Solution.	 Since, we know that the relative error r
y x

E k
y x

∆ ∆= <

	 And we consider the approximation of given number up to three decimal places

	 	 	
1

(0.001) 0.0005
2

x∆ = =

	 Also,   here    k = 3

	 ⇒	          
3

3 0.0005 3 0.0005
0.01267

0.118371(0.491)

x
k

x
∆ × ×= = =

	 	 The absolute error = Er ∙ y
						       < 0.01267 × (0.491)3

						       = 0.01267 × 0.118371 = 0.0015
	 Since the error affects the third decimal places, therefore, (0.491)3 = 0.1183 is correct 

to second decimal places.
Example 5.		  The error in the measurement of the area of circle is not allowed to exceed 

0.1%. How accurately should the diameter be measured?
Solution.	 Let d be the diameter of the circle.

	 Then area is given by	      
2

4
d

A
π=

	 ⇒	 	        	               
2

A d
d

∂ π=
∂

				         	             ,
A

A d
d

∂∆ = ∆ ⋅
∂

	   
A

d
A
d

∆∆ = ∂
∂

	 Now    percentage error in 100 0.1
A

A
A

∆= × =

	 	 	 	 	      
20.1 0.001

0.001
100 4

A d
A A

× × π∆ = = × =

	   The percentage error in d 100
100

/
d A

d d A d
∆ ∆= × = ×

∂ ∂

						            
2 2100 0.001 0.1 2 0.1

0.05
4 2 4 2

d d d
d d d

 × π π π= = × = =   π 

Example 6.		  The percentage error in R, which is given by
2

,
2 2
r h

R
h

= + is not allowed to 

exceed 0.2%. Find allowable error in r and h when r = 4.5 cm and 
h = 5.5cm.� [meerut–2011]
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Solution.	 The percentage error in R

					    100 0.2
R

R
∆= × =

	 \		    0.2
100

R R∆ = ×
20.2 (4.5) 5.5

100 2 5.5 2

 
= × + 

×  
�

2

2 2
r h

R
h

 
= +   

∵

					    0.2 50.5 0.002 50.5
100 11 11

×= × = � ...(1)

	 (i)	 Percentage error in 100
r

r
r

∆= ×

					    100
2

R
Rr
r

 
 ∆=  ∂  ∂ 

�
2

R
r

R
r

 
 ∆∆ = ∂  ∂ 

∵

					  
∆ ∆ ⋅= × =
 
  

2
100 100( )

22

R R h
rr r
h

� ...(2)

		  Put r = 4.5 and value of DR from equation (1), in equation (2), we get

		  Percentage error
2

100 0.002 50.5
112 (4.5)

h
×= × ×

×

					          0.1 50.50 5.5
0.12

11 20.25
× ×= =

×

	 (ii)	 Percentage error in 100
h

h
h

∆= ×

						        
2

2

100 100

12 2
22

R R
Rh h r
h h

∆ ∆= × = ⋅∂  − + ∂   

						        
2

2

100 100 50.5 0.002
0.505

20 /11 11
R

r
h

h

∆ ×= = × =
 − +   

Example 7.		  Use the Series     
3 51

log 2 ...
1 3 5e

x x x
x

x

 +  = + + +   −  

			  to compute the value of log (1.2) correct to seven decimal place and find 
the number of terms retained.� [meerut–2015]

Solution.	 Let 1
1.2

1
x
x

+ =
−

        ⇒	          1
11

x =

	 If we retains n terms, then   (n + 1)th term

2 1

2 1
1

11
2 1 2 1

n

nx
n n

+

+
 
  = =

+ +
	 For seven decimal accuracy, we have

				 
2 1

71 1 1
10

2 1 11 2

n

n

+
− ⋅ < × +  

 ⇒	    2 1 7(2 1)(11) 2 10nn ++ > ×

	 ⇒					       n m 3
	 Hence, retaining the first three terms of the given series, we get
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3 5

1
at 

11

log (1.2) 2 0.1823215.
3 5e

x

x x
x

=

 
= + + =   

Example 8.		  For x = 0.4845 and y = 0.4800. Calculate the value of 
2 2x y
x y

−
+

 by using 

normalized floating point arithmetic. Compare with the value of (x – y) 
indicate error in the former.

Solution.	 Given that x = 0.4845, y = 0.4800
	 Now,	 (x2 – y2) = (0.4845 E0 × 0.4845 E0) – (0.4800 E0 × 0.4800 E0)
				       = (0.0043 E0) = (0.4300 E – 2)
			     (x + y) = (0.4845 E0 + 0.4800 E0) = (0.9645 E0)

	 So,  
2 2( ) (0.4300 2)

( ) (0.9645 0)
x y E
x y E

− −=
+

		 	       (0.4845 0) 0.4800 0x y E E− = −

				       = (0.0045 E0) = (0.4500 E – 2)

	 Hence in normalized floating point arithmetic, the value of
2 2( )x y

x y
x y

− ≠ −
+

	 The error is (0.4500 E –2) – (0.4458 E –2) = (0.0042 E –2) = (0.4200 E –4)

Example 9.		  Compare the percentage error in the time period 2
l

T
g

= π for l = 1 m if 

the error in measurement of l is 0.01.

Solution.	 We have  	        2
l

T
g

= π

	 Taking log of both the sides, we get

				      1 1
log log 2 log log

2 2
T l g= π + −

	 ⇒	 	     1 1
2

l
T

T l
δδ = ⋅

	 ⇒	         0.01
100 100 100 5%

2 2 1
T l
T l
δ δ× = × = × =

×
Example 10.	 	 The discharge Q over a notch for head H is calculated by the formula 

Q = kH5/2, where k is a given constant. If the head is 75 cm and an error 
of 0.15 cm is possible in its measurement, estimate the percentage error 
in computing the discharge.

Solution.	 Here, we have Q = kH5/2

	 Taking log of both the sides, we get

			        	   5
log log log

2
Q k H= +

	 On differentiating, we get

				        5
2

Q H
Q H
δ δ= ⋅

	 	         
δ × = × × = =5 0.15 1

100 100 0.5
2 75 2

Q
Q



Computer Arithmetic and Errors	 43

Example 11.		  If r = 3h(h6 – 2). Find the percentage error in r at h = 1 if the percentage 
error in h is 5.� [meerut–2008, 10]

Solution.	 We have  6(21 6)
r

r h h h
h

∂δ = ⋅ δ = − δ
∂

	    
6

7
21 6

100 100
3 6

r h
h

r h h

 δ −× = δ ×  − 

21 6 15
100 5% 25%

3 6 3
h
h

− δ  = × = ⋅ = −  − −  

	 Now, percentage error is   100 25%
r
r
δ= × =

Example 12.		  If 29 5.385= and 3.317π = correct to four significant figures, find the 
relative error in their sum and differences.� [meerut–2017; kanpur–2011]

Solution.	 The numbers 5.385 and 3.317 are correct to four significant figures. Therefore.
	 Maximum error in each case is

			          31
10 0.0005

2
−× =

	 		       1 2 0.0005x x∆ = ∆ =

	 Now, relative error in their sum is

				       1 2x xX
X x x

∆ ∆∆ ≤ + � ( X = x1 + x2 = 8.702)

					       40.0005 0.0005
1.149 10

8.702 8.702
−≤ + < ×

	 Also, relative error in their difference is

				      1 2x xX
X x x

∆ ∆∆ ≤ +  where X = x1 – x2 = 2.068

					       0.0005 0.0005
2.068 2.068

≤ +   < 4.835 × 10–4

 Exercise 1.3 
	 1.	 Find the number of terms of the exponential 

series such that their sum gives ex correct to 
six decimal places at x = 1.

	 2.	 If 
2

3
4xy

R
z

=  and errors in x, y, z be 0.001. 

Show that the maximum relative error at        
x = y = z = 1 is 0.006.

	 3.	 If 
21

2
r

R h
h

 
= +   

 and error in R is at the most 

0.4%. Find the percentage error allowable in 
r and h when r = 5.1 cm and h = 5.8 cm.

	 4.	 Determine the number of terms required in 
the series for log(1 + x) to evaluate log 1.2 
correct to six decimal places.

	 5.	 Find the relative error in calculation of

7.342
,

0.241
 where the number 7.342 and 0.241 

are correct to three decimal places. Determine 
the smallest interval in which true result lies.

	 6.	 Find the number of trustworthy figures 
in (367)1/5 where 367 is correct to three 
significant figures.

	 7.	 How accurately, the length and time of 
vibration of a pendulum should be measured 
in order that the computed value of g be 
correct to 0.01%.

	 8.	 Let n0 be the approximate cube root of n and 

let
3
0

1,
n

x
n

= −  show that cube root of n is 

given by

	 	 	           
2 3 4

1/3
0

5 10
1 ...

3 9 81 243
x x x x

n n
 

= + − + − + 
  

     

	 	 Hence, find the value of (6)1/3 correct to four 
significant figures.
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	 9.	 If n0 is the approximate value of the square 

root of n and 
2
0

1,
n

x
n

= −  show that the square 

root of n is given by

	 		            
2 3 4

1/2
0

5
1 ...

2 8 16 128
x x x x

n n
 

= + − + − + 
  

	 	 Hence, find the square root of 5 correct to 
three decimal places.

	10.	 Write a short note on ‘Error in Numerical 
computations’.

	11.	 Let x* approximate x correct upto n significant 

figures if ex is evaluated for x, –8 [ x [ 9. 
Then, what should be the relative error.

	12.	 If R = 4x2y3z–4, find the maximum absolute 
error and maximum relative error in R when 
errors in x = 1, y = 2, z = 3 respectively are 
equal to 0.001, 0.002, 0.003.� (UPTU–2003)

	13.	 Represent 44.85 × 106 in normalized floating 
point mode.� (UPTU–2004)

	14.	 If r = h(4h5 – 5), find the percentage error in 
r at h = 1, if the error in h is 0.04.

	 	�  (WBTU–2005)

AnswersAnswers

	 1.	 n = 10			   3.	 0.23, 0.14		  4.	 n = 10			   5.	 0.0021, (30.4647 – 0.0639)
	 6.	 3.26, correct to three figures
	 7.	 (i) Percentage error in length = 0.005	 (ii)	 Percentage error in time	 = 0.0025  	 9.	1.817
	 9.	 2.236			   12.	 0.00355, 0.0089	 13.	 0.4485 E8			   14.	 76

 1.20  order of approximations 
Let us suppose f(h) be a function with approximation g(h) and the error bound is known to be 

m(hn) where n is a positive integer so that
		          |f(h) – g(h)| [ m|hn|
where h is sufficiently small.
Then, we say that g(h) approximate the function f(h) with order of approximation O(hn) and 

write
			        f(h) = g(h) + O(hn)

For example: (i) Consider (1 – h)–1 = 1 + h + h2 + h3 + h4 + ...

⇒		                  (1 – h)–1 = 1 + h + h2 + h3 + O(h4)

Similarly		      
2 4 6

cosh 1 ...
2! 4! 6!
h h h= − + − +

2 4
61 ( )

2! 4!
h h

O h= − + +

1.20.1  Order of Approximation for sum and product

	 (i)	 Approximation for Sum: Consider, from the previous example
								             (1 – h)–1 = 1+ h + h2 + h3 + O(h4)� ...(1)

	 	 and						        
2 4

6cosh 1 ( )
2! 4!
h h

O h= − + + � ...(2)

	 	 Then, for the approximation of sum of eq. (1) and (2), we get

							       
2 4

1 3 4 6[(1 ) cosh] 2 ( ) ( )
2! 4!
h h

h h h O h O h−+ + = + + + + + + � ...(3)

		  Now since	           
4

4 4( ) ( )
4!
h

O h O h+ =

		  and				         4 6 4( ) ( ) ( )O h O h O h+ =
		  Therefore, from eq. (3), we get

						              
2

1 3 4[(1 ) cosh] 2 ( )
2!
h

h h h O h−+ + = + + + +

				   a fourth order approximation.
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	 (ii)	 Approximation for Product:
		  For the approximation of product of (1) and (2), we get

					         
2 4

1 2 3 2 3 6[(1 ) cosh] (1 ) 1 (1 ) ( )
2! 4!
h h

h h h h h h h O h−  
+ = + + + − + + + + + 

  

											        
2 4

4 4 61 ( ) ( ) ( )
2! 4!
h h

O h O h O h
 

+ − + +   

								               
2 3 4 5 6 7

411 11
1 ( )

2 2 24 24 24 24
h h h h h h

h O h= + + + − + + + +

												           6 4 6( ) ( ) ( )O h O h O h+ + � ...(4)
		  Now since 
						          O(h4)O(h6) = O(h10)

		  ⇒	
4 6 7

5 4 6 10 411 11
( ) ( ) ( ) ( )

24 24 24 24
h h h

h O h O h O h O h− + + + + + + =

		  Therefore, from eq. (4), We get

						   
2 3

1 4[(1 ) cosh] 1 ( )
2 2
h h

h h O h−− = + + + +

		  which is of the first order approximation.
 1.21  propagation of error 

Let us suppose g(n)  represents the growth of error after n steps of a computation process. Then, 
we have the following observations
	 (i)	 If |g(n)| ~ ne then, the growth of error is linear.
	 (ii)	 If |g(n)|~ dne then, the growth of the error is exponential.
	 (iii)	 If d > 1 then the exponential will grow indefinitely as n → ∞ and 
	 (iv)	 If  0 < d < 1 then exponential error decrease to zero as n → ∞

1.21.1  Some important observations on Errors
zz If C1 and C2 are the first significant figures of two numbers which are each correct to n 

significant figures and if neither number is of the form C(1.00...) × 10P, then their product or 
quotient is correct to :

(a)	 (n – 1) significant figures if C1 m 2 and C2 m 2.
(b)	 (n – 2) significant figures if either C1 = 1 or C2 = 1.

zz If C is the first significant figure of a number which is correct to n significant figures, and if this 
number contains more one digits different from zero, then its pth power is correct to:

(a)	 (n – 1) significant figures if p [ C
(b)	 (n – 2) significant figures if p [ 10C.
and its rth root is correct to
(a)	 n significant figures if rC [ 10.
(b)	 (n – 1) significant figures if rC [ 10.

zz If C is the first significant figures of a number which is correct to n significant figures and if 
this number contains more than one digit different from zero, then for the absolute error in its 
common logarithms we have

				  
1

1

4 10
a nE

C −<
×

zz If a logarithm (base 10) is not in error by more than two units in the mth decimal places, the 
antilog is certainly correct to (m – 1) significant figures.
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 1.21.2  Propagated Error 
In any numerical problem, the true value of numbers may not be used exactly, i.e., in place of 

true values of the numbers, some approximate values like floating point numbers are used initially. 
The error arising in the problem due to those inexact/approximate values is called propagated error.

Let xA, yA be approximation to x and y respectively and w be arithmetic operation. Then,

		   The propagated error = xwyA – xAwyA

	            The relative propagated error 
A Axwy xw y

xwy
−=

	       	      Total relative error 
A A Axwy x w y

xwy
−=

			                      
A A A A A A Axwy x wy x wy x w y

xwy xwy
− −= +



 Remark

¯¯ For the first approximation.
�� Total relative error = relative propagated error + relative generated error.

 1.21.3  Propagation of Error in Function Evaluation of a Single Variable 
Let f(x) be evaluated and xA be an approximation to x. Then, the absolute error in evaluation of 

f(x) is f(x) – f(xA) and relative error is

		  ( )
( ) ( )

( )

A

f x
f x f x

f x
−γ =

Let us suppose	        x = xA + rx
Then, by Taylor’s series expansion, we get

		     f(x) = f(xA) + rx f´(xA) + ...

	 ⇒	 ( )
( )

( )

A
x

f x
f x
f x
′ργ = � (By neglecting the higher order terms)

		           ( ) ( )
( ) ( ) ( )

A A
x

x
f x xf x

f x f x f x
′ ′ρ γ= ≈ = γ

	                     ( )
( )
( )

A

f x x
xf x

f x
′

γ = γ



 Remarks

¯¯ For evaluation of f(x) in denominator of R.H.S. after simplification, f(x) must be replaced by f(xA) 
in some cases so

��                             ( )
( )
( )

A

f x x
xf x

f x
′

γ = γ

�� The expression 
( )
( )

Axf x
f x
′

 is called condition number f(x) at x.

¯¯ If the condition number is very large, then function is said to be more ill-conditioned.

Example 1.		  Let f(x) = x1/10 and xA approximates x correct to n significant decimal 
digit. Show that f(xA) approximates f(x) correct to (n + 1) significant 
decimal digits.
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Solution.	 We have

			      ( )
( )
( )

A

f x x
xf x

f x
′

γ = γ ⋅

				      
1/10

1 9
110 10

10

A

x x

x x

x

⋅  = γ ⋅ = γ  

	 	       1 1 ( 1)
( )

1 1 1 1
10 10

10 10 2 2
n n

f x x
− − + γ = γ ≤ ⋅ ⋅ = ⋅  

	 ⇒	 f(xA) approximates f(x) correct to (n + 1) significant digits.

Example 2.		  The function f(x) = cos(x) can be explained as

					 
2 4 6

cos 1 ...
2 4! 6!
x x x

x = − + − +

			  compute the number of terms requires to estimate cos
4
π 

  
 so that the 

result is correct  to least two significant digits.
Solution.	 We know that the pre-specified tolerance es can be obtained by using
				    es = (0.5 × 102 – n)%
	 Therefore, we have
				    es = 0.5 × 10–m = 0.5 × 10–2

	 The remainder term Rn is given by 
2

cos
(2 )!

n

n
x

R
n

= ξ

	 Then, maximum relative error
2( / 4)

(2 )!

n

n
π=

	 Therefore,

n 2
(2 )!

( / 4) n
n

π
1 3.24

2 63.074

3 3067.561

		       
2

2 ( / 4)
0.5 10

2 !

n

n
− π× ≥

	 i.e.,
2 2

1 2 !

0.5 10 ( / 4) n
n

− ≤
× π

	 ⇒	          
2

2 !
200

( / 4) n
n≤

π
	 Thus		  n = 3
Example 3.		  The function f(x) = tan–1x can be expanded as follows:

					 
3 5 2 1

1 1tan ... ( 1) ...
3 5 (2 1)

n
nx x x

x x
n

−
− −= − + − + − +

−
			  Compute number of terms n such that the series determines tan–11 correct 

to eight significant figures.� [MDU(BE)–2006]
Solution.	 Proceed same as above, we get
			            es = 0.5 × 10–m = 0.5 × 10–8

	 Also, the remainder term after n terms is given by

			          
+

−= ξ < ξ ≤
+

2 1
1tan , 0

2 1

n

n
x

R x
n

	 Therefore, the maximum relative error is given by

		   	      
2 1

1

1
2 1 2 1

n

x

x
n n

+

=

 
=  + + 
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	 Since, the error must be less than es, therefore

		      	         8 1
0.5 10

2 1n
−× ≥

+

	 ⇒	 	 	          
8

1
2 1

0.5 10
n− ≤ +

×
	 ⇒	 	 	 	       82 10 2 1n× ≤ +
	 Therefore					     n = 108 + 1.

Example 4.		  Determine the number of terms of the exponential series

					 
2 3

1 ... ...
2! 3! !

n
x x x x

e x
n

= + + + + + +

			  such that their sum gives the values of ex correct to six decimal places for 
0 ≤ x ≤ 1.� [UPTU(MCA)–2002]

Solution.	 Here		  
2 3 1

1 ... ( )
2! 3! ( 1)!

n
x

n
x x x

e x R x
n

−
= + + + + + +

−
� ...(1)

	 Where    ( ) ,0
!

n

n
x

R x e x
n

θ= < θ <

	 Max, absolute error (at q = x)
!

n
xx

e
n

= and the max. relative error
!

nx
n

=

	 Hence, (Er)max at x = 1 = 1/n!

	 For a six decimal accuracy at x = 1 we have 61 1
10

! 2n
−< ×  or n! > 2 × 106, which gives 

n = 10.

 1.22  Blunders 
Blunders are errors which arises due to human imperfection. Since these errors are due to human 

mistakes, it should be possible to avoid them. These types of errors can occur at any stage of the 
numerical processing due to the
	 (i)	 lack of understanding of the problem
	 (ii)	 wrong assumptions
	 (iii)	 selecting a wrong method
	 (iv)	 wrong guessing the initial values.

The solution have its care, coupled with a careful examination of the results for reasonableness. 
Sometimes a test run with known results is worthwhile, but it is no guarantee of freedom from foolish 
error. When hand computation was more common check sums were usually computed. They were 
designed to reveal the mistake and permits its correction.
 1.23  Numerical instability

We know that every arithmetic operation performed during computations, gives some errors, 
which may grow or decay in subsequent calculations. In some cases errors may grow so large as it 
make the computed result totally redundant. Such a procedure is called numerically unstable.

On the other hand, in some cases it can be avoided by changing the calculation procedure, which 
avoids subtractions of nearly equal numbers or division by a small number or by retaining more digits 
in the mantissa.

There are the following types of instability:

1.23.1  Inherent instability
This instability may arise due to the ill-condition ness of the problem. Here, we can not avoid the 

inherent instability by changing the method of solution. It is the property of the problem itself. We 
can avoid this instability by suitable reformulation of the problem.
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1.23.2  Induced instability
The induced instability may arise due to the wrong choice of the method of solution. Although, the 

problem is well conditioned in this case. Induced instability can be avoided by a suitable modification 
or change of the method of solution.

 1.24  Sensitivity analysis  
Investigation to see how small changes (or perturbations or disturbances) in input parameters 

influence the output are termed as sensitivity analysis, when problem is sensitive to small changes in 
its parameter, it is impossible to make a numerically stable method for its solution.

 1.25  Machine computations
When we solve any problem using computers, then to obtain meaningful results, we have the 

following phases:
	 (i)	 Choice of a method: A method is defined by a mathematical formula for finding the 

solution of the given equation. In some cases, there may be more than one methods are 
available to solve the same problem. Choose the method which suits the given problem best. 
The assumptions and limitations of the method must be studied carefully.

	 (ii)	 Designing the Algorithm: Since, we know that the computer do not solve problem rather 
they are used to implement the solution to problems.

		  The logical and concise list of procedure for solving a problem is called an algorithm. It 
describes the steps that lead to required results in a finite number of operations. Here, it 
may be noted that the computer is concerned with the algorithm and not with the method. 
The algorithm tells the computer where to start, what information to use, what operation 
to be carried out and in which order, what information to be printed and when to stop. 
An algorithm should also include steps to identify and abnormal data or results and take 
corrective measures. In case of large problem we use the modular approach. A module is a 
program unit or entity that is responsible to a single task. It is also known as sub-programs.

An algorithm has five important properties:
	 (i)	 Algorithm should be completed after a finite number of steps.
	 (ii)	 Every step of algorithm should be well defined.
	 (iii)	 Algorithm should clearly specify which quantities are to be read.
	 (iv)	 Algorithm should clearly specify which quantities are to be displayed.
	 (v)	 In an algorithm, all operations should be executable.

Algorithm to find the root of a quadratic Equation:  If we design an algorithm to find 
the real roots of the equation.

		  ax2 + bx + c = 0		  a, b, c c R

for 10 set of values, using the usual method
2 4

2
b b ac

x
a

− ± −=

Then, we have the following computational steps:
	 1.	 Set I = I
	 2.	 Read a, b, c
	 3.	 Check is a = 0? If yes print wrong data and go to step 9
	 4.	 Calculated d = b2 – 4ac
	 5.	 Check : is d < 0? If yes, print, roots and complex and goto step 9
	 6.	 Calculate e d=
	 7.	 Calculate x1 and x2 using the usual method
	 8.	 Print x1 and x2
	 9.	 I = I + 1
	 10.	 Check : is I [ 10? If yes, goto step 2, otherwise goto step (11)
	 11.	 Stop
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	 (iii)	 Flowchart: A flowchart is a graphical representation of a specific number of sequences of 
steps (algorithm) to be followed by the computer to produce the solution of a given problem. 
It maks use of flowchart symbols to represent the basic operations to be carried out and the 
arrow indicate the flow of information and processing.

		  Flow chart symbols:

Symbols Meaning Symbols Meaning

1. Start or End 4. Decision making and branching

2. Computational steps 5. Connector

3. Input or output 6. Flow of control

 Flow chart for finding real roots of the quadratic equation 

x , x1 2

x , x1 2

i = 1

If
i 10≤

i=i+1



 Remarks

¯¯ Flowchart provide a graphic representation of the problem so it is easy to understand the plan 
of the solution.

¯¯ It helps in reviewing and correcting the program.
¯¯ It provides a convenient aid to writing computer instructions.
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	 (iv)	 Programming: In this phase we write the program into any computer language.
 Program for the roots of a Quadratic equation in ‘C’ Language

	 # include <math.h>
	 main()
	 {
	 float a, b, c d;
	 float root 1, root 2;
	 printf (“Input the values a, b, c\n”)
	 else
	 {
	 root 1= (–b + sqrt (d))/(2.0*a); 
	 root 2= (–b – sqrt (d))/(2.0*a); 
	 printf (“/n/nRoot = % f/n/nRoot 2 = % f\n” root 1, root 2);
	 }
	 }

	 (v)	 Computer Execution : After writing the program of instruction for the computer in a 
suitable computer language, check the errors in program and remove. After that, prepare the 
data in the required form. Then, the computations are performed by the computer and the 
results are given out.

 1.25  computer software 
The computer software provide a useful computational tool for users. The writing of a computer 

software requires a good understanding of the programming. A good computer software must contain 
some criteria of:
	 (i)	 Self starting			   (ii)	 Accuracy and reliability
	 (iii)	 Minimum number of levels			   (iv)	 Good documentation
	 (v)	 Criteria of portability
	 (i)	 Self starting: A good computer software should be self starting as far as possible. Since, 

any numerical method involves some parameters, whose values are to be determined. The 
program will be more acceptable, if it can be made automatic in the sense that the program 
will select the initial approximation itself rather than requiring the user to specify them.

	 (ii)	 Accuracy and reliability: Accuracy and reliability are measures of the performance of an 
algorithm on all similar problem. Fixed the error criteria and get the solutions of all similar 
problems to that accuracy. The program must be able to prevent most of the exceptional 
conditions.

	 (iii)	 Minimum number of levels: A good software must contain the minimum number of 
levels, because if the number of levels are increased, then there is a wasted of time due to the 
interlinking and transfer of parameters.

	 (iv)	 Good documentation: A good documentation should clarify what kind of problems can 
be solved using the software, what parameters are to be supplied, what accuracy can be 
achieved, which method has been used and other useful details. It should be noted that the 
program must have some comments lines at various places giving more explanation about 
the method and steps.

	 (v)	 Criteria of portability: The software should be made independent of the computer being 
used as far as possible. Therefore we have that the software must be machine independent, 
i.e., the same program should be able to run on any machine with minimum modifications.
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 Exercise 1.4 
	 1.	 Obtain polynomial approximation to               

f(x) = (1 – x)1/2 over [0, 1] by means of 
Taylor series about x = 0. Find the number 
of terms required in the expansion of obtain 
results correct to 5 × 10–1 for 0 [ x [ 1/2.

	 2.	 Obtain a second degree polynomial 
approximation to f(x) = (1 + x)1/2, x c [0, 0.1] 
using Taylor series expansions about x = 0. 
Use the expansions to approximate f(0.5) and 
found to truncation error.

AnswersAnswers

	 2.	 Truncation error = 0.625 × 10–4

MULTIPLE CHOICE QUESTIONS (CHOOSE THE MOST APPROPRIATE ONE)

	 1.	 The number in which, there is no uncertainity 
and no approximation, is said to be:

	 (a)	 exact number
	 (b)	 approximate number
	 (c)	 both (a) and (b) are true
	 (d)	 none of these

	 2.	 The error in xA, which is the approximate 

value of xT is 100 100
T A

p r T
x x

E E
x

−= × = ×  

is called :
	 (a)	 absolute error
	 (b)	 relative error
	 (c)	 percentage error
	 (d)	 none of these

	 3.	 The error 
T A

r T
x x

E
x

−=  is known as :

	 (a)	 absolute error
	 (b)	 relative error
	 (c)	 percentage error

	 (d)	 none of these
	 4.	 The normalized absolute error is known as :

	 (a)	 relative error	 (b)	  relative error
	 (b)	 percentage	 (d)	 none of these

	 5.	 Inherent error is also known as :
	 (a)	 input error	
	 (b)	 empirical error
	 (c)	 representation error	
	 (d)	 none of these

	 6.	 Conversion error is also known as :
	 (a)	 input error
	 (b)	 empirical error
	 (c)	 representation error
	 (d)	 none of these

	 7.	 Addition of binary numbers (10110)2 and 
(1101)2 is : 

	 (a)		 110010	 (b)	 100011
	 (c)		 101011	 (d)	 110011

AnswersAnswers

	 1.	 (a)	 2.	 (c)	 3.	 (b)	 4.	 (a) 	  5.	 (a)	 6.	 (c)	 7.	 (b)

ARCHIVE

	 1.	 The height of an observations tower was 
estimated to be 47m whereas its actual 
height was 45m. Find the percentage error in 
the measurement.� [agra–2000]

	 2.	 If = =2
3

( , , ).
xy

u f x y z
z

 Find maximum relative 

error.� [lucknow–2011; rohtak–2008; avadh–2004, 08]
	 3.	 Find the relative error in the function we 

have taking log on both sides we get.
� [coimbatore(BE)–2002, 05]
	 4.	 Suppose that you have a task of measuring 

the length of a bridge and a river and come 
up with 9999 and 9cm respectively. If the 
true values are 10000 and 10 cm respectively 
compute the percentage error in each case.

� [pune(B.Tech.)–2004]

AnswersAnswers

	 1.	 4.44%			   2.	 0.0004			   3.	
δ δ δ

≤ + + …+1 2
max 1 2

1 2
( ) n

R n
n

x x x
E m m m

x x x
	 4.	 0.01%, 10%

qqqq
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