
1. 1Chapter 1 - Discrete Fourier Transform

1.1  Review of Signals and Systems  

1.1.1  Signals

Any physical phenomenon that conveys or carries some information can be called a signal. 

Examples:  Music, speech, motion pictures, still photos, heart beat, etc.

Signal: A physical quantity that varies with one or more independent variables is called a signal.

The independent variables can be time, spatial coordinates, intensity of colours, pressure, temperature, 
etc. The most popular independent variable in signals is time and it is represented by the letter "t".
Amplitude: The value of a signal at any specified value of the independent variable is called its
                    amplitude. 

Waveform: The sketch or plot of the amplitude of a signal as a function of the independent variable 
                   is called its waveform.  

Mathematically, any signal can be represented as a function of one or more independent variables.  
Table 1.1: Examples of Signals

     Basis for 	         Type		    Definition 		              Example
 Classification
  Number of	    One-channel            Signals that are generated	  i)   Record of room
    sources	        signals	  by a single source.	       temperature.
	     		   ii)  Audio output of a
				       monospeaker.
	   Multi-channel	  Signals that are generated	  i)    Record of ECG at eight
	        signals	  by multiple sources.	       different places in a
				       human body.
			    ii)   Audio output of two stereo
                                                                                                                         speakers.
  Number of	 One-dimensional	  Signal which is a function	  i)   Music, speech and heart
  dimensions	       signals	  of a single independent 		     beat which are function
		   variable.		             of a single independent variable, time.
			    ii) x1(t) = 0.7t.

	 Multi-dimensional	  Signal which is a function	  i)      Photograph is two-dimensional (2D )  
	          signals	  of two or more independent	       signal.
	        	  variables.	  ii)  Motion picture of a black
				           and white TV is a three-dimensional 
				       (3D) signal.
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Table 1.1: Continued... 

    Basis for 	         Type		    Definition 		              Example
 Classification

Whether the	    Analog or	            Signal which is defined                  Most of the signals
dependent	    continuous	            continuously for any value             encountered in science
variable is	    signal	            of the independent variable            and engineering are
continuous		             is called analog signal.                  analog.
or discrete		
		             When the independent
 		             variable of an analog signal
		             is time, it is called
		             continuous time signal.

	    Discrete	            Signal which is defined for            Sampled version of
	     signal	            discrete intervals of the                  analog signal.
		             independent variable is
		             called discrete signal. 

		            When the independent
		             variable of a discrete signal
		             is time, it is called 
                                                                 discrete time signal.

When a signal is defined continuously for any value of an independent variable,  it is called an analog 
or continuous signal. When the dependent variable of an analog signal is time, it is called a continuous 
time signal and it is denoted as "x(t)".

When a signal is defined for discrete intervals of an independent variable, it is called a discrete 
signal. When the dependent variable of a discrete signal is time, it is called discrete time signal and it is 
denoted by "x(n)".

The quantized and coded version of the discrete time signals are called digital signals. In digital 
signals the value of the signal for every discrete time "n" is represented in binary codes. 

1.1.2  Continuous Time Signal

Continuous time signal: A signal which is defined continuously for any value of the independent 
	 variable time "t" is called continuous time signal and it is denoted as "x(t)". 

Example:  Sinusoidal signal, x(t) = A sin W
0
t, 

		            where,   W
0
 = 2pF = 2p/T

The continuous time signal is defined for every instant of the 
independent variable time and so the magnitude (or the value) of 
continuous time signal is continuous in the specified range of time. 
Here both the magnitude of the signal and the independent variable 
are continuous. 

1.1.3  Discrete Time Signal 

Discrete signal: It is a function of a discrete independent variable. The independent variable is divided 
	 into uniform intervals and each interval is represented by an integer. The letter "n" is used 
	 to denote the independent variable. The discrete or digital signal is denoted by x(n). 

Fig 1.1: Sinusoidal signal.
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The discrete signal is defined for every integer value of the independent variable "n". The magnitude 
(or value) of discrete signal can take any discrete value in the specified range. 

Here both the value of the signal and the independent variable are discrete. The discrete signal can 
be represented by a one-dimensional array as shown in the following example.

Example:   
x(n) = { 2, 4, −1, 3, 3, 4 }

Here the discrete signal x(n) is defined for,   n = 0, 1, 2, 3, 4, 5 

∴   x(0) = 2 ;     x(1) = 4 ;     x(2) = –1 ;     x(3) = 3 ;     x(4) = 3 ;     x(5) = 4

Discrete time signal: When the independent variable is time t, the discrete signal is called discrete 
           time signal. In discrete time signal, time is divided uniformly using the relation t = nT,  
             where T is the sampling time period. The sampling time period is the inverse of sampling  
                frequency. The discrete time signal is denoted by x(n) or x(nT).

Discrete sequence: Discrete signals have a sequence of numbers (or values) defined for integer 
                values of the independent variable,and hence are also known as discrete sequence. 

In this book, the term sequence and signal are used synonymously. Also in this book, the discrete 
signal is referred as discrete time signal.

1.1.4  Generation of Discrete Time Signals

A discrete time signal can be generated by the following three methods.
The methods 1 and 2 are independent of any time frame but method 3 depends critically on time.

1.   Generate a set of numbers and arrange them as a sequence.

Example:

The numbers 0, 2, 4, ...., 2N form a sequence of even numbers and can be expressed as,

		  x(n) = 2n ;   0 ≤ n ≤ N 

      2.   Evaluation of a numerical recursion relation will generate a discrete signal.

Example:

x(n) 0.2 x(n 1) with initial condition x(0) 1, gives the sequence, x(n) 0.2 ; 0 n <n= = = 3#-

When n = 0  ;  x(0) = 1 (initial condition)                                 =  0.20

When n = 1  ; x(1) = 0.2 x(1 - 1) = 0.2 × x(0) = 0.2 × 1      =  0.21

When n = 2  ; x(2) = 0.2 x(2 - 1) = 0.2 × x(1) = 0.2 × 0.2   =  0.22

When n = 3  ; x(3) = 0.2 x(3 - 1) = 0.2 × x(2) = 0.2 × 0.22  =  0.23 and so on

                  x(n) 0.2 ; 0 nn=` 31#

3.   A third method is by uniformly sampling a continuous time signal and using the amplitudes of the 
            samples to form a sequence.

Let,  x(t) = Continuous time signal
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The discrete time signal can be obtained by replacing t by nT.

∴ nDiscrete signal, x(nT) x(t) ;
t nT

3 31 1-= =

where, T is the sampling interval.

The generation of discrete signal by sampling an analog signal is shown in Fig 1.2.

1.1.5  Digital Signal

Digital signal: It is same as a discrete signal except that the magnitude of the signal is quantized. 
	 The magnitude of the signal can take one of the values in a set of quantized values. Here  
	 quantization is necessary to represent the signal in binary codes.

The generation of a discrete time signal by sampling a continuous time signal and then quantizing 
the samples in order to convert the signal to digital signal is shown in the following example.

Let,  x(t) =  Continuous time signal
          T   =  Sampling time

A typical continuous time signal and the sampling of this continuous time signal at uniform interval 
are shown in Figs 1.2a and 1.2b, respectively.  The samples of the continuous time signal  as a function of 
sampling time instants are shown in Fig 1.2c. Here, 1T, 2T, 3T, .... etc., represent sampling time instants 
and the value of the samples are functions of these sampling time instants.

When  t = 0     ;	  x(t) = 0   	  	 When  t = 4T  ;      x(t) = 0.55                  

When  t = 1T  ;	  x(t) = 0.1		 When  t = 5T   ;     x(t) = 0.8		         

When  t = 2T  ;	  x(t) = 0.3		 When  t = 6T   ;     x(t) = 0.8	        

When  t = 3T  ;	  x(t) = 0.35	 When  t = 7T   ;     x(t) = 0.9	        

In general, the sampling time instants can be represented as, "nT", where "n" is an integer. When we 
drop the sampling time "T", then the samples are functions of  the integer variable "n" alone. Therefore, the 
samples of the continuous time signal will be a discrete time signal, denoted as  x(n), which is a function 
of an integer variable "n" as shown ahead: 
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Fig 1.2: Sampling a continuous time signal to generate discrete time signal.
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Here the discrete signal x(n) is defined for,   n = 0, 1, 2, 3, 4, 5, 6, 7 

`    x(0)  =   0       	          x(4)  =  0.55 		   

       x(1)  =   0.1                x(5)  =  0.8 

       x(2)  =   0.3                x(6)  =  0.8 

       x(3)  =   0.35              x(7)  =  0.9  

∴   x(n) = { 0,  0.1,  0.3,  0.35,  0.55,  0.8,  0.8,  0.9 }

The values of the samples lies in the range of 0 to 1.

 Let us choose 3-bit binary to represent the values of the samples in binary code. Now, the possible 
binary codes are 23 = 8, and so the range can be divided into eight quantization levels, and each sample is 
assigned one quantization level as shown in the Table 1.2.
Table 1.2: Quantization of Analog value 0 to 1 using 3 Bit Binary

Quantization Level                 Binary Code          Range Represented by Quantization 
(R = Range = 1)                                                    Level for Quantization by Truncation

0 0 0R
2 8

1
3

# #= =                 000                       0.000 ( ) 0.125 0.000x n &1#

1 1 0.125R
2 8

1
3

# #= =             001                     0.125 ( ) 0.250 0.125x n &1#  

2 2 0.25R
2 8

1
3

# #= =              010                     0.250 ( ) 0.375 0.250x n &1#

3 3 0.375R
2 8

1
3

# #= =            011                     0.375 ( ) 0.500 0.375x n &1#   

4 4 0.5R
2 8

1
3

# #= =               100                     0.500 ( ) 0.625 0.500x n &1#

5 5 0.625R
2 8

1
3

# #= =           101                           0.625 ( ) 0.750 0.625x n &1#

6 6 0.75R
2 8

1
3

# #= =             110                      0.750 ( ) 0.875 0.750x n &1#

7 7 0.875R
2 8

1
3

# #= =           111                           0.875 ( ) 0.100 0.875x n &1#

Let,   xq(n) = Quantized discrete time signal.

         xc(n) = Quantized and coded discrete time signal.

x(0) = 0                              xq(0) = 0          Coding       xc(0)   =   0 0 0    
x(1) = 0.1                           xq(1) = 0          Coding       xc(1)   =   0 0 0    

x(2) = 0.3                           xq(2) = 0.25     Coding       xc(2)   =   0 1 0 

x(3) = 0.35                         xq(3) = 0.25     Coding       xc(3)   =   0 1 0 

x(4) = 0.55                         xq(4) = 0.5       Coding       xc(4)   =   1 0 0

x(5) = 0.8                           xq(5) = 0.75     Coding       xc(5)   =   1 1 0

                                                                                                                                                      
                                                                                                                                                      
                                                            

Quantization

Quantization

Quantization

Quantization

Quantization

Quantization
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x(6) = 0.8                           xq(6) = 0.75     Coding       xc(6)   =   1 1 0

x(7) = 0.9                           xq(7) = 0.875   Coding       xc(7)   =   1 1 1

 ∴    xq(n) = { 0,  0,  0.25,  0.25,  0.5,  0.75,  0.75,  0.875 }

        xc(n) = { 000,  000,  010,  010,  100,  110,  110,  111}

The quantized and coded discrete time signal xc(n) is called digital signal.

1.1.6  Mathematical Representation of Discrete Time Signals

The discrete time signal can be represented by the following methods.
1. Functional Representation
	 In functional representation, the signal is represented as a mathematical equation, as shown in the 
following example.

  x(n)	=  – 0.5	  ;  n =	– 2
	 =	   1.0	  ;  n	 =	– 1
	 =  – 1.0	  ;  n	 =	   0         
	 =	   0.6	  ;  n	 =	   1           
	 =	   1.2	  ;  n	 =	   2
	 =	   1.5	  ;  n	 =	   3
	 =	     0	  ;  other  n

2. Graphical Representation

In graphical representation, the signal is represented in a two-dimensional plane. The independent 
variable is represented in the horizontal axis and the value of the signal is represented in the vertical axis 
as shown in Fig 1.3.

3. Tabular Representation

In tabular representation, two rows of a table are used to represent a discrete time signal. In the first 
row, the independent variable "n" is tabulated and in the second row the value of the signal for each value 
of "n" are tabulated as shown in the following table.

n         .........      -2         -1         0         1         2         3         ..............

x(n)     .........     -0.5      1.0     -1.0      0.6      1.2      1.5       ...............

4. Sequence Representation
	 In sequence representation, the discrete time signal is represented as a one-dimensional array as 
shown in the following examples.

An infinite duration discrete time signal with  time origin, n = 0, indicated by  symbol ↑ is represented as, 

       x(n) = { ..... – 0.5, 1.0, –1.0, 0.6, 1.2, 1.5, ..... }
                                     ↑ 

An infinite duration discrete time signal that satisfies the condition x(n) = 0 for n < 0 is represented as, 

x(n) = { –1.0, 0.6, 1.2, 1.5, ... }      or        x(n) = {–1.0, 0.6, 1.2, 1.5, ... }
                      ↑

Quantization

Quantization
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Fig 1.3: Graphical representation of a
discrete time signal.
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An infinite duration discrete time signal that satisfies the condition x(n) = 0 for n > 0 is represented as,

x(n) = { ....– 0.5, 1.0, -1.0}
                                           ↑

A finite duration discrete time signal with  time origin, n = 0, indicated by symbol ↑ is represented as,

x(n) = { – 0.5, 1.0, –1.0, 0.6, 1.2, 1.5 }
                                       ↑

A finite duration discrete time signal that satisfies the condition x(n) = 0 for n < 0 is represented as, 

x(n) = { –1.0, –0.6, 1.2, 1.5 }	     or        x(n) = { –1.0, 0.6, 1.2, 1.5}
                      ↑

A finite duration discrete time signal that satisfies the condition x(n) = 0 for n > 0 is represented as,

x(n) = { - 0.5, 1.0, -1.0}
                                      ↑

1.1.7  Standard Discrete Time Signals

1. Discrete Impulse Signal (Unit Impulse Sequence) 

Impulse signal, (n) 1 ; n 0
0 ; n 0!

= =
=

δ       

2. Discrete Unit Step Signal (Unit Step Sequence )

           Unit step signal, u(n) 1 ; n 0
0 ; n 01

$=
=

  

3. Discrete Ramp Signal (Ramp Sequence)

           Ramp signal, (n) ; n 0
0 ; n 0

U nr

1

$=
=

4. Discrete Exponential Signal (Exponential Sequence)

           Exponential signal, g(n) a ; n 0
0 ; n 0

n

1

$=
=

          

	 	

   	

0 n

�� �n

1

Fig 1.4: Discrete impulse signal.
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Fig 1.5: Unit step signal.
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Fig 1.6: Ramp signal.
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Fig c: Discrete time sinusoidal signal represented by equation,

Fig 1.10: Discrete time sinusoidal signals.
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Fig b: Discrete time sinusoidal signal represented

by equation x(n) = A sin( n).0�

5. Discrete Signum Signal (Signum Sequence)

sgn(n)  =   1   ;  n > 0
            =   0   ;  n = 0
            = -1   ;  n < 0 

6. Discrete Rectangular Signal (Rectangular Sequence)

rect (n)  =   1   ;  -N < n < N

              =   0    ;  n < -N and n > N

7. Discrete Sinusoidal Signal (Sinusoidal Sequence)
The discrete time sinusoidal signal may be expressed as,

x(n) A cos( n )o= +ω θ  ; for n in the range  −∞ < n < +∞

x(n) A sin( n )o= +ω θ  ; for n in the range  −∞ < n < +∞

where, ω0 = Frequency in radians/sample ;      θ = Phase in radians

	   	                   f0 = 2
0
π
ω = Frequency in cycles/sample
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Fig 1.8: Discrete signum signal.

n

rect (n)

1

0 1 2 N�1�2�N

Fig 1.9: Discrete rectangular signal.
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Properties of Discrete Time Sinusoid

1. 	A discrete time sinusoid is periodic only if its frequency f is a rational number, (i.e., ratio of two 
                integers).

2. 	Discrete time sinusoids whose frequencies are separated by integer multiples of 2π are identical. 

` x(n) = A cos[(ω0 + 2πk) n + θ],  for  k = 0, 1, 2, ..... are identical in the interval  − π ≤ ω0 ≤ π    
                                                                                                                   and so they are indistinguishable.

Proof:

cos[( ω0 + 2πk) n + θ] = cos(ω0n + 2πnk + θ)  = cos[(ω0n + θ) + 2πnk]

                                   = cos(ω0n + θ) cos 2πnk − sin (ω0n + θ) sin 2πnk

Since n and k are integers,   cos 2πnk = 1 and  sin 2πnk = 0

∴ cos[(ω0 + 2πk) n + θ] = cos(ω0n + θ),      for  k = 0, 1, 2, 3, .....

Conclusion

i)    The sequences of any two sinusoids with frequencies in the range, 
       − π ≤ ωo ≤ π (or  −1/2  ≤  f0  ≤  1/2),  are distinct.

        [−π  ≤  ω  ≤  π   divide by 2r  −1/2  ≤  f  ≤  1/2]

ii)   Any discrete time sinusoid with frequency ωo   >   |π|  (or  f0  >  |1/2|) will be identical to another  
                 discrete time sinusoid with frequency ω o <  |π|  (or  f0  <  |1/2|).

8. Discrete Time Complex Exponential Signal

The discrete time complex exponential signal is defined as,

 x(n)  =  a e ( )n j n0~ i+  = an [cos(ω0n + θ) + j sin(ω0n + θ)]

		            =  an cos(ω0n + θ) + j an sin(ω0n + θ)  =  xr(n) + j xi(n)

where,      xr(n) = Real part of x(n)  =  an cos(ω0n + θ)

		                              xi(n) = Imaginary part of x(n) = an sin(ω0n + θ)

The real part of x(n) will give an exponentially increasing cosinusoid sequence for a > 1 and 
exponentially decreasing cosinusoid sequence for 0 < a < 1.

Cos (A + B) = cosA cosB - sinA sinB

Fig 1.11: Real part of complex exponential signal.

Fig a: The discrete time sequence
represented by the equation,

x (n) = a cos n for 0 < a < 1.

.
r 0

n �

0 < a < 1

n

x (n)r

n
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Fig b: The discrete time sequence
represented by the equation,

x (n) = a cos n for a > 1.r 0

n �

x (n)r
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The imaginary part of x(n) will give rise to an exponentially increasing sinusoid sequence for a > 1 and 
exponentially decreasing sinusoid sequence for 0 < a < 1.

1.1.8   Systems

System: Any process that exhibits a cause and effect relation can be called a system.

A system will have an input signal and an output signal. The output signal will be a processed 
version of the input signal. A system is interconnection of either hardware devices or software/algorithm. 
A system is denoted by the letter 'H'. The diagrammatic representation of a system is shown in Fig 1.13.

  
	

The operation performed by a system on the input signal to produce the output signal can be 
expressed as, 

Output  =  H{Input}                                                                                 

where H denotes the system operation (also called system operator).
The systems can be classified in many ways. 
Depending on the type of energy used to operate the systems, the systems can be classified into 

electrical systems, mechanical systems, thermal systems, hydraulic systems, etc. 
Depending on the type of input and output signals, the systems can be classified into Continuous 

time systems and Discrete time systems.	

1.1.9  Continuous Time System

Continuous time system: A system which process and produce continuous time signal is called 
	 continuous time system.

The input and output signals of a continuous time system are continuous time signals. The 
diagrammatic representation of a continuous time system is shown in Fig 1.14.

n

0 < a < 1

n

a > 1

Fig 1.12: Imaginary part of complex exponential signal.

Fig a: The discrete time sequence
represented by the equation,

x n a ni
n( ) sin� � 0 for 0 < a < 1.

x (n)i

Fig b: The discrete time sequence
represented by the equation,

x n a ni
n( ) sin� � 0 for a > 1.

x (n)i

HInput signal
or Excitation

System

Output signal
or Response

Fig 1.13: Representation of a system.
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where,   H = System operator
           x(t)  = Continuous time input signal
           y(t)  = Continuous time output signal
The operation performed by a continuous time system on input x(t) to produce output or response 

y(t) can be expressed as, 
Response,   y(t) = H{x(t)}      	                      .....(1.1)

Linear Time Invariant Continuous Time (LTI-CT) System: A continuous time system which satisfies 
	 the properties of linearity and time invariance is called a Linear Time Invariant Continuous  
	 Time (LTI-CT) system.

Most of the practical systems that we encounter in science and engineering are LTI systems. 
Mathematical representation of LTI-CT system

The input-output relation of an LTI continuous time system is represented by constant coefficient 
differential equation shown below:

( ) ( ) ( ) ...... ( ) ( ) ( )a
dt
d y t a

dt
d y t a

dt
d y t a dt

d y t a y t b
dt
d x t

N

N

N

N

N

N

M

M

1

1

2

2

N 1 0N0 1 2+ + + + + =
-

-

-

-

-

dt
d

dt
d

dt
d

M

M

M

M

1

1

2

2

MM1 2 1-

-

-

-

-( ) ( ) ...... ( ) ( )b x t x t b x t b x t+ + + + +b                             .....(1.2)

where,  N = Order of the system,  M ≤ N,  a0 = 1. 
             aN, b0, b1, ..... bm are constant coefficient.

The solution of the above differential equation is the response y(t) of the continuous time system, 
for the input x(t).

1.1.10  Discrete Time System

Discrete time system:	 A system which processes an input discrete time signal and produce an 
	 output discrete time signal is called discrete time system.

The input and output signals of a discrete time system are discrete time signals. The diagrammatic 
representation of a discrete time system is shown in Fig 1.15.

where,   H  = System operator

           x(n) = Discrete time input signal

           y(n) = Discrete time output signal

H
Input signal
or Excitation

Continuous
time system

Output signal
or Response

y(t)x(t)

Fig 1.14: Representation of continuous time system.

H
Input signal
or Excitation

Discrete
time system

Output signal
or Response

y(n)x(n)

Fig 1.15: Representation of a discrete time system.
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The operation performed by a discrete time system on input x(n) to produce output or response y(n) 
can be expressed as, 

Response,   y(n) = H{x(n)}                   	     .....(1.3)                                                           

Linear Time Invariant Discrete Time (LTI-DT) System: A discrete time system which satisfies the 

	 properties of linearity and time invariance is called a Linear Time Invariant Discrete Time 

	 (LTI-DT) system. 

Impulse and Step Response

Impulse response: When the input to a discrete time system is a unit impulse δ(n), then the output 
	 is called an impulse response of the system and is denoted by h(n).

∴   Impulse Response,  h(n) = H{δ(n)}                                                                      .....(1.4)

Step response: When the input to a discrete time system is a unit step signal u(n), then the output is 
            called step response of the system and is denoted by s(n).

∴   Step Response,  s(n) = H{u(n)}                                                                                  .....(1.5)

1.1.11  Difference Equation Governing Discrete Time System 

(Mathematical Representation of Discrete Time System)

The input-output relation of an LTI discrete time system is represented by the constant coefficient 
difference equation shown below:

		  ( ) ( ) ( )y n a y n m b x n mm

m

N

m

m

M

1 0

= − − + −
= =

/ / 				   .....(1.6)

where,  N = Order of the system,  M ≤ N.
		                    am, bm are constant coefficients.

The solution of the above difference equation is the response y(n) of the discrete time system, for 
the input x(n).

	 The mathematical equation governing the discrete time system can be developed as shown below:

	 The response of a discrete time system at any time instant depends on the present and past inputs 
and past outputs.

	 Let us consider the response at n = 0. Let us assume a relaxed system and so at n = 0, there is no 
past input or output. Therefore, the response at n = 0, is a function of the present input alone.

∴  y(0) = F[x(0)]

	 Let us consider the response at n =1. Now the present input is x(1), the past input is x(0) and the 
past output is y(0). Therefore, the response at n = 1, is a function of x(1), x(0), y(0).

∴  y(1) = F[y(0), x(1), x(0)]

�(n) h(n)

Fig a: Discrete time system
with impulse input.

u(n) s(n)

Fig b: Discrete time system
with unit step input.

Fig 1.16: Discrete time systems with impulse and step input.
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	 Let us consider the response at n = 2. Now the present input is x(2), the past inputs are x(1) and x(0) 
and the past outputs are y(1) and y(0). Therefore, the response at n = 2, is a function of x(2), x(1), x(0), 
y(1), y(0).

∴  y(2) = F[y(1), y(0), x(2), x(1), x(0)]

	 Similarly, at n = 3, y(3) = F[y(2), y(1), y(0), x(3), x(2), x(1), x(0)]

		                at n = 4, y(4) = F[y(3), y(2), y(1), y(0), x(4), x(3), x(2), x(1),  x(0)]  and so on.

	 In general, at any time instant n, 

y(n) = F[y(n – 1), y(n – 2), y(n – 3), .....y(1), y(0), x(n), x(n – 1), 

					     x(n – 2), x(n – 3) ..... x(1), x(0)]       		

	 For an LTI system, the response y(n) can be expressed as a weighted summation of dependent terms. 
Therefore, the above equation can be written as, 

y(n) = – a1 y(n – 1) – a2 y(n – 2) – a3 y(n – 3) – ...........

	 + b0 x(n) + b1 x( n – 1) + b2 x(n – 2) + b3 x(n – 3) +........      .....(1.7)

		  where,   a1, a2, a3, .... and b0, b1, b2, b3, ..... are constants.

Note:	 Negative constants are inserted for output signals, because output signals are feed back from the 
          output to input. Positive constants are inserted for input signals, because input signals are fed  
             forward from the input to output.

Practically, the response y(n) at any time instant n, may depend on N number of past outputs, present 
input and M number of past inputs where M  ≤  N. Hence, equation (1.7) can be written as,

y(n) = – a1 y(n – 1) – a2 y(n – 2) – a3 y(n – 3) – ........ – aN y(n – N)

			        + b0 x(n) + b1 x(n – 1) + b2  x(n – 2) + b3 x(n – 3) + ....... + bM x(n – M)

∴   y(n) a y(n m) b x(n m)
m 1

N

m 0

M

m m- -= +-
= =

/ /                                                                 .....(1.8)

The equation (1.8)  is a constant coefficient difference equation governing the input-output relation 
of an LTI discrete time system.

In equation (1.8), the value of "N" gives the order of the system.
If N = 1, the discrete time system is called 1st order system

If N = 2, the discrete time system is called 2nd order system

If N = 3, the discrete time system is called 3rd order system and so on.

The general difference equation governing 1st order discrete time LTI system is,

y(n) = – a1 y(n – 1) + b0 x(n) + b1 x(n – 1)

The general difference equation governing 2nd order discrete time LTI system is,

y(n) = – a2 y(n – 2) – a1 y(n – 1) + b0 x(n) + b1 x(n – 1) + b2 x(n – 2)

The general difference equation governing 3nd order discrete time LTI system is,

y(n) = – a3 y(n – 3) – a2 y(n – 2) – a1 y(n – 1) + b0 x(n) + b1 x(n – 1) + b2 x(n – 2)+ b3 x(n – 3)
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1.1.12  Block Diagram and Signal Flow Graph Representation of Discrete Time System

The discrete time system can be represented diagrammatically by a block diagram or Signal flow 
graph. These diagrammatic representations are useful for physical implementation of a discrete time 
systems in hardware or software.

The basic elements employed in a block diagram are adder, constant multiplier, unit delay element 
and unit advance element.

Adder 	 :	 An adder is used to represent addition of  two discrete time signals.

Constant multiplier 	 :	 A constant multiplier is used to represent multiplication of a scaling factor 
                                            (constant) to a discrete time signal.

Unit delay element 	 :	 A unit delay element is used to represent the delay of samples of a discrete time 
                                            signal by one sampling time.

Unit advance element 	 :  A unit advance element is used to represent the advance of samples of a discrete 
                                           time signal by one sampling time.

The symbolic representation of the basic elements of  a block diagram and signal flow graph are 
listed in Table 1.3.

Table 1.3: Basic Elements of Block Diagram

Element                                          Block Diagram                                          Signal Flow                          
                                                   Representation                                  Graph Representation               

Adder		

Constant multiplier

Unit delay element

Unit advance element

Example 1.1
Construct the block diagram and signal flow graph of discrete time systems whose input-output relations are 

described by the following difference equations.

a)  y(n) = 0.7 x(n) + 0.7 x(n – 1)	  	 b)  y(n) = 0.4 y(n – 1) + x(n) – 3 x(n – 2)

c)  y(n) = 0.2 y(n – 1) + 0.7 x(n) + 0.9 x(n – 1)

Solution

a) Given that,  y(n) = 0.7 x(n) + 0.7 x(n – 1)

The individual terms of the given equation are 0.7 x(n) and 0.7 x(n – 1). They are represented by basic  
elements as shown ahead.

x n1( )

x n2 ( )

x n x n1 2( ) ( )�
1

1

+
x n1( )

x n2 ( )

x n x n1 2( ) ( )�

x(n) ax(n)
a

x(n) x(n 1)�
z

�1

x(n) x(n + 1)
z

x(n) ax(n)
a

x(n) x(n 1)�
z

�1

x(n) x(n + 1)
z
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The input to the system is x(n) and the output of the system is y(n). The above elements are connected as 
shown below to get the output y(n).

b) Given that,  y(n) = 0.4 y(n – 1) +  x(n) – 3 x(n – 2)

The individual terms of the given equation are 0.4 y(n – 1) and – 3 x(n – 2).  They are represented by basic 
elements as shown below.

		           	

The input to the system is x(n) and the output of the system is y(n). The above elements are connected as 
shown below to get the output y(n).

c) Given that,  y(n) = 0.2 y(n – 1) + 0.7 x(n) + 0.9 x(n – 1)

The individual terms of the given equation are 0.2 y(n – 1), 0.7 x(n) and 0.9 x(n – 1). They are represented by 
basic elements as shown below.

		

x(n) 0.7 x(n)0.7 x(n) 0.7 x(n)
0.7

0.7 x(n) 0.7 x(n 1)�z
1�

0.7 x(n) 0.7 x(n 1)�
z

1�

x(n) 0.7 x(n)

0.7

0.7 x(n � ��
+

0.7 x(n)

y(n)

Fig 1: Block diagram of the system described by the

equation y(n) = 0.7 x(n) + 0.7 x(n 1� ��

z
1�

x(n) 0.7 0.7 x(n) y(n)

1

Fig 2: Signal flow graph of the system described

by the equation y(n) = 0.7 x(n) + 0.7 x(n 1� ��

z
1�

x(n)

�3

y(n)

0.4

� �3 x(n 2)

0.4 y(n 1)�

x(n 1)�

x(n 2)�

y(n 1)�

z
1�

z
1�

z
1�

0.4 y(n 1)�

x(n)

x(n 1)�

x(n 2)�
�3

� �3 x(n 2)

0.4

y(n 1)�

y(n)

z
1�

z
1�

z
1�

x(n)

�3

y(n)

0.4

+ +

Fig 3: Block diagram of the system
described by the equation

y(n) = 0.4 y(n 1 + x(n) 3 x(n 2).� � � �

z
1�

z
1�

z
1�

x(n) 1

0.4

y(n)1 1 1 1

1

�3

1

Fig 4: Signal flow graph of the system
described by the equation

y(n) = 0.4 y(n 1) + x(n) 3 x(n 2).� � �

z
1�

z
1�

z
1�

x(n)
0.7

0.7 x(n) x(n) 0.7
0.7 x(n)
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The input to the system is x(n) and the output of the system is y(n). The above elements are connected as 
shown below to get the output y(n).

1.1.13  Convolution

Discrete or Linear Convolution 

The discrete or linear convolution of two discrete time sequences x1(n) and x2(n) is defined as,

x (n) x (m) x (n m)
m

3 1 2= −
3

3

=-

/       or       x (n) x (m) x (n m)
m

3 2 1 −=
3

3

=

+

-

/                         .....(1.9)

where,  x3(n) is the sequence obtained by convolving x1(n) and x2(n) 
            m is a dummy variable.

The convolution relation of equation (1.9) can be symbolically expressed as,
x3(n) =  x1(n) ∗ x2(n)  =  x2(n) ∗ x1(n)                                                                     .....(1.10)

            where, the symbol ∗ indicates the convolution operation.
In linear convolution, the sequences x1(n) and x2(n) are nonperiodic sequences and the sequence x3(n) 

obtained by convolution is also nonperiodic. Hence, this convolution is also called aperiodic convolution.

Procedure for Evaluating Linear Convolution

Let x1(n) and x2(n) be two discrete time sequences.

Let x3(n) be the sequence obtained by the convolution of x1(n) and x2(n).

x (n) x (n) x (n) x (m) x (n m) ; n< <
m

3 1 2 1 2` ) 3 3−= = − +
3

3

=−

+

/                                   .....(1.11)

Now  each sample of  x3(n)  can be computed using the above equation.

0.9
0.9 x(n � ��

x(n � ��

x(n)

z
1�

x(n � ��

x(n)

0.9

0.9 x(n � ��

z
1�

y(n 1)�
0.2

0.2 y(n 1� �

y(n)

z
1�

0.2 y(n � �� y(n)

y(n � ��

0.2
z

1�

x(n) y(n)
+

Fig 5: Block diagram of the system
described by the equation

y(n) = 0.2 y(n 1) + 0.7 x(n)+ 0.9 x(n 1).� �

0.9 0.2

z 1�
z 1�

0.7 +
x(n) 1 0.7 y(n)1 1

Fig 6: Signal flow graph of the system
described by the equation

y(n) = 0.2 y(n 1) + 0.7 x(n) + 0.9 x(n 1).� �

0.9 0.2z
1� z 1�
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The value of  x3(n) at n = q  is obtained by replacing n by q, in the above equation.

x (q) x (m) x (q m)
m

3 1 2` = −
3

3

=−

+

/                                                                                 .....(1.12)

The evaluation of  equation  (1.12) to determine the value of  x3(n) at n = q,  involves the  following 
five steps.

1. Change of index	:	Change the index n in the sequences x1(n) and x2(n) to get the sequences x1(m)    
   and x2(m).

2. Folding	 :	Fold x2(m) about m = 0 to obtain x2(- m).

3. Shifting	 :	Shift x2(− m) by q to the right if q is positive or shift x2(- m) by q to the left 
   if q is negative to obtain x2(q − m).

4. Multiplication	 :	Multiply x1(m) by x2(q − m) to get a product sequence. Let the product sequence 
   be vq(m). Now,  vq(m)  =  x1(m) × x2(q − m).

5. Summation	 :	Sum all the values of the product sequence vq(m) to obtain the value of x3(n) 
   at n = q. [i.e., x3(q)].

The above  procedure will give the value of x3(n)  at a single time instant say n = q. In general, we 
are interested in evaluating the values of the sequence x3(n) over all the time instants in the range − ∞ < 
n < ∞. Hence, the steps 3, 4 and 5 given above must be repeated for all possible time shifts in the range 
− ∞ < n < ∞.
Convolution of Finite Duration Sequences

In convolution of finite duration sequences it is possible to predict the length of the resultant sequence.
If  the sequence x1(n) has N1 samples and sequence x2(n) has N2 samples then the output sequence 

x3(n) will be a finite duration sequence consisting of  "N1 + N2 – 1" samples.

Let,  	 length of x1(n) = N1

		  length of x2(n) = N2

Now,    length of x3(n) = N1 + N2 – 1	

In the convolution of finite duration sequences it is possible to predict the start and end of the resultant 
sequence. If  x1(n) starts at n  =  n1 and x2(n) starts at n  =  n2 then the initial value of  n for x3(n) is "n = n1 + n2".
The value of x1(n) for n < n1 and the value of x2(n) for n < n2 are then assumed to be zero. The final value 
of n for x3(n) is "n = (n1 + n2) + (N1 + N2 – 2)".

Let,		   x1(n) start at n = n1

		    x2(n) start at n = n2

Now,	   x3(n) start at n = n1 + n2

    and	   x3(n) end at  n = (n1 + n2) + (N1 + N2 – 1) – 1
                                       = (n1 + n2) + (N1 + N2 – 2)

Linear Convolution by Tabular Method

In the tabular method, every input sequence and folded and shifted sequence is represented by a 
row in a table.

Let x1(n) and x2(n) be the input sequences and x3(n) be the output sequence.
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1. 	Change the index "n" of input sequences to "m" to get x1(m) and x2(m).
2. 	Represent the input sequences x1(m) and x2(m) as two rows in tabular array.
3. 	Let us fold x2(m) to get x2(–m). Represent the folded sequence x2(–m) in the third rows of 

                tabular array.
4. 	Shift the folded sequence x2(–m) to the left and represent in next row so that the product of x1(m) 

		  and shifted x2(–m) gives only one nonzero sample. Now multiply x1(m) and shifted x2(–m) to get 
		  a product sequence, and then sum up the samples of product sequence, which is the first sample  
		  of output sequence.

5.	 To get the next sample of output sequence, shift x2(–m) of  the previous step to one position 
               right and multiply the shifted sequence with x1(m) to get a product sequence. Now the sum of 
                the samples of the product sequence gives the second sample of the output sequence.

6.	 To get subsequent samples of  the  output sequence, the step 5 is repeated until we get a nonzero  
                product sequence.

Example 1.2
Determine the response of the LTI system whose input x(n) and impulse response h(n) are given by,

x(n) = {1, 2, 0.5, 1} and h(n) = {1, 2, 1, –1}

                       ↑			       ↑
Solution

The response y(n) of the system is given by convolution of x(n) and h(n).

y(n) x(n) h(n) x(m) h(n m)
m

= −=
= 3

3

-

+

) /
In this example the convolution operation is performed by three methods.

The input sequence starts at n = 0 and the impulse response sequence starts at n = –1. Therefore, the output 
sequence starts at n = 0 + (–1) = –1. 

The input and impulse responses consist of 4 samples, so the output consists of 4 + 4 – 1 = 7 samples.

Tabular Method

The given sequences and the shifted sequences can be represented in the tabular array as shown below.  

Note: The unfilled boxes in the table are considered as zeros.

                           m	      –3	 –2	 –1	 0	 1	 2	 3	         4        5       6

	 x(m)				    1	 2	       0.5	 1

	 h(m)			   1	 2	 1	    –1

	 h(–m)		  –1	 1	 2	 1

	 h(–1 – m) = h–1(m)	 –1	 1	 2	 1

	 h(0 – m) = h0(m)		  –1	 1	 2	 1

	 h(1 – m) = h1(m)			   –1	 1	 2	 1

	 h(2 – m) = h2(m)				    –1	 1	 2	 1

	 h(3 – m) = h3(m)					     –1	 1	 2	 1

	 h(4 – m) = h4(m)						      –1	 1	        2        1

	 h(5 – m) = h5(m)							       –1	        1        2       1
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Each sample of y(n) is computed using the convolution formula,

y(n) x(m) h(n m) x(m) h (m), where h (m) h(n m)
m m

n n= − −= =
= =3

3

3

3

-

+

-

+

/ /

To determine a sample of y(n) at n = q, multiply the sequence x(m) and hq(m) to get a product sequence [i.e., 
multiply the corresponding elements of the row x(m) and hq(m)]. The sum of all the samples of the product sequence 
gives y(q).

When n 1 ; y( 1) x(m) h (m)
m 3

3

1= − − =
=-

-/

                                         =   x(–3) h–1(–3) + x(–2) h–1(–2) + x(–1) h–1(–1) + x(0) h–1(0) + x(1) h–1(1) + x(2) h–1(2) 

                                            + x(3) h–1(3)   =  0 + 0 + 0 + 1 + 0 + 0 + 0 = 1

The samples of y(n) for other values of n are calculated as shown for n = –1.

When n 0 ; y(0) x(m) h (m) 0 0 2 2 0 0 4
m 2

3

0= = + + + + + ==
=-

/

When n 1 ; y(1) x(m) h (m) 0 1 4 0.5 0 5.5
m 1

3

1= = + + + + ==
=-

/

When n 2 ; y(2) x(m) h (m) 1 2 1 1 3
m 0

3

2= = + + + == −
=

/

When n 3 ; y(3) x(m) h (m) 0 2 0.5 2 0 0.5
m 0

4

3= = + + =− +=
=

/

When n 4 ; y(4) x(m) h (m) 0 0 0.5 1 0 0 0.5
m 0

5

4= = + + =− + +=
=

/

When n 5 ; y(5) x(m) h (m) 0 0 0 1 0 0 0 1
m 0

6

5= = + + + + =− + −=
=

/

The output sequence , y(n) = { 1, 4, 5.5, 3, 0.5, 0.5, −1}
                                                            ↑

1.1.14  Circular Convolution

Circular Representation and Circular Shift of Discrete Time Signal

Consider a finite duration sequence x(n) and its periodic extension xp(n). The periodic extension of 
x(n) can be expressed as xp(n) = x(n + N), where N is the periodicity. Let N = 4. The sequence x(n) and its 
periodic extension are shown in Fig 1.17.

Let, x(n)  =  1 ;    n = 0
                =  2 ;    n = 1
                =  3 ;    n = 2
                =  4 ;    n = 3

 Here the product is valid only for m = −3 to +3.
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Let us delay the periodic sequence xp(n) by two units of time as shown in Fig 1.18a. (For delay, the 
sequence is shifted right). Let us denote one period of this delayed sequence by x1(n). One period of the 
delayed sequence is shown in Fig 1.18b.

The sequence x1(n) can be represented by xp(n – 2, (mod 4)), or xp((n – 2))4, where mod 4 indicates 
that the sequence repeats after 4 samples. The relation between the original sequence x(n) and one period 
of the delayed sequence x1(n) is shown below:

x1(n) = xp(n  –  2, (mod 4)) =  xp((n – 2))4

∴  When  n  = 0 ;   x1(0)  =  xp((0 – 2))4   =   xp((– 2))4   =   x(2)   =   3

      When  n = 1 ;   x1(1)  =  xp((1 – 2))4   =   xp((– 1))4   =   x(3)   =  4

      When  n = 2 ;   x1(2)  =  xp((2 – 2))4   =   xp((0))4        =   x(0)   =  1

      When  n = 3 ;   x1(3)  =  xp((3 – 2))4   =   xp((1))4        =    x(1)  =  2

     The periodic sequences xp(n) and x1(n) can be represented as points on a circle as shown in Fig 1.19. 
From Fig 1.19 we can say that x1(n) is simply xp(n) shifted circularly by two units in time where the counter 
clockwise (anticlockwise) direction has been arbitrarily selected for right shift or delay.

x (n)p

Fig b: Periodic extension of x(n).

1 n2 30 5 6 74�3 �2 �1�4

Fig 1.17: A finite duration sequence and its periodic extension.
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Fig 1.18: Delayed version of x (n).p

x (n) = x ((n 21 p 4� ��

x(n)

x(1) = 2

x(0) =1

x(3) = 4

x(2) = 3 (2) �

(1) 4�

1 (0) 3�

(3) 2�

(n)

x ((n 2))p 4� �x np( )Rotate anticlockwise two times to get x (n)1

2

1

4

3

1

4

3

2 ��

4

3

2

1
x1

x1 x1

x1

x1

Fig 1.19: Circular representation of a signal and its delayed version.

Fig a: Circular representation of x(n). Fig b: Circular representation of x (n).1
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Let us advance the periodic sequence xp(n) by three units of time as shown in Fig 1.20a. Let us 
denote one period of this advanced sequence by x2(n). One period of the advanced sequence is shown 
in Fig 1.20b.

The sequence x2(n) can be represented by xp(n + 3, (mod 4)) or xp((n + 3))4, where mod 4 indicates 
that the sequence repeats after 4 samples. The relation between the original sequence x(n) and one period 
of the advanced sequence x2(n) is shown below:

x2(n) = xp(n + 3, (mod 4)) = xp((n + 3))4

∴   When   n = 0 ;   x2(0)   =   xp((0 + 3))4   =   xp((3))4   =  x(3)  =   4

       When   n = 1 ;   x2(1)   =   xp((1 + 3))4   =   xp((4))4   =  x(0)  =   1

       When   n = 2 ;   x2(2)   =   xp((2 + 3))4   =   xp((5))4   =  x(1)  =   2

       When   n = 3 ;   x2(3)   =   xp((3 + 3))4   =   xp((6))4   =  x(2)  =   3

The periodic sequences xp(n) and x2(n) can be represented as points on a circle as shown in Fig 1.21. 
From Fig 1.21 we can say that x2(n) is simply xp(n) shifted circularly by three units in time where clockwise 
direction has been selected for left shift or advance.

Thus, we conclude that a circular shift of an N-point sequence is equivalent to a linear shift of its 
periodic extension and vice versa. If a nonperiodic N-point sequence is represented on the circumference 
of a circle, then it becomes a periodic sequence of periodicity N. When the sequence is shifted circularly, 
the samples repeat after N shifts. This is similar to modulo-N operation. Hence, in general, the circular 
shift may be represented by the index mod-N. Let x(n) be an N-point sequence represented on a circle and 
x'(n) be its circularly shifted sequence by m units of time.

Now  x'(n) = x(n – m, mod N) ≡ x((n – m))N	 .....(1.13)
When m is positive, equation (1.13) represents delayed sequence and when m is negative, equation 

(1.13) represents advanced sequence.
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Fig 1.20: Advanced version of x (n).p

Fig a: dvanced by three units of time.x (n)ap Fig b: One period of x (n + 3).p
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x(0) = 1

x(3) = 4

x(2) = 3 x (n)2

Fig a: Circular representation of x(n). Fig b: Circular representation of x (n).2

Fig 1.21: Circular representation of a signal and its advanced version.
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Circular Symmetries of Discrete Time Signal

The circular representation of a sequence and the resulting periodicity gives rise to new definitions 
for even symmetry, odd symmetry and time reversal of the sequence.

An N-point sequence is called even if it is symmetric about the point zero on the circle. This implies that,

x(N − n) = x(n)   ;  for   0 ≤ n ≤ N − 1			                                              .....(1.14)

An N-point sequence is called odd if it is antisymmetric about the point zero on the circle.  
This implies that,

x(N − n) = − x(n)   ;  for   0 ≤ n ≤ N − 1			                                              .....(1.15)

The time reversal of a N-point sequence is obtained by reversing its sample about the point zero on 
the circle. Thus, the sequence x(–n, (mod N) ) is simply written as,

x (−n, (mod N)) =  x(N − n)   ;  for   0 ≤ n ≤ N − 1		                                              .....(1.16)

This time reversal is equivalent to plotting x(n) in a clockwise direction on a circle, as shown in  
Fig 1.22.

Definition of Circular Convolution

The circular convolution of two periodic discrete time sequences x1(n) and x2(n) with periodicity 
of N samples is defined as,

 x (n) x (m) x n m
m 0

N 1

3 1 2 N= -
=

-

^^ hh/          or           x (n) x (m) x n m
m 0

N 1

3 N2 1= -
=

-

^^ hh/                   .....(1.17)

                                 where,           x3(n) = The sequence obtained by circular convolution,
	  		    x1((n – m))N = Circular shift of x1(n)
	  		    x2((n – m))N = Circular shift of x2(n)

                    	   m is a dummy variable.

The output sequence x3(n) obtained by circular convolution is also a periodic sequence with 
periodicity of N samples. Hence, this convolution is also called periodic convolution.

The convolution relation of equation (1.17) can be symbolically expressed as,

x3(n) =  x1(n) U x2(n)  =  x2(n) U x1(n)		  .....(1.18)

where, the symbol U indicates the circular convolution operation.

Fig 1.22: Circular representation of an 8-point sequence and its folded sequence.
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Circular convolution is defined for periodic sequences, but it can be performed with nonperiodic 
sequences by periodically extending them. The circular convolution of two sequences requires that, at least 
one of the sequences  be periodic. Hence, it is sufficient if one of the sequences is periodically extended 
in order to perform circular convolution. 

Circular convolution of finite duration sequences can be performed only if both the sequences 
consist of the same number of samples. If the sequences have different number of samples, then convert 
the smaller size sequence to the length of the larger size sequence by appending zeros. 

Circular convolution basically involves the same four steps as that for linear convolution, namely, 
folding one sequence, shifting the folded sequence, multiplying the two sequences and finally summing 
the values of the product sequence. Like linear convolution, any one of the sequence is folded and rotated 
in circular convolution.

The difference between the two is that in circular convolution the folding and shifting (rotating) 
operations are performed in a circular fashion by computing the index of one of the sequences by modulo-N 
operation. In linear convolution there is no modulo-N operation.

Procedure for Evaluating Circular Convolution

Let x1(n) and x2(n) be periodic discrete time sequences with a periodicity of N-samples. If x1(n)  
and x2(n) are nonperiodic, then convert the sequences to N-sample sequences and periodically extend the 
sequence x2(n) with periodicity of N-samples.

Now the circular convolution of x1(n) and x2(n) will produce a periodic sequence x3(n) with periodicity 
of N-samples. The samples of one period of  x3(n) can be computed using equation (1.17). The value of  
x3(n) at n = q  is obtained by replacing n by q, in equation (1.17).

x ( ) x (m) x mq q
m 0

N 1

3 N21` = -
=

-

^^ hh/                                                                         .....(1.19)

The evaluation of equation (1.19) to determine the value of  x3(n) at n = q involves the following 
five steps.

1. Change of index  :  Change the index n in the sequences x1(n) and x2(n), in order to get the
			      sequences x1(m) and x2(m). Represent the samples of one period of the
			       sequences on circles.

2. Folding                  :    Fold x2(m) about m = 0, to obtain x2(−m).

3. Rotation                               :       Rotate x2(−m) by q times in anti-clockwise direction if q is positive and Rotate  
                                 x2(−m) by q times in clockwise direction if q is negative to obtain
		  x2((q – m))N. 

4. Multiplication         :    Multiply x1(m) by x2((q – m))N to get a product sequence. Let the product
                                                   sequence be vq(m). Now, vq(m) = x1(m) x2((q – m))N.

5. Summation               :    Sum up the samples of one period of the product sequence vq(m) to obtain 
		  the value of x3(n) at n = q. [i.e., x3(q)].
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 The above procedure will give the value of x3(n) at a single time instant, say n = q. In general we 
are interested in evaluating the values of the sequence x3(n)  in the range 0 < n <  Ν − 1. Hence the steps 3, 
4 and 5 given above must be repeated for all possible time shifts in the range 0 < n < Ν − 1.

Linear Convolution via Circular Convolution

	 When two numbers of N-point sequences are circularly convolved, it produces another N-point 
sequence. For circular convolution, one of the sequence should be periodically extended. Also the resultant 
sequence is periodic with period N.

The linear convolution of two sequences of length N1 and N2 produces an output sequence of 
length N1 + N2 −1. To perform linear convolution via circular convolution both the sequences should be 
converted to N1 + N2 −1 point sequences by padding with zeros. Then perform circular convolution of 
N1 + N2 −1 point sequences. The resultant sequence will be the same as that of linear convolution of  N1 
and N2 point sequences.

Circular Convolution Tabular Method

Let x1(n) and x2(n) be the given N-point sequences. Let x3(n) be the N-point sequence obtained 
by circular convolution of x1(n) and x2(n). The following procedure can be used to obtain one sample of 
x3(n) at n = q.

1.	  Change the index n in the sequences x1(n) and x2(n) to get x1(m) and x2(m) and the represent the 
                 sequences as two rows of tabular array.

2.	  Fold one of the sequence. Let us fold x2(m) to get x2(–m).

3.	  Periodically extend x2(– m). Here the periodicity is N, where N is the length of the give sequences.

4.	  Shift the sequence x2(– m), q times to get the sequence x2((q – m))N.  If  q  is positive, then shift 
                  the sequence to the right and if q is negative then shift the sequence to the left.

5.    Determine the product sequence x1(m) x2,q(m) for one period where, x2, q(m) = x2((q – m))N

6.	   The sum of all the samples of the product sequence gives the sample x3(q) [i.e., x3(n) at n = q].

       Therefore, the sample of x3(q) at n = q is given by,

x ( ) x (m) x m x (m) x mq q
m 0

N 1

m 0

N 1

3 N2 2, q1 1= − =
= =

- -

^^ ^hh h/ /
	 The above procedure is repeated for all possible values of n to get the sequence x3(n).

Example 1.3

Find the linear and circular convolution of the sequences, x(n) = {1, 0.5} and h(n) = {0.5, 1}.
                                                                                                                     ↑                               ↑                          

Solution
Linear Convolution by Tabular Array

Let,  y(n) = x(n) ∗ h(n) 

By convolution sum formula, 

y(n) = x(m) h(n m)
m

-
= 3

3

-

/  , where m is a dummy variable for convolution.

Since both x(n) and h(n) start at n = 0, the output sequence y(n) will also start at n = 0. 
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Since the length of x(n) and h(n) is 2, the length of y(n) is  2 + 2 – 1 = 3.

Let us change the index n to m in x(n) and h(n). The sequences x(m) and h(m) are represented in the tabular 
array as shown below.

Each sample of y(n) is given by the equation,

y(n) x (m) h(n m) x(m) h (m) h (m) h(n m); where
m m

n n− −= = =
= =3

3

3

3

- -

/ /

When n 0 ; y (0) x (m) h( m) x(m) h (m) x( 1) h ( 1) x (0) h (0) x (1) h (1)
m m 1

1

0 0 0 0= = + +− − −= =
= =3

3

- -

/ /
           =  0×1  +  1×0.5  +  0.5×0  =  0  +  0.5 + 0 =  0.5

When n 1 ; y (1) x (m) h(1 m) x(m) h (m) 1 0.25 1.25

When n 2 ; y (2) x (m) h(2 m) x(m) h (m) 0 0.5 0 0.5

m m 0

1

m m 0

2

2

1 +

+ +

−

−

= = = = =

= = = = =

= =

= =

3

3

3

3

-

-

/ /

/ /
∴ y(n) = {0.5,  1.25,  0.5} 

                  ↑

Circular Convolution by Tabular Array

Let y(n) x (n) h(n), = U

By definition of circular convolution, 

( ) ( ) (( ))y n x m h n m
m

N

0

1

N
= −

=

-

/   ;  where m is a dummy variable for convolution.

The index n in the sequences are changed to m and the sequences are represented in the tabular array as 
shown below. The shifted sequence hn(m) is periodically extended with periodicity N = 2.

Each sample of y(n) is given by the relation,

y(n) x (m) h (n m) x(m) h (m) h (m) h (n m); where
m

N 1

m

N 1

0 0
N n n N

− −= = =
= =

- -

^ ^h h/ /

When 0 y(0) x (m) h (0 m) x(m) h (m);n
m 0

N 1

m 0

1

2 0−= = =
=

-

=

^ h/ /
                             =  x(0) h0(0) + x(1) h0(1) = 1 × 0.5  +  0.5 × 1 = 0.5 + 0.5 = 1.0

Note: The unfilled boxes in the table are considered as zeros.

m	               –1	          0	            1             2	

x(m)		           1	 0.5

h(m)		            0.5	 1

h(–m) = h0(m)               1	          0.5		

h(1 – m) = h1(m)	          1	 0.5	

h(2 – m) = h2(m)		                   1           0.5

Note: The bold faced number is the sample obtained by periodic extension.

m	               –1	          	

x(m)		           	

h(m)		            	

h((–m))2 = h0(m)            1	          

h((1 – m))2 = h1(m)	          	

 0            1

 1           0.5

0.5          1

0.5          1

 1           0.5
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When 1 y(1) x (m) h (1 m) x(m) h (m);n
m 0

N 1

m 0

1

2 1−= = =
=

-

=

^ h/ /
                                   =  x(0) h1(0) + x(1) h1(1) = 1 × 1  +  0.5 × 0.5 = 1 + 0.25 = 1.25

∴ y(n) = {1.0,  1.25}

                   ↑

1.1.15  Sectioned Convolution

The response of an LTI system for any arbitrary input is given by linear convolution of the input and 
the impulse response of the system. If one of the sequences (either the input sequence or impulse response 
sequence) is very much larger than the other, then it is very difficult to compute the linear convolution for 
the following reasons.

1.	 The entire sequence should be available before convolution can be carried out. This involves a 
long delay in getting the output.

2.	 Large amount of memory is required to store the sequences.

The above problems can be overcome in  sectioned convolutions. In this technique the larger sequence 
is sectioned (or split) into the size of  the smaller sequence. Then the linear convolution of each section of 
the longer sequence and the smaller sequence is performed. 

The output sequences obtained from the convolutions of all the sections are combined to get the 
overall output sequence. There are two methods of sectioned convolutions. They are overlap add method 
and overlap save method.

Overlap Add Method

In the overlap add method, the longer sequence is divided into smaller sequences. Then linear 
convolution of each section of the longer sequence and the smaller sequence is performed. The overall 
output sequence is obtained by combining the output of the sectioned convolution.

Let, 	 N1 = Length of longer sequence
	 N2 = Length of smaller sequence

Let the longer sequence be divided into sections of size N3 samples.

Note: Normally the longer sequence is divided into sections of size same as that of the smaller sequence.

Fig 1.23: Overlapping of output sequence of sectioned convolution by overlap add method.
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The linear convolution of each section with smaller sequence will produce an output sequence of size  
N3 + N2 –1 samples. In this method the last N2 –1 samples of each output sequence overlap with the first 
N2 –1 samples of the next section [i.e., there will be a region of N2 –1 samples over which the output 
sequence of qth convolution overlaps with the output sequence of (q +1)th convolution]. While combining 
the output sequences of the various sectioned convolutions, the corresponding samples of overlapped 
regions are added and the samples of non-overlapped regions are retained as such.

Overlap Save Method

In the overlap save method, the results of linear convolution of the various sections are obtained 
using circular convolution. In this method, the longer sequence is divided into smaller sequences. Each 
section of the longer sequence and the smaller sequence is converted to the size of the output sequence of 
sectioned convolution. 

The circular convolution of each section of the longer sequence and the smaller sequence is performed. 
The overall output sequence is obtained by combining the outputs of the sectioned convolution.

Let,	 N1 = Length of longer sequence

	 N2 = Length of smaller sequence

Let the longer sequence be divided into sections of size N3 samples.

Note: Normally the longer sequence is divided into sections of size same as that of the smaller sequence.

In the overlap save method, the results of linear convolution are obtained by circular convolution. 
Hence, each section of the longer sequence and the smaller sequence is converted to the size of the output 
sequence of size N3 + N2 – 1 samples. 

The smaller sequence is converted to the size of N3 + N2 –1 samples, by appending with zeros. The 
conversion of each section of  the longer sequence to the size N3 + N2 –1 samples can be performed by 
two different methods.

Method-1

In this method, the first N2 –1 samples of a section are appended as last N2 –1 samples of the previous 
section [i.e., the overlapping samples are placed at the beginning of the section]. The circular convolution 
of each section will produce an output sequence of size N3 + N2 –1 samples. In this output, the first N2 –1 
samples are discarded and the remaining samples of the output of sectioned convolutions are saved as the 
overall output sequence.

���

���

Appended
with zero

Fig 1.24: Appending of sections of input sequence
in method-1 of overlap save method.
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Method-2

In this method, the last N2–1 samples of a section are appended as last N2 –1 samples of the next 
section (i.e, the overlapping samples are placed at the end of the sections). The circular convolution of 
each section will produce an output sequence of size N3 + N2 –1 samples. 

In this output, the last N2 –1 samples are discarded and the remaining samples of the output of 
sectioned convolutions are saved as the overall output sequence.

Overlapped region

Fig 1.25: Overlapping of output sequence of sectioned convolution
by method-1 of overlap save method.

Overlapped region

N N3 2 1� �

N2 1� N2 1�

N2 1�

N N3 2 1� �

N2 1�

N2 1� N3

N N3 2 1� �

Note: Samples in the shaded
region are discarded

N 2(N 1)3 2� �

N 2(N 1)3 2� �

Fig 1.26: Appending of sections of input sequence
in method-2 of overlap save method.
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Overlapped region

Fig 1.27: Overlapping of output sequence of sectioned convolution
by method-2 of overlap save method.
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Example 1.4

Perform the linear convolution of the following sequences by:  a)  overlap add method and  b) overlap save 
method.

x(n) = {1, –1, 2, –2, 3,  –3, 4, –4}  ;  h(n) = {–1, 1}

Solution

a) Overlap Add Method

In this method the longer sequence is sectioned into sequences of size equal to the smaller sequence. Here 
x(n) is a longer sequence when compared to h(n). Hence, x(n) is sectioned into sequences of size equal to h(n).

Given that, x(n) = {1, –1, 2, –2, 3, –3, 4, –4}

Let x(n) can be sectioned into four sequences, each consisting of two samples of x(n) as shown below.

x1(n) =   1 ;   n = 0      x2(n) =   2  ;  n = 2        x3(n) =   3    ;   n = 4      x4(n) =   4    ;  n = 6

       =  –1 ;   n = 1              =  –2  ;  n = 3                =  –3    ;    n = 5              =  –4   ;  n = 7

Let y1(n), y2(n), y3(n)  and y4(n) be the output of linear convolution of x1(n), x2(n), x3(n) and x4(n) with h(n), 
respectively.

    Here h(n) starts at n = nh = 0

x1(n) starts at n = n1 = 0,         ∴   y1(n)  will start at n = n1 + nh = 0 + 0 = 0

x2(n) starts at n = n2 = 2,         ∴   y2(n)  will start at n = n2 + nh = 2 + 0 = 2

x3(n) starts at n = n3 = 4,         ∴   y3(n)  will start at n = n3 + nh = 4 + 0 = 4

x4(n) starts at n = n4 = 6,         ∴   y4(n)  will start at n = n4 + nh = 6 + 0 = 6

Here linear convolution of each section is performed between two sequences, each consisting of 2 samples. 
Hence, each convolution output will consists of 2 + 2 – 1 = 3 samples. The convolution of each section is performed 
by a tabular method as shown below.

	 Note:

1.  Here N1 = 8, N2 = 2, N3 = 2.     N2 – 1 = 2 – 1 = 1      and     N2 + N3 – 1 = 2 + 2 – 1 = 3

                 2.  The unfilled boxes in the tables are considered as zero.

                 3.  For convenience of convolution operation the index n is replaced by m in x1(n), x2(n), x3(n), x4(n) and h(n).

Convolution of Section 1

                                                                                                

	m	 –1	 0	 1	 2

x1(m)		  1	 –1

h(m)		  –1	 1

h(–m) = ho(m)	 1	 –1

h(1 – m) = h1(m)		  1	 –1

h(2 – m) = h2(m)			   1	 –1

y (n) x (n) h(n) x (m) h(n m)

x (m) h (m) ; n 0, 1, 2

m

m

1 1 1

1 n

= =

=

−

=

=

=

3

3

3

3

-

-

) /

/

When n 0 ; y (0) x (m) h (m) 0 1 0 1

When n 1 ; y (1) x (m) h (m) 1 1

When n 2 ; y (2) x (m) h (m) 0 0 1

2

1

1 1 0

1 1 1

1 1 2

= = = + =

= = = =

= = = + =

−

−

−

+

−

/
/
/

( ) { 1, 2, 1}y n
1

` = − −

 ↑
 n = 0
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Convolution of Section 2                                                   

Convolution of Section 3                                                

y (n) x (n) h(n) x (m) h(n m) x (m) h (m) ; n 4, 5, 6
m m

3 3 3 3 n= = =− =
= =3

3

3

3+ +

- -

) / /
     

                                                               where, hn(m) = h(n-m)

When n 4 ; y (4) x (m) h (m) 0 3 0 33 3 4= = = + =- -/
When n 5 ; y (5) x (m) h (m) 3 3 63 3 5= = = =+/  

When n 6 ; y (6) x (m) h (m) 0 0 333 3 6= = = + =- -/
                          ( ) { , , }y n 3 6 3

3
` = − −

Convolution of Section 4

m                           –1	     0      1     	2      3     4

x2(m)		                   2    −2

h(m)	                              −1     1       	

h(–m)                      1	    –1

h(2 – m) = h2(m)		            1     −1

h(3 – m) = h3(m)			             1	     –1

h(4 – m) = h4(m)                                    1    −1

y (n) x (n) h(n) x (m) h(n m)

x (m) h (m) ; n 2,3,4

m

m

2 2 2

2 n

= =

=

−

=

=

=

3

3

3

3

-

-

) /

/

When n 2 ; y (2) x (m) h (m) 0 2 0 2

When n 3 ; y (3) x (m) h (m) 2 2

When n 4 ; y (4) x (m) h (m) 0 0 2

4

2

2 2 2

2 2 3

2 2 4

= = = + =

= = = =

= = = + =

−

−

−

+

−

/
/
/

 ↑
  n = 2

     
( ) { , , }y n 2 4 2

2
` = − −     

m	 –1	 0	 1	 2	 3	 4	 5	 6

x3(m)						      3	 –3

h(m)		  –1	 1

h(–m)	 1	 –1

h(4 – m) = h4(m)					     1	 –1

h(5 – m) = h5(m)						      1	 –1

h(6 – m) = h6(m)							       1	 –1

 ↑
  n = 4

m	 –1	 0	 1	 2	 3	 4	 5	         6          7        8                                                    

x4(m)							                            4        −4

h(m)		  –1	 1

h(–m)	 1	 –1

h(6 – m) = h6(m)					                                        1	 –1

h(7 – m) = h7(m)						                                         1	 –1

h(8 – m) = h8(m)						                                                    1       −1
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y (n) x (n) h(n) x (m) h(n m) x (m) h (m) ; n 6, 7, 8
m m

4 4 4 4 n= = =− =
3

3

3

3

=- =-

+ +

) / /
                                                                           where, hn(m) = h(n − m)

When n 6 ; y (6) x (m) h (m) 0 4 0 4

When n 7 ; y (7) x (m) h (m) 4 4

When n 8 ; y (8) x (m) h (m) 0 0 4

8

4

4 4 6

4 4 7

4 4 8

= = = + =

= = = =

= = = + =

− −

+

− −

/
/
/

                          ( ) { 4, 8, 4}y n
4

` = − −

To Combine the Output of Convolution of Each Section

It can be observed that the last sample in an output sequence overlaps with the first sample of the next output 
sequence. In this method the overall output is obtained by combining the outputs of  convolution of all the sections. 
The overlapped portions (or samples) are added while combining the output. The output of all the sections can be 
represented in a table as shown below. Then the samples corresponding to the same value of n are added to get the 
overall output.

∴  y(n) = x(n)) h(n) = {–1, 2, –3, 4, –5, 6, –7, 8, –4} 

b) Overlap Save Method

In this method, the longer sequence is sectioned into sequences of size equal to the smaller sequence. The 
number of samples that will be obtained in the output of linear convolution of each section is determined. Then each 
section of the longer sequence is converted to the size of output sequence using the samples of the original longer 
sequence. The smaller sequence is also converted to the size of output sequence by appending with zeros. Then the 
circular convolution of each section is performed.

Here x(n) is a longer sequence when compared to h(n). Hence, x(n) is sectioned into sequences of size equal 
to h(n). Given that, x(n) = {1, –1, 2, –2, 3, –3, 4, –4}

Let x(n) be sectioned into four sequences, each consisting of two samples of x(n) as shown below.

x1(n) =   1 ;   n = 0      x2(n) =   2  ;  n = 2        x3(n) = 3    ;   n = 4      x4(n) =    4    ;  n = 6

         = –1 ;   n = 1               = –2  ;  n = 3                =  –3     ;    n = 5              =  –4    ;  n = 7

Let y1(n), y2(n), y3(n) and y4(n) be the output of linear convolution of x1(n), x2(n), x3(n) and x4(n) with h(n), 
respectively. Here linear convolution of each section will result in an output sequence consisting of 2 + 2 – 1 = 3 samples.

The sequence h(n) is converted to 3-sample sequence by appending with zeros.   

             ∴ h(n) = {–1, 1, 0}   

Method-1

In method 1, the overlapping samples are placed at the beginning of the sections. Each section of the longer 
sequence is converted to 3-sample sequences, using the samples of the original longer sequence as shown below.  It 
can be observed that the first sample of x2(n) is placed as the overlapping sample at the end of x1(n).  The first sample 
of x3(n) is placed as the overlapping sample at the end of x2(n). The first sample of x4(n) is placed as the overlapping 
sample at the end of x3(n). Since there is no fifth section, the overlapping sample of x4(n) is taken as zero.

 ↑

n	 0	 1	 2	          3         4         5	         6        7	        8

y1(n)	 –1	 2	 –1

y2(n)			   –2	         4       –2

y3(n)				                      –3	         6        –3

y4(n)						                       –4      8 	      – 4

y(n)	 –1	 2         	–3         4       – 5         6       –7       8       – 4
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              x1(n) =   1 ;      n = 0     x2(n) =  2  ;      n = 2    x3(n) =   3  ;    n = 4      x4(n) =  4  ;     n = 6

                       = –1 ;      n = 1             = –2  ;      n = 3            = –3   ;    n = 5               = –4  ;     n = 7

                       =   2 ;      n = 2             =  3   ;      n = 4            =   4   ;    n = 6               =   0  ;    n = 8

Now perform circular convolution of each section with h(n). The output sequence obtained from circular 
convolution will have three samples.  The circular convolution of each section is performed by the tabular method  
as shown below.

Here,  h(n) starts at n = nh = 0

	 x1(n) starts at n = n1 = 0,     ∴ y1(n)  will start at n = n1 + nh = 0 + 0 = 0

	 x2(n) starts at n = n2 = 2,     ∴ y2(n)  will start at n = n2 + nh = 2 + 0 = 2

	 x3(n) starts at n = n3 = 4,     ∴ y3(n)  will start at n = n3 + nh = 4 + 0 = 4

	 x4(n) starts at n = n4 = 6,     ∴ y4(n)  will start at n = n4 + nh = 6 + 0 = 6

Convolution of Section 1

                                                                                         

  

                                                                                                          ( ) { , , }y n 1 2 3
1

` = −

                                                                                                                           ↑
				                                                                                      n = 0

Convolution of Section 2

	

 

▼ ▼ ▼

Note:	 1. Here, N1 = 8, N2 = 2, N3 = 2.      ∴ N2 – 1 = 2 – 1 = 1      and      N2 + N3 – 1 = 2 + 2 – 1 = 3
         2. The bold faced numbers in the tables are obtained by periodic extension.

  3. For convenience of convolution operation, the index n in x1(n), x2(n), x3(n), x4(n) and h(n) are
     replaced by m.

m	 –2	 –1			 

x1(m)					   

h(m)					   

h((0–m))3 = h0(m)	 0	 1			 

h((1 – m))3 = h1(m)		  0			 

h((2 – m))3 = h2(m)					   

 0       1      2

 1     –1      2

–1      1      0

–1      0      1

 1      –1     0

 0       1    –1

y (n) x (n) h(n) x (m) h (n m)
m

m

mi

1 1 1

f

N= =U -
=

^ h/

 x (m) h (m) ; n 0,1,2
m 0

2

1 n ==
=

/
           where, hn(m) = h((n−m))N   

When n 0 ; y (0) x (m) h (m) 1 0 1

When n ; y (1) x (m) h (m) 1 1

When n 2 ; y (2) x (m) h (m) 0 2 3

2

1 0 2

1

1 1 0

1 1 1

1 1 2

= = = + =

= = = =

= = =

+−

+ +

− − −=

/
/
/

m	 –2	 –1			 

x2(m)					   

h(m)					   

h(–m)	 0	 1			 

h((2 – m))3 = h2(m)		                 0  		

h((3 – m))3 = h3(m)					   

h((4 – m))3 = h4(m)

 0      1       2      3      4

                  2     -2      3

–1     1       0

–1            

         1      –1     0      1

         0       1     –1     0

                  0      1     -1
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y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n 2, 3, 4
m

m

m m 2

4

i

2 2 2

f

2 nN= = =U − =
==

^ h/ /
                                                                   where, hn(m) = h((n - m))N 

 When n 2 ; y (2) x (m) h (m) 2 0 132 2 2= = = + =+−/
 When n ; y (3) x (m) h (m) 2 23 0 42 2 3= = = + + =/      

 When n 4 ; y (4) x (m) h (m) 0 3 522 2 4= = = =- - -/
      ( ) { 1, , }y n 4 5

2
` = −         

                           ↑	             n = 2  

Convolution of Section 3

y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n , ,4 5 6
m

m

m m 4

6

i

3 3 3

f

3 nN= = =U − =
==

^ h/ /
                                              where, hn(m) = h((n − m))N

n n 4 ; y (4) x (m) h (m) 3 1Whe 0 43 3 4= = = + + =-/
When n 5 ; y (5) x (m) h (m) 3 63 03 3 5= = = + =+/
When n ; y (6) x (m) h (m) 3 4 76 03 3 6= = = =- - -/

       ( ) { 1, , }y n 6 7
3

` = −

Convolution of section 4

m	 –2	 –1			 

x3(m)					   

h(m)					   

h(–m)	 0	 1			 

h((4 – m))3 = h4(m)		                  

h((5 – m))3 = h5(m)					   

h((6 – m))3 = h6(m)

 0      1       2      3      4      5      6

                                  3     -3     4

–1     1       0

–1            

                  0      1     –1     0      1

                          0      1     –1     0

                                  0      1     –1

 ↑
  n = 4

m	 –2	 –1			 

x4(m)					   

h(m)					   

h(–m)	 0	 1			 

h((6 – m))3 = h6(m)		                  

h((7 – m))3 = h7(m)					   

h((8 – m))3 = h8(m)

 0      1       2      3      4      5      6      7       8      

                                                  4     -4      0

–1     1       0

–1            

                                  0      1     –1      0       1

                                          0      1     –1       0

                                                  0       1      –1
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y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n , ,6 7 8
m

m

m m 6

8

i

4 4 4

f

4 nN= =U − = =
==

^ h/ /
                                                   where,  hn(m) = h((n − m))N

   When n ; y (6) x (m) h (m) 4 46 0 04 4 6= = = + + =- -/
   When n 7 ; y (7) x (m) h (m) 4 4 0 84 4 7= = = + =+/
   n n 8 ; y (8) x (m) h (m) 4 4Whe 0 04 4 8= = = + =- -/

        ( ) { , , }y n 4 8 4
4

` = − −

To Combine the Output of the Convolution of Each Section

It can be observed that the last sample in an output sequence overlaps with the first sample of the next output 
sequence. In overlap save method, the overall output is obtained by combining the outputs of the convolution of all 
the sections. While combining the outputs, the overlapped first sample of every output sequence is discarded and 
the remaining samples are simply saved as samples of y(n) as shown in the following table.

y(n) =  x(n) ) h(n) = {×,  2, −3, −4, −5, 6, −7, 8, −4} 

Method-2

In method-2, the overlapping samples are placed at the end of the section. Each section of the longer 
sequence is converted to 3-sample sequence, using the samples of the original longer sequence as shown below. 
It can be observed that the last sample of x1(n) is placed as the overlapping sample at the end of x2(n). 

The last sample of x2(n) is placed as the overlapping sample at the end of x3(n). The last sample of x3(n) is 
placed as the overlapping sample at the end of x4(n).  Since there is no previous section for x1(n), the overlapping 
sample of x1(n) is taken as zero.

x1(n) =   1   ;   n = 0    x2(n) =   2  ;   n = 2    x3(n) =   3 ;    n = 4    x4(n) =  4 ;  n = 6

         = –1   ;  n = 1              = –2  ;   n = 3             = –3 ;    n = 5             = –4  ; n = 7

         =   0   ;   n = 2             = –1  ;   n = 4             = –2  ;   n = 6             = –3  ; n = 8

Now perform circular convolution of each section with h(n). The output sequence obtained from circular 
convolution will have three samples. The circular convolution of each section is performed by the tabular method 
as shown ahead.

 ↑
 n = 6

n	 0	 1	 2	 3	 4	 5	 6	 7          8

y1(n)		  2

y2(n)				    4	

y3(n)						      6	

y4(n)								        8        

y(n)	 ×	 2	 −3	 4	 −5	 6         −7	 8      −4

   1

    1

    1

  −3

   −5

  −7

−4 −4

 Note:  Here y(n) is linear convolution of x(n) and h(n). It can be observed that the results of both

 the methods are same, except the first N2 – 1 samples.

▼ ▼ ▼
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Here,  h(n) starts at n = nh = 0

x1(n) starts at n = n1 = 0,     ∴ y1(n)  will start at n = n1 + nh = 0 + 0 = 0

x2(n) starts at n = n2 = 2,     ∴ y2(n)  will start at n = n2 + nh = 2 + 0 = 2

x3(n) starts at n = n3 = 4,     ∴ y3(n)  will start at n = n3 + nh = 4 + 0 = 4

x4(n) starts at n = n4 = 6,     ∴ y4(n)  will start at n = n4 + nh = 6 + 0 = 6

Note:   1. Here N1 = 8, N2 = 2, N3 = 2.     ∴ N2 – 1 = 2 – 1 = 1     and     N2 + N3 – 1 = 2 +  2 – 1 = 3

            2. The bold faced numbers in the tables are obtained by periodic extension.

            3. For convenience of convolution, the index n is replaced by m in x1(n), x2(n), x3(n), x4(n) and h(n).

Convolution of Section 1

Convolution of Section 2                                                 

          y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n 2,3,4
m

m

m m 2

4

i

2 2 2

f

2 nN= = =U − =
==

^ h/ /   ;   where, hn(m) = h((n − m))N

When n 2 ; y (2) x (m) h (m) 2 0 1 32 2 2= = = + =- - -/
When n ; y (3) x (m) h (m) 2 23 0 42 2 3= = = + + =/
When n 4 ; y (4) x (m) h (m) 0 12 12 2 4= = = + =- -/

         ( ) { , , 1}y n 3 4
2

` = − −

m	 –2	 –1			 

x1(m)					   

h(m)					   

h((–m))3 = h0(m)	 0	 1			 

h((1 – m))3 = h1(m)		  0			 

h((2 – m))3 = h2(m)					   

 0       1      2

 1     –1      0

–1      1      0

–1      0      1

 1      –1     0

 0       1    –1

y (n) x (n) h(n) x (m) h (n m)
m

m

mi

1 1 1

f

N= =U -
=

^ h/

 x (m) h (m) ; n 0,1,2
m 0

2

1 n ==
=

/
          where,  hn(m) = h((n-m))N

When n 0 ; y (0) x (m) h (m) 1 0 1

When n ; y (1) x (m) h (m) 1 1

When n 2 ; y (2) x (m) h (m) 0 1

0

1 0 2

1 0

1 1 0

1 1 1

1 1 2

= = = + =

= = = =

= = = =

− −

−

+

+ +

− +

/
/
/

   ∴ y1 = {-1, 2, -1}
 ↑

 n = 0

m	 –2	 –1			 

x2(m)					   

h(m)					   

h(–m)	 0	 1			 

h((2 – m))3 = h2(m)		                 0  		

h((3 – m))3 = h3(m)					   

h((4 – m))3 = h4(m)

 0      1       2       3      4

                  2     –2     –1

–1     1       0

–1            

         1      –1      0      1

         0       1     –1      0

                  0      1     –1

 ↑
 n = 2
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Convolution of Section 3

y (n) x (n) h(n) x (m) h n m x (m) h (m) ; n , ,4 5 6
m

m

m m 4

6

i

3 3 3

f

3 nN= = =U − =
==

^^ hh/ /
                                                 where,  hn(m) = h((n − m))N

n n 4 ; y (4) x (m) h (m) 3 2 5

When n 5 ; y (5) x (m) h (m) 3 6

When n ; y (6) x (m) h (m) 3 1

Whe 0

3 0

6 0 2

3 3 4

3 3 5

3 3 6

= = = + =

= = = + =

= = = =

− − −

− −

+

+

/
/
/

               ( ) { , ,1}y n 5 6
3

` = −

Convolution of Section 4

y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n , ,6 7 8
m

m

m m 6

8

i

4 4 4

f

4 nN= = =U − =
==

^ h/ /
                  where,  hn(m) = h((n − m))N

When n ; y (6) x (m) h (m) 4 3 76 04 4 6= = = + =- - -/                      

When n 7 ; y (7) x (m) h (m) 4 4 0 84 4 7= = = + =+/    

n n 8 ; y (8) x (m) h (m) 4 1Whe 0 34 4 8= = = + =- -/
  ( ) { , , 1}y n 7 8

4
` = − −

m	 –2	 –1			 

x3(m)					   

h(m)					   

h(–m)	 0	 1			 

h((4 – m))3 = h4(m)		                  

h((5 – m))3 = h5(m)					   

h((6 – m))3 = h6(m)

 0      1       2      3      4      5      6

                                  3     −3    −2

–1     1       0

–1            

                  0      1     –1     0      1

                          0      1     –1     0

                                  0      1     –1

 ↑
  n = 4

m	 –2	 –1			 

x4(m)					   

h(m)					   

h(–m)	 0	 1			 

h((6 – m))3 = h6(m)		                  

h((7 – m))3 = h7(m)					   

h((8 – m))3 = h8(m)

 0      1       2      3      4      5      6      7       8      

                                                  4     −4     −3

–1     1       0

–1            

                                  0      1     –1     0       1

                                          0      1     –1      0

                                                  0      1      –1

 ↑
 n = 6
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To Combine the Output of the Convolution of Each Section

It can be observed that the last sample in an output sequence overlaps with the first sample of the next output 
sequence. In overlap save method, the overall output is obtained by combining the outputs of the convolution of all 
the sections. While combining the outputs, the overlapped last sample of every output sequence is discarded and 
the remaining samples are simply saved as samples of y(n) as shown in the following table.

	 ∴ y(n) = x(n) ) h(n) = {–1, 2, –3, 4, –5, 6, –7, 8, ×}

Example 1.5

Perform the linear convolution of the following sequences by:  a) overlap add method and  b) overlap save 
method.

x(n) = {1, 2, 3, –1, –2, –3, 4, 5, 6} and  h(n) = {2, 1, –1}

Solution

a)  Overlap Add Method

In this method the longer sequence is sectioned into sequences of size equal to the smaller sequence. Here 
x(n) is a longer sequence when compared to h(n). Hence, x(n) is sectioned into sequences of size equal to h(n).

Given that, x(n) = {1, 2, 3, –1, –2, –3, 4, 5, 6}.  

Let x(n) be sectioned into three sequences, each consisting of three samples of x(n) as shown below.

x1(n) = 1 ; n = 0		  x2(n) = –1 ; n = 3		 x3(n) 	 = 4 ; n = 6

         = 2 ; n = 1	          	          = –2 ; n = 4	         		          = 5 ; n = 7

	    = 3 ; n = 2	                     = –3 ; n = 5	                     = 6 ; n = 8

Let y1(n), y2(n) and y3(n) be the output of linear convolution of x1(n), x2(n) and x3(n) with h(n), respectively.

Here h(n) starts at n = nh = 0

x1(n) starts at n = n1 = 0,  ∴  y1(n) will start at n = n1 + nh = 0 + 0 = 0

x2(n) starts at n = n2 = 3,  ∴  y2(n) will start at n = n2 + nh = 3 + 0 = 3

x3(n) starts at n = n3 = 6,  ∴  y3(n) will start at n = n3 + nh = 6 + 0 = 6

Here linear convolution of each section is performed between two sequences each consisting of three samples.  
Hence, each convolution output will consist of 3 + 3 – 1 = 5 samples. The convolution of each section is performed 
by the tabular method shown ahead:

n	 0	 1	 2	 3	 4	 5	 6	 7       8

y1(n)		  2

y2(n)				    4	

y3(n)						      6	

y4(n)							                 8	     

y(n)	 -1	 2	 −3	 4	 −5	 6	 −7	 8     ×

  −1

  −3

   −1

   −1

  −5

  −7

   −1

-1

Note:

Here y(n) is linear convolution of 
x(n) and h(n). It can be observed that 
the results of both the methods are 
same except the last N2 - 1 samples.
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Convolution of Section 1

When n = 0 ; y1(0) = ∑ x1(m) ho(m) =   0 + 0 + 2 + 0 + 0   =  2                         

When n = 1 ; y1(1) = ∑ x1(m) h1(m) =   0 + 1 + 4 + 0         =  5          

When n = 2 ; y1(2) = ∑ x1(m) h2(m) =  –1 + 2 + 6               =  7

When n = 3 ; y1(3) = ∑ x1(m) h3(m) =   0 – 2 + 3 + 0         =  1

When n = 4 ; y1(4) = ∑ x1(m) h4(m) =   0 + 0 – 3 + 0 + 0   = –3

Convolution of Section 2

y (n) x (n) h(n) x (m) h(n m) x (m) h (m) ; n 3, 4, 5, 6, 7
m m

2 2 2 2 n= = =− =
3

3

3

3

=- =-

) / /
                                                             where,  hn(m) = h(n − m)

When n = 3 ; y2(3) = ∑ x2(m) h3(m) =   0 + 0 − 2 + 0 + 0   = − 2               

When n = 4 ; y2(4) = ∑ x2(m) h4(m) =   0 − 1 − 4 + 0         = − 5                    ( ) { 2, 5, 7, 1, 3}y n
2

` = − − − −

When n = 5 ; y2(5) = ∑ x2(m) h5(m) =   1 − 2 − 6               = − 7

When n = 6 ; y2(6) = ∑ x2(m) h6(m) =   0 + 2 − 3 + 0         = − 1

When n = 7 ; y2(7) = ∑ x2(m) h7(m) =   0 + 0 + 3 + 0 + 0   =   3

Note:      1. Here, N1 = 9, N2 = 3, N3 = 3,     ∴ N2 – 1 = 3 – 1 = 2       and       N2 + N3 – 1 = 3 + 3 – 1 = 5.

      2. The unfilled boxes in the table are considered as zero.

       3.  For convenience of convolution operation, the index n is replaced by m in x1(n), x2(n), x3(n) 
                       and h(n).

m	 –2	 –1			 

x1(m)		                 1	      2	

h(m)					   

h(–m) = h0(m)	 −1	 1			 

h(1 – m) = h1(m)		        −1     1                

h(2 – m) = h2(m)				  

h(3 – m) = h3(m)

h(4 – m) = h4(m)

 0      1       2      3      4            

                  3                                         

 2      1      −1

 2            

         2                                       

−1     1       2                                                        

        −1      1      2                                            

                 −1     1      2

y (n) x (n) h(n) x (m) h(n m)
m

1 1 1= = -
3

3

=-

) /

        x (m) h (m) ; n 0,1,2,3,4
m

1 n ==
=-3

3

/

where, hn(m) = h(n − m)

 ( ) { , , , , }y n 2 5 7 1 3
1

` = − −
 ↑

  n = 0

m	 –2	 –1			 

x2(m)		                  	       	

h(m)					   

h(–m) = h0(m)	 -1	 1			 

h(3 – m) = h3(m)		                         

h(4 – m) = h4(m)					   

h(5 – m) = h5(m)

h(6 – m) = h6(m)

h(7 – m) = h7(m)

 0      1       2      3       4      5       6       7           

                         −1    −2     −3                                         

 2      1      −1

 2            

         −1     1      2                                       

                 −1     1       2                                                        

                         −1      1      2                                            

                                  −1     1      2

                                          −1     1        2

 ↑
  n = 3
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Convolution of Section 3

y (n) x (n) h(n) x (m) h(n m) x (m) h (m) ; n 6, 7, 8, 9, 10
m m

3 3 3 3 n= = =− =
= =3

3

3

3

- -

) / /
                                                                           where, hn(m) = h(n − m)

When n = 6   ;   y3(6)   = ∑ x3(m) h6(m)    =   0 + 0 + 8 + 0 + 0   =   8

When n = 7   ;   y3(7)   = ∑ x3(m) h7(m)    =   0 + 4 + 10 + 0       =  14           ( ) { , , ,1, }y n 8 14 13 6
2

` = −

When n = 8   ;   y3(8)   = ∑ x3(m) h8(m)    =  − 4 + 5 + 12           =  13

When n = 9   ;   y3(9)   = ∑ x3(m) h9(m)    =   0 − 5 + 6 + 0         =   1

When n = 10 ;   y3(10) = ∑ x3(m) h10(m)   =   0 + 0 − 6 + 0 + 0   = − 6

To Combine the Output of the Convolution of each Section

It can be observed that the last N2 – 1 sample in an output sequence overlaps with the first N2 – 1 sample of 
the next output sequence. In this method, the overall output is obtained by combining the outputs of convolution of 
all the sections. The overlapped portions (or samples) are added while combining the output.

The output of all the sections can be presented in a table as shown below. Then the samples corresponding 
to the same value of n are added to get the overall output.

∴ y(n) = x(n) ) h(n) = {2, 5, 7, –1, –8, –7, 7, 17, 13, 1, – 6}

b)  Overlap Save Method

In this method the longer sequence is sectioned into sequences of size equal to the smaller sequence. The 
number of samples that will be obtained in the output of linear convolution of each section is determined. Then 
each section of the longer sequence is converted to the size of the output sequence using the samples of the original 
longer sequences. The smaller sequence is also converted to the size of output sequence by appending with zeros.  
Then the circular convolution of each section is performed.

Here, x(n) is a longer sequence when compared to h(n). Hence, x(n) is sectioned into sequences of size equal 
to h(n). 

Given that x(n) = {1, 2, 3, –1, –2, –3, 4, 5, 6}.

m	 –2	 –1			 

x3(m)		                  	       	

h(m)					   

h(–m) = h0(m)	 −1	 1			 

h(6 – m) = h6(m)		                         

h(7 – m) = h7(m)					   

h(8 – m) = h8(m)

h(9 – m) = h9(m)

h(10 – m) = h10(m)

 0      1       2      3       4      5       6       7        8        9        10          

                                                    4       5        6                                         

 2      1      −1

 2            

                                  −1     1       2                                       

                                          −1      1       2                                                        

                                                   −1      1        2                                            

                                                            −1       1        2

                                                                      −1        1         2

 ↑
 n = 6

n	 0	 1	  2	         3          4        5	         6         7	        8        9       10

y1(n)	 2	 5	          7         1         −3

y2(n)			                        −          −5       −7      −         

y3(n)				                                               8	                 13               

y(n)            2           5         7         −1        −8       −7       7      17       13        1       −6      

  −2     3

  14

    −1

1 -6
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Let x(n) be sectioned into three sequences each consisting of three samples as shown below:

Let ,	 N1 = Length of longer sequence

	 N2 = Length of smaller sequence

	 N3 = N2 = Length of each section of longer sequence. 

x1(n) = 1 ; n = 0		   x2(n) = –1 ; n = 3		  x3(n) 	 = 4 ; n = 6

         = 2 ; n = 1	                     = –2 ; n = 4		                    = 5 ; n = 7

         = 3 ; n = 2	                     = –3 ; n = 5		                    = 6 ; n = 8

Let y1(n), y2(n) and y3(n) be the output of linear convolution of x1(n), x2(n) and x3(n) with h(n) respectively. 
Here linear convolution of each section will result in an output sequence consisting of 3 + 3 – 1 = 5 samples.

Hence each section of  longer sequence is converted to five sample sequence, using the samples of the original 
longer sequence as shown below. It can be observed that the first N2 – 1 samples of x2(n) is placed as overlapping 
sample at the end of x1(n).  The first N2 – 1 samples of x3(n) is placed as  overlapping sample at the end of x2(n).  Since 
there is no fourth section, the overlapping samples of x3(n) are considered as zeros.

x1(n) =   1 ; n = 0		  x2(n) = –1 ; n = 3		 x3(n) = 4 ; n = 6

         =   2 ; n = 1	         	          = –2 ; n = 4		          = 5 ; n = 7

         =   3 ; n = 2	                     = –3 ; n = 5		          = 6 ; n = 8

         = –1 ; n = 3	                     =  4 ;  n = 6		         = 0 ; n = 9

         = –2 ; n = 4	                     =  5 ;  n = 7		          = 0 ; n = 10

The sequence h(n) is also converted to a five sample sequence by appending with zeros.

∴ h(n) = {2, 1, –1, 0, 0}

Now perform circular convolution of each section with h(n). The output sequence obtained from circular 
convolution will have five samples. The circular convolution of each section is performed by the tabular method 
shown below.

Here h(n) starts at n = nh = 0

x1(n) starts at n = n1 = 0, ∴ y1(n) will start at  n =  n1 + nh = 0 + 0 = 0

x2(n) starts at n = n2 = 3, ∴ y2(n) will start at  n = n2 + nh = 3 + 0 = 3

x3(n) starts at n = n3 = 6, ∴ y3(n) will start at  n = n3 + nh = 6 + 0 = 6

Note:  1. Here N1 = 9, N2 = 3, N3 = 3    ∴ N2 – 1 = 3 – 1 = 2   and   N2 + N3 – 1  = 3 + 3 – 1 = 5 samples.

           2. The bold faced numbers in the table are obtained by periodic extension.

           3. For convenience of convolution operation, the index n is replaced by m in x1(n), x2(n), x3(n) 

               and h(n).

Convolution of Section 1

		

▼

m	 −4	    −3     −2 	    −1		

x1(m)					   

h(m)					   

h((–m))5 = h0(m)	 0	      0      −1      1

h((1 – m))5 = h1(m)		        0       0     −1  		

h((2 – m))5 = h2(m)		                 0      0		

h((3 – m))5 = h3(m)                             0

h((4 – m))5 = h3(m)

 0      1      2      3      4

 1      2      3     −1   −2

 2      1     −1     0      0

 2      0      0     −1     1            

 1      2      0      0    −1

−1     1      2      0     0

 0     −1     1      2     0

 0      0     −1    1      2

▼
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y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n , , , ,0 1 2 3 4
m

m

m m 0

4

i

1 1 1

f

1 nN= = =U − =
==

^ h/ /
                                                          where, hn(m) = h((n − m))N

When n = 0 ; y1(0) = ∑ x1(m)ho(m) =   2  + 0  +  0  +  1  –  2  =   1

When n = 1 ; y1(0) = ∑ x1(m)h1(m) =   1 +  4  +  0  +  0  +  2  =   7              ( ) { 1, 7, 7, 1, 8}y n
1

` = − −

When n = 2 ; y1(2) = ∑ x1(m)h2(m) = –1 +  2  +  6  +  0 +   0   =   7

When n = 3 ; y1(3) = ∑ x1(m)h3(m) =   0  – 2  +  3  –  2 +  0   = – 1

When n = 4 ; y1(4) = ∑ x1(m)h4(m) =   0  + 0  –  3  –  1  –  4  = – 8

Convolution of Section 2

y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n , , , ,3 4 5 6 7
m

m

m m 3

7

i

2 2 2

f

2 nN= = =U − =
==

^ h/ /
                                                                        where, hn(m) = h((n - m))N

When n = 3 ; y2(3) = ∑ x2(m)h3(m) =  −2  + 0  +  0  –  4  +  5   =  –1

When n = 4 ; y2(4) = ∑ x2(m)h4(m) =  –1  –  4  +  0  +  0  –  5   = –10           ( ) { 1, , 7, , }y n 10 7 17
1

` = − − −
When n = 5 ; y2(5) = ∑ x2(m)h5(m) =   1  –  2  –  6  +  0  +   0   =  –7

When n = 6 ; y2(6) = ∑ x2(m)h6(m) =   0  +  2  –  3  +  8  +  0   =   7

When n = 7 ; y2(7) = ∑ x2(m)h7(m) =   0  + 0  +  3  +  4  +  10  =  17
                         

Convolution of Section 3

  ↑
  n = 0

m	 −4	     −3    −2	    −1		

x2(m)					   

h(m)					   

h(–m) = h0(m)	 0	      0      −1     1

h((3 – m))5 = h3(m)		                         0  		

h((4 – m))5 = h4(m)		                        		

h((5 – m))5 = h5(m)                             

h((6 – m))5 = h6(m)

h((7 – m))5 = h7(m)

 0      1      2      3     4       5      6       7

                        −1   −2     −3     4       5

 2      1     −1     0      0

 2                                  

 0     −1     1     2      0       0     −1      1

 0      0     −1    1      2       0      0     −1

         0      0     −1     1      2      0      0

                 0      0     −1     1      2      0

                         0      0     −1     1      2

 ↑
 n = 3

m	   −4	     −3    −2	     −1		

x3(m)					   

h(m)					   

h(–m) = h0(m)	   0	      0      −1      1

h((6 – m))5 = h6(m)		                            

h((7 – m))5 = h7(m)		                        		

h((8 – m))5 = h8(m)                             

h((9 – m))5 = h9(m)

h((10 – m))5 = h10(m)

 0      1      2      3     4       5      6       7       8        9       10

                                                 4       5       6        0        0        

 2      1     −1     0      0

 2                                  

                 0     0     −1      1      2      0        0      −1       1

                        0      0      −1     1      2        0        0      −1

                                0       0     −1      1       2        0        0

                                         0      0      −1      1        2        0

                                                 0       0      −1       1        2 



      Discrete Time Signal Processing1. 42

y (n) x (n) h(n) x (m) h (n m) x (m) h (m) ; n , , 8, 9, 106 7
m

m

m m 6

10

i

3 3 3

f

3 nN= = =U − =
==

^ h/ /
                                                                        where, hn(m) = h((n−m))N

When n = 6   ; y3(6)   =   ∑ x3(m)h6(m)  =   8  +  0  +  0  +  0  +  0     =  8

When n = 7   ; y3(7)   =   ∑ x3(m)h7(m)  =   4  +  10  +  0  +  0  +  0   = 14

When n = 8   ; y3(8)   =   ∑ x3(m)h8(m)  = −4  +  5  +  12  +  0  +   0  =  13

When n = 9   ; y3(9)   =   ∑ x3(m)h9(m)  =   0  −  5  +  6  +  0  +  0    =   1

When n = 10 ; y3(10) =   ∑ x3(m)h10(m) =   0  +  0  −  6  +  0  +  0   =  −6

To Combine the Output of Convolution of Each Section

It can be observed that the last N2–1 samples in an output sequence overlaps with the first N2–1 samples 
of next the output sequence. In overlap save method, the overall output is obtained by combining the outputs of 
convolution of all the sections. While combining the outputs, the overlapped first N2–1 samples of every output 
sequence is discarded and the remaining samples are simply saved as samples of y(n) as shown in the following table.

           ∴ y(n) = x(n) ) h(n) = { ×, ×, 7, –1, –8, –7, 7, 17, 13, 1, –6}

Note:   Here y(n) is linear convolution of x(n) and h(n). It can be observed that the results of both the methods are 
                    same except the first N2 – 1 samples.

1.2   Concept of Frequency in Signals

1.2.1  Concept of Frequency in Continuous Time Signals 

	 In the waveform of periodic continuous time signals, the waveshape repeats with respect to time. 
The number of identical waveshape or pattern in one second is called frequency. A pattern of waveform is 
called cycle. Therefore, the unit of frequency is cycles per second or Hertz(Hz). The time for one cycle of 
waveform is called period. The unit of period is seconds. Therefore, the concept of frequency is directly 
related to concept of time and frequency has the dimension of inverse time. 

The complex exponential continuous time signal is the generalized periodic signal.

The complex exponential signal is defined as,

( )x t Ae Aej t j Ft2= =zX + r z+^ ^h h  

       where,   

		        A  =  Amplitude 

                       Ω  =  Angular frequency in rad/second
		        F  =  Frequency in cycles/seconds
                       T  =  F

1  = Period (or Time period) in seconds
                       φ   =  Phase in radians per seconds

n	 0	 1	  2	         3          4        5	         6         7	        8        9       10

y1(n)	 1	 7	          7        −1        −8

y2(n)			                                    10       −7                

y3(n)				                                               8	                 13        1       -6

y(n)            ×           ×         7         −1        −8      −7        7       17      13        1       −6      

   −1   17

  14     1      −6

     7

      ( ) { ,1 , ,1, }y n 8 4 13 6
1

` = −
 ↑

 n = 6

Complex plane
Im

A

�t

Real

Fig 1.28: Complex exponential signal.
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The complex exponential signal can be represented in a complex plane by a rotating vector, which 
rotates with a constant angular velocity of Ω rad/second.

The complex exponential signal can be resolved into real and imaginary parts as shown below:

( )x t Ae j t= zX +^ h

        ( ) ( )cos sinA t jA tφ φΩ Ω= + + +

∴ ( )cosA t φΩ +   =   Real part of x(t)

           ( )sinA t φΩ +    =   Imaginary part of x(t)

From the above equation, we can say that a complex exponential signal is the vector sum of two 
sinusoidal signals of the form cos tW  and sin tW .

Sinusoidal Signal

Case (i):  Cosinusoidal Signal 

The cosinusoidal signal is defined as, 
x(t) = A cos(Ωt + φ)

      When    φ  =  0,                x(t)  = A cosΩt
When    φ  =  Positive,     x(t)  = A cos(Ωt + φ)
When    φ  =  Negative,   x(t) = A cos(Ωt – φ)

Case (ii):  Sinusoidal Signal

The sinusoidal signal is defined as, 
x(t) = A sin(Ωt + φ)

      When    φ  = 0,              x(t) = A sinΩt
When    φ  = Positive,    x(t) = A sin(Ωt + φ)
When    φ  = Negative,  x(t) = A sin(Ωt – φ)

0

x(t)

A

�A

x(t)

� �
�

� � Positive

t

t

t
�
�

x(t) � � Negative

Fig 1.29: Cosinusoidal signal.
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� �
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Fig 1.30: Sinusoidal signal.
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Properties of periodic continuous time signals

1.    For any value of F, the periodic signal, x(t) will satisfy the following relation, x(t + T) = x(t).
2.     Continuous time periodic time signals with different frequencies are distinct.
3.    Sinusoidal signal can be represented by sum of two complex exponential signal with positive  

                  and negative frequency as shown below: 

                   Asin Ωt = j
A e e2

j t j t-X X-^ h     ;      Acos Ωt = A e e2
j t j t+X X-^ h

    Therefore, the sinusoids are sum of two rotating phasors/vectors that rotate in opposite 
                 directions. The component with positive frequency rotate in anticlockwise directions and the  
                   component with negative frequency rotate in clockwise direction.

       Alternatively, when the real sine or cosine signal has to be represented in terms of complex  
	      exponential, then a signal with negative frequency is required. Here it should be understood  
	      that the signal with negative frequency is not a physically realizable signal, but it is required  
                   for mathematical representation of real signals in terms of complex exponential signals.

4.          Increase in frequency will result is increase in number of cycles per second. Therefore, frequency  
                       can be increased without limit and so range of frequency of continuous time signal is -∞ to +∞ 
                   (i.e, -∞ < F < +∞).

1.2.2  Concept of Frequency in Discrete Time Signals

Discrete time signals are sampled version of continuous time signals and uniformally sampled using 
a sampling time, Ts. During sampling, a part of signal is represented by a sample in a sampling time instant.
If there are N samples, in a period then each sample represents 

N
1 th

 part of the signal in a period. 
Therefore, the unit of discrete time frequency, f can be expressed as cycles/samples (or more appropriately,
fraction of a cycle/sample). Therefore, the unit of angular discrete time frequency, w is radian/sample. 
Here, w = 2pf.

The discrete time sinusoidal and their properties are discussed is Section 1.1.7.

1.3   Summary of Analysis and Synthesis Equation for FT and DTFT

1.3.1  Development of Fourier Transform from Fourier Series

The exponential form of Fourier series representation of a periodic signal is given by,

	  ( )x t c e jn t

n

n
0=

3

3
X

=-

+

/                                              			                      .....(1.20)

              where,  ( )c T x t e dt1

/

/

jn t

T

T

2

2

n
0= X-

-

#    				                     .....(1.21)

In the Fourier representation using equation (1.20), the cn for various values of n are the spectral 
components of the signal x(t), located at intervals of fundamental frequency Ω0. Therefore, the frequency 
spectrum is discrete in nature.

The Fourier representation of a signal using equation (1.20) is applicable for periodic signals. For 
Fourier representation of nonperiodic signals, let us consider that the fundamental period tends to infinity. 
When the fundamental period tends to infinity, the fundamental frequency Ω0 tends to zero or becomes 
very small. Since fundamental frequency Ω0 is very small, the spectral components lie very close to each 
other and so the frequency spectrum becomes continuous. 
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In order to obtain the Fourier representation of a nonperiodic signal let us consider that the 
fundamental frequency Ω0 is very small.

Let, Ω0 
 → ∆Ω

On replacing Ω0 by ∆Ω in equation (1.20) we get,

 ( )x t c e jn t

n

n=
3

3
TX

=-

+

/
On substituting for cn in the above equation from equation (1.21) (by taking τ as dummy variable 

for integration), we get,

 ( ) ( )x t T x e d e1

/

/

jn

T

T

jn t

n 2

2

τ τ=
3

3
T TxX X-

-=-

+

> H/ #                                                              .....(1.22)

We know that, ;F T T2 2 1
20 0

0`π π
π

Ω Ω= = =

,Since T
1

20 " T T
π

Ω Ω Ω=     						                      .....(1.23)

On substituting for T
1   from equation (1.23) in equation (1.22) we get,

( ) ( )x t x e d e2
/

/

jn

T

T

n

jn t

2

2

T
π

τ τΩ=
3

3
T TxX X-

-=-

+

> H/ #

      ( )x e d e2
1

/

/

jn

T

T

n

jn t

2

2

3
π

τ τ Ω=
3

3
T TxX X-

-=-

+

> H/ #

For nonperiodic signals, the fundamental period Τ tends to infinity. On letting limit Τ tends to infinity 
in the above equation we get, 

( ) ( )x t Lt x e d e2
1

/

/

T

jn

T

T

n

jn t

2

2

T
π

τ τ Ω=
"3

3

3
9 TxX X-

-=-

+

> H/ #

; ;When T d" " "3 TW W/ #  

  ( ) ( )x t x e d e d2
1 jn jn t`
π

τ τ Ω=
3

3

3

3

xX X

-

+

-

-

+

> H# #

   ( )X j e d2
1 jn t

π
Ω Ω=

3

3

X

-

+

# 					                                   .....(1.24)

, ( ) ( )where X j x e djnτ τΩ =
3

3

xX-

-

+

#       

        ( ) ( )X j x t e dtjn t` Ω =
3

3

X-

-

+

# 	  	    ....(1.25)

Equation (1.25) is Fourier transform of x(t) and equation (1.24) is inverse Fourier transform of x(t).

Analysis: Equation (1.25) extracts the frequency components of the signal, and  transformation using 
                equation (1.25) is also called analysis of the signal x(t). 

Synthesis: Equation (1.24) combines the frequency components of the signal and so the inverse 
                  transformation using equation (1.24) is also called synthesis of the signal x(t).

Since t is a dummy variable, 
change t to t.
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1.3.2  Development of Discrete Time Fourier Transform from Discrete Time Fourier Series

Let x(n)`  be a periodic sequence with period N. If the period N tends to infinity then the periodic 
sequence x(n)`  will become a nonperiodic sequence x(n).

( ) x(n)x n Lt
N

` =
"3

`

Let ck be Fourier coefficients of x(n)` . 

x(n) x(n)c N e Nc e1
n

N

N
j kn

n

N

N
j kn

0

1 2

0

1 2

k k&` = =
r r

=

- -

=

- -` `/ /

Since x(n)`  is periodic, for even values of N,  the summation index in the above equation can be 

changed from n N to N
2 1 2=− − +a k . (For odd values of N, the summation index is n N to N

2
1

2
1= − − + −

a k.

Note: The change of index is necessary to convert the signal to two sided signal.

x(n) x(n)Nc e e
n N

N

N
j kn

n N

N

j n

2
1

2 2

2
1

2

k
k` = =

r
~

=- -

+
-

=- -

+

-` `

a ak k

/ /                                                               .....(1.26)

	where,  N
k2

kω π=  

Let us define Nck as a function of  e j k~ .

( )X e Ncj
k` =~k                                                                        	  .....(1.27)

Now, using equation (1.26) equation (1.27) can be expressed as shown below. 

∴ ( ) x(n)X e ej

n N

N

j n

2
1

2

k
k=~ ~

=- -

+

-`

a k

/                                                                                         .....(1.28)                 

Let,  N 
 → ∞,  in equation (1.28).

Now x(n)`  → x(n),  ωk  → ω, and the summation index becomes − ∞  to  +∞.

Therefore, the equation (1.28) can be written as shown below: 

( ) ( )X e x n ej

n

j n
` =

3

3
~ ~

=-

+
-/

                                        			                        ....(1.29)            

 Equation (1.29) is called Fourier transform of x(n), which is used to represent nonperiodic discrete 
time signal (as a function of frequency, ω) in the frequency domain.

Consider the Fourier series representation of x(n)`  given below:

x(n) c e N
j kn

k

N 2

0

1

k=
r

=

-` /   
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Let us multiply and divide the above equation by N2p ,

 x(n) N
N c e2
2 N

j kn

k

N 2

0

1

k#π
π=

r

=

-` /   

   Nc e N2
1 2j n

k

N

0

1

k
k

π
π= ~

=

-

/      

         ( )X e e N2
1 2j

k

N
j

0

1
nk

π
π= ~ ~

=

-

k/                                            .....(1.30)

Let  N 
 → ∞,  in equation (1.30).

Now, x(n)`  →  x(n), ωk  → ω,  2π / N  → dω, and summation becomes integral with limits 0 to 2π.
Therefore, the equation (1.30) can be written as shown below. 

x n X e e d2
1 j j n

0

2

π
ω= ~

r

~
^ ah k#                                                                                               .....(1.31)

Equation (1.31) is called inverse Fourier transform of x(n), which is used to extract the discrete 
time signal from its frequency domain representation.
Analysis: Since equation (1.29) extracts the frequency components of discrete time signal, the 
	 transformation using equation (1.29) is also called analysis of discrete time  signal x(n). 

Synthesis: Since equation (1.31) integrates or combines the frequency components of discrete time 
                        signal, the inverse transformation using equation (1.31) is also called synthesis of discrete  
                  time signal x(n).

1.4   Frequency Domain Sampling

The discrete time Fourier transform of a non-periodic discrete time signal, x(n) is given by, 

( ) ( )X e x n e
n

j j n=
3

3

=-

+
~ ~-/                                                                                                       .....(1.32)

Here, X(ejw) is a complex function of discrete time frequency, w and both magnitude and phase of 
X(ejw) is periodic function of w, with periodicity of w = 0 to 2p (or w = -p to p).

Let us sample X(ejw) at N equally spaced frequency intervals in one period of X(ejw).

The N equally spaced frequency intervals can be obtained by replacing w by 
N
k2p  for k = 0, 1, 2, 

....., N - 1 in the period, w = 0 to 2p.

Let,  wk =  N
k2p    for   k = 0, 1, 2, ....., N - 1

Therefore, the frequency sampled version of X(ejw) can be expressed as shown in equation (1.33).  

( ) ( ) ( )X e X e x n e
N
k

N

j kn

n
2

2
j j

k

k= =
3

3

~ r ~

r

= =

-

=-

+
~ ~ /                                                                      .....(1.33)

The equation (1.33) consists of infinite number of summation of N-point frequency domain sequences 
for values of n in the range,  

n = mN to mN + N - 1, where m = - ∞ to + ∞

N
k2

kω π=

Using equation (1.27).
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When,  m = -2 ,      n = - 2N to  - 2N + N - 1 =  - 2N  to  - N - 1
When,  m = -1 ,      n = - N   to  - N + N - 1   =  - N    to  - 1
When,  m =   0 ,      n =    0    to     N - 1
When,  m =   1 ,      n =    N   to     N + N - 1   =       N   to   2 N - 1
When,  m =   2 ,      n =   2N  to     2N + N - 1 =    2N    to   3N - 1

Therefore, equation (1.33) can be expressed as shown below:

( ) ..... ( ) ( ) ( )X e x n e x n e x n eN

j nk

n N

N
N

j nk

n N

N

j nk

n

N2

2

1 21 2

0

1
j k = + + +

r r r
-

=-

- - -

=-

- -

=

-
~ / / /

                       ( ) ( ) .......x n e x n eN

j nk

n N

N
N

j nk

n N

N22 1 2

2

3 1

+ + +
r r

-

=

- -

=

-

/ /

             ( )x n e N

j nk

n mN

mN N

m

21

=
3

3 r
-

=

+ -

=-

+

//

             ( )x n mN e
( )

N

j n mN k

n

N

m

2

0

1

= −
3

3 r
-

-

=

-

=-

+

//

             ( )x n mN e eN

j nk

n

N

m

2

0

1
j mk2= −

3

3 r
-

=

-

=-

+
r//

                               ( )x n mN e N

j nk

n

N

m

2

0

1

= −
3

3 r
-

=

-

=-

+

//

             ( )x n mN e N

j nk

mn

N 2

0

1

= −
3

3 r
-

=-

+

=

-

//   

              ( )x n e N

j nk

n

N 2

0

1

p=
r

-

=

-

/                                                                                               .....(1.34)

         where,   ( ) ( )x n x n mN
m

p = −
3

3

=-

+

/
The signal xp(n) is periodic extension of x(n) with period N samples.

Reconstruction of the periodic signal xp(n)

The Fourier series representation of xp(n) is given by, 

( ) ; 0,1, 2, ....., 1x n c e n NN

j kn

k

N 2

0

1

p k= = −
r

=

-

/                                                             .....(1.35)

          where, ck = Fourier coefficient

                          ( ) ; 0,1, 2, ....., 1N x n e k N1 N

j kn

n

N 2

0

1

p= = −
r

-

=

-

/    

                          ( )N X e
1 j k= ~                                                  ....(1.36)

Using equation (1.36) in equation (1.35) the Fourier series representation of xp(n) is given by,

( ) ( )x n N X e e1 N

j kn

k

N 2

0

1

p
j k=

r

=

-
~/                                                                                            .....(1.37)

Let,  n = n - mN
∴ mN = 0

Since m and k are integres 
       ej2pmk = 1.

Interchanging order 
of summation.

Using equation (1.34).
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The equation (1.37) can be used to recover (or reconstruct) the time domain discrete time signal 
x(n) from the frequency domain sampled version of the signal ( )X e j k~ . The recovered signal xp(n) is 
periodic extension of x(n).

The recovered signal xp(n) will be exactly represent the periodic extension of x(n), only if the 
frequency domain signal is sampled at sufficient number of frequency intervals. Here, N is the number 
samples of frequency domain signals. Let, L be the length of original discrete time signal, x(n).

  Now, the value of N should be greater than or equal to L in order to avoid time domain aliasing 
in the reconstructed signal xp(n). An example of time domain aliasing is shown in Fig 1.31 when value of 
N is less than L.

Consider the discrete time signal x(n) and its periodic extension xp(n) shown in Fig 1.31. Here, the 
length of the sequence, L = 5. The periodic extension of x(n) for various values of N are shown in Figs 
1.31b, c and d. 

From the periodic extension xp1(n) and xp2(n) the original signal x(n) can be obtained from one 
period of the periodic extension but in the periodic extension xp3(n), the original signal x(n) cannot be 
obtained from one period of periodic extension. In Fig 1.31d, the samples of higher value of L appear in 
the position of lower value of L and this is called time aliasing.

Conclusion: Frequency domain sampling of a discrete time signal of length, L should be made at 
sufficient number of frequency intervals, N. Such that N ≥ L in order to exactly recover the samples of 
x(n) from the frequency sampled version of the signal. This forms a condition for computing DFT.   

1.5   Discrete Fourier Transform (DFT)

1.5.1  Deriving DFT from DTFT

The frequency domain representation of a discrete time signal obtained using discrete time Fourier 
transform (DTFT) will be a continuous and periodic function of ω, with periodicity of 2π. In order to obtain 
discrete function of ω, the DTFT can be sampled at sufficient number of frequency intervals.

x n� �

0 n

Fig a: Discrete time signal of length,L.

L = 5
x np1� �

0 n

Fig b: Periodic extension of x(n) when N = L.

N = 5
N = L

x np2� �

0 n

Fig c: Periodic extension of x(n) when N > L.

N = 8, N > L x np3� �

0 n

Fig d: Periodic extension of x(n) when N < L.

N = 3, N < L

Fig 1.31: Discrete time signal x(n) and periodic extension x (n).p
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Let, X(ejω) be discrete time Fourier transform of the discrete time signal x(n). The discrete Fourier 
transform (DFT) of x(n) is obtained by sampling one period of the discrete time Fourier transform X(ejω) 
at a finite number of frequency points. 

The frequency domain sampling is conventionally performed at N equally spaced frequency points 
in the period, 0 ≤ ω ≤ 2π. The sampling frequency points are denoted as ωk and they are given by,

           ; 0,1, 2, ......, 1N
k for k N2

kω
π= = −

Now, the DFT is a sequence consisting of N-samples of DTFT. Let the samples be denoted by X(k) 
for k = 0, 1, 2, ......, N − 1. Therefore, the sampling of X(ejω) is mathematically expressed as,

( ) ; 0,1, 2, ......., 1X k e for k N

N
k2

j= = −
~ r=

~X^ h 		           	                  ...(1.38)	
	     	

The DFT sequence starts at k = 0, corresponding to ω = 0 but does not include k = N, corresponding 
to ω = 2π, (since the sample at ω = 0 is same as the sample at ω = 2π). Generally, the DFT is defined along 
with the number of samples and is called N-point DFT. The number of samples N for a finite duration 
sequence x(n) of length L should be such that N ≥ L, in order to avoid aliasing of the frequency spectrum.

The sampling of Fourier transform of a sequence to get DFT is shown in Example 1.1. To calculate 
DFT of a sequence it is not necessary to compute the Fourier transform, since the DFT can be directly 
computed using the definition of DFT as given by equation (1.6).

1.5.2  Definition of Discrete Fourier Transform (DFT)

	 Let,     x(n)  =  Discrete time signal of length L  
		          X(k) =  DFT of x(n)

Now, the N-point DFT of x(n), where N ≥ L, is defined as,

             ( ) ( ) ; 0,1, 2, ......., 1X k x n e for k NN
j kn

n

N 2

0

1

= = −
r-

=

-

/ 		                    .....(1.39)            

Symbolically, the N-point DFT of x(n) can be expressed as, 

DFT {x(n)} 

                   where, DFT is the operator that represents discrete Fourier transform.

           DFT ( ) ( ) ( ) ; 0,1, 2, ......., 1x n X k x n e for k NN
j kn

n

N 2

0

1

` = = = −
r-

=

-

" , /

Since X(k) is a sequence consisting of  N-complex numbers for k = 0, 1, 2, ......, N − 1, the DFT of 
x(n) can be expressed as a sequence as shown below:

 ( ) ( ), ( ), ( ), ( ), ......., ( )X k X X X X X N0 1 2 3 1= −" ,

1.5.3  Frequency Spectrum using DFT

X(k) is a discrete function of frequency of discrete time signal ω and so it is also called discrete 
frequency spectrum (or signal spectrum) of the discrete time signal x(n).
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X(k) is a complex valued function of k and so it can be expressed in rectangular form as, 

 X(k) = Xr(k) + jXi(k)                                                                                  

where, Xr(k)  =  Real part of X(k)
  Xi(k)   =  Imaginary part of X(k)

Magnitude function (Magnitude spectrum),|X(k)|: It is defined as,

 Magnitude spectrum, X(k) |X(k) X (k)*=

			   where X*(k) is complex conjugate of X(k)

Alternatively, ( ) ( ) ( ) ( ) ( ) ( ) ( )X k X k X k X k jX k X k jX k2 *
r i r i= = + −6 6@ @

( ) ( )X k X kr i
2 2= +

( ) ( ) ( )X k X k X kr i
2 2` = +

Phase function (Phase spectrum), +X(k): It is defined as,

Phase spectrum, (k) Arg[X(k)] tan
X (k)
X (k)X 1

r

i+ = = - ; E

Since X(k) is a sequence consisting of   N-complex numbers for k = 0, 1, 2, ........., N − 1, the magnitude 
and phase spectrum of  X(k) can be expressed as a sequence as shown below:

Magnitude sequence, ( ) ( ) , ( ) , ( ) , ....., ( )X k X X X X N0 1 2 1= −" ,

Phase sequence, ( ) ( ), ( ), ( ), ....., ( )X k X X X X N0 1 2 1+ + + + += −" ,

The magnitude and phase sequence can be sketched graphically as a function of k.

Magnitude spectrum: The plot of samples of magnitude sequence versus k is called magnitude spectrum.  

Phase spectrum: The plot of samples of phase sequence versus k is called phase spectrum. 

Frequency spectrum: In general, both magnitude and phase spectrum are called frequency spectrum.  

1.5.4  Inverse DFT

Let,   x(n)  =  Discrete time signal 

		       X(k)  =  N-point DFT of x(n) 

The inverse DFT of the sequence X(k) of length N is defined as,

( ) ( ) ; 0,1, 2, ......., 1x n N X k e for n N1 N
j kn

k

N 2

0

1

= = −
r

=

-

/                                            .....(1.40)                                                                                                

Symbolically the inverse DFT of x(n) can be expressed as,  

DFT −1{X(k)} 

where, DFT −1 is the operator that represents inverse DFT.

X(k) X(k) X (k)2 *=
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DFT ( ) ( ) ( ) ; 0,1, 2, ......., 1X k x n N X k e for n N1 N
j kn

k

N 2

0

1
1 = = = −

r

=

-
- " , /

We also refer to x(n) and X(k) as a DFT pair and this relation is expressed as,

( ) ( )x n X k
DFT

DFT
1-

1.5.5  Relation between DFT and Z-Transform

The Z-transform of N-point sequence x(n) is given by,

Z ( ) ( ) ( )x n X z x n z
n

N

0

1
n= =

=

-
-" , /

Let us evaluate  X(z) at N equally spaced points on unit circle, i.e., at z e N
j k2

=
r

Note: Since, 1 ,e and e N
k2

N
j k

N
j k2 2

+ π= =
r r

the term,  z e N
j k2

=
r

  ,  for  k = 0, 1, 2, 3, ......., N - 1

represents N equally spaced points on the unit circle in the z-plane.

( ) ( ) ( )X z x n z x n e
n

N
N
j kn

n

N

0

1 2

0

1

N

j k n
N

j k2 2
` = =

r

=

- -

=

-
r r-

z e z e= = // 		  .....(1.41)

By the definition of N-point DFT we get,

( ) ( )X k x n e N
j kn

n

N 2

0

1

=
r-

=

-

/ 		  .....(1.42)

From equations (1.41) and (1.42) we can say that,

( )X k
z e N

j k2
=

=

r
( )X z 	                                                                             .....(1.43)

From equation (1.43), we can conclude that the N-point DFT of a finite duration sequence can be 
obtained from the Z-transform of the sequence by evaluating the Z-transform of the sequence at N equally 
spaced points around the unit circle. Since the evaluation is performed on unit circle, the ROC of X(z) 
should include the unit circle.

1.5.6  Linear Convolution using DFT

Let,    x(n) = N1-point sequence  
            h(n) = N2-point sequence
            y(n) = Sequence obtained by linear convolution of x(n) and h(n).
The linear convolution is defined as,
	 y(n) = x(n) h(n) h(n) x(n)=) )  

where, x(n) h(n) x(m) h(n m)
m

= -
3

3+

=-

) / 				    

The DFT supports only circular convolution and so the linear convolution of above equation has to 
be computed via circular convolution. Since x(n) is N1-point sequence and h(n) is N2-point sequence, the 
linear convolution of  x(n) and h(n) will generate y(n) of size N1 + N2 − 1. 
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Therefore, in order to perform linear convolution via circular convolution, the x(n) and h(n) 
should be converted to N1 + N2 − 1 point sequences by appending zeros. Now the circular convolution of  
N1 + N2 − 1 point sequences x(n) and h(n) will give the same result as that obtained by linear convolution.

Example 1.6
Compute 4-point DFT and 8-point DFT of causal three sample sequence given by,

( ) ;

;

x n n

else
3
1 0 2

0

# #=

=
Solution

By the definition of N-point DFT, the kth complex coefficient of X(k), for 0 ≤ k ≤ N – 1, is given by,

X(k) x(n) e N
j2 kn

n 0

N 1

=
=

-- r/

a)  4-point DFT (`  N = 4)

X(k) x(n) e x(n) e x(0) e x(1) e x(2) e ( )x e34
j2 kn

n 0

4 1

n 0

3
0 2

j k
j k

j k

2

3

2
j kn

= = = + + +
−

=

−

=

−
−

r r
r

r-− r/ /

 3
1

3
1 e

3
1 e

3
1 1 cos

2
k jsin

2
k cos k jsin k2

j k j k − + −π π π π= + + = +
− −r

r ; E

For 4-point DFT,  X(k) has to be evaluated for k = 0, 1, 2, 3.

hen k 0 ; X(0)
3
1 1 cos0 jsin0 cos0 jsin0W = = + − + −6 @

 3
1 1 1 j0 1 j0 1 1 0+= + − + − = =6 @

 When k 1 ; X(1)
3
1 1 cos

2
jsin

2
cos jsinπ π π π= = + − + −8 B

3
1 1 0 j 1 j0 j

3
1

3
1

2
0.333 0.5+ +π π= + − − − = − = − = −6 @

When k 2 ; X(2)
3
1 1 cos jsin cos2 jsin2π π π π= = + − + −6 @

 3
1 1 1 j0 1 j0

3
1 0.333 0+= − − + − = =6 @

When k 3 ; X(3)
3
1 1 cos

2
3 jsin

2
3 cos3 jsin3π π π π= = + − + −8 B

 3
1 1 0 j 1 j0 j

3
1

3
1

2
0.333 0.5+ +π π= + + − − = = =6 @

 `   The 4-point DFT sequence X(k) is given by, 

X(k) 1 0, 0.333 0.5 , 0.333 0, 0.333 0.5= + + + +π π−" ,

`   Magnitude Function, X(k) 1, 0.333, 0.333, 0.333= " ,

 Phase Function, ( ) 0, 0.5 , 0, 0.5X k+ π π= −" ,

b)  8-point DFT  (`N = 8)

X(k) x(n) e x(n) e x(0) e x(1) e x(2) e8
j2 kn

n 0

8 1
4
j kn

n 0

7
0

4
j k

2
j k

= = = + +
=

r r r r-

=

- - - -/ /

3
1

3
1 e

3
1 e

3
1 1 cos

4
k jsin

4
k cos

2
k jsin

2
k

4
j k

2
j k π π π π= + + = + − + −

r r- -

; E

cos sine jj !θ θ=! i

Phase angles are in radians.

( ) 0 ; 3( ) ( ) ( ) , x n nx x x0 1 2 3
1 $== = =

( ) ( ) ( ) , ( )x x x x0 1 2 3
1 3 0= = = =
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For 8-point DFT,  X(k) has to be  evaluated for k = 0, 1, 2, 3, 4, 5, 6, 7.

hen k 0 ; X(0)
3
1 1 cos0 jsin0 cos0 jsin0W = = + − + −6 @

   3
1 1 1 j0 1 j0 1 1 0+= + − + − = =^ h

hen k 1 ; X(1)
3
1 1 cos

4
jsin

4
cos

2
jsin

2
W π π π π= = + − + −8 B

   . . .j j0 333 1 0 707 0 707 0 1= + − + −^ h   

  0.568 0.568 0.803 0.785 0.803 0.25j + + π= − = − = −

2 ; (2) cos sin cos sinWhen k X j j
3
1 1

4
2

4
2

2
2

2
2π π π π= = + − + −8 B

  . j j0 333 1 0 1 1 0= + − − −^ h     0.333 0.333 0.333 0.5j
2

+ +π π= − = − = −

hen k 3 ; X(3)
3
1 1 cos

4
3 jsin

4
3 cos

2
3 jsin

2
3W π π π π= = + − + −8 B

   . . .j j0 333 1 0 707 0 707 0 1= − − + +^ h   0.098 0.098 0.139 0.785 0.139 0.25j + + π= + = =

4 ; (4) cos sin cos sinWhen k X j j
3
1 1

4
4

4
4

2
4

2
4π π π π= = + − + −8 B

   0.333 0.333 0.333 0j j1 1 0 1 0 += − − + − = =^ h

5 ; (5) cos sin cos sinWhen k X j j
3
1 1

4
5

4
5

2
5

2
5π π π π= = + − + −8 B

    . . .j j0 333 1 0 707 0 707 0 1= − + + −^ h     

   0.098 0.098 0.139 0.785 0.139 0.25j + + π= − = − = −

=6 ; (6) cos sin cos sinWhen k X j j
3
1 1

4
6

4
6

2
6

2
6π π π π= + − + −8 B

  . j j0 333 1 0 1 1 0= + + − −^ h   

   0.333 0.333 0.333 0.5j
2

+ +π π= = =

7 ; (7) cos sin cos sinWhen k X j j
3
1 1

4
7

4
7

2
7

2
7π π π π= = + − + −8 B

  . . .j j0 333 1 0 707 0 707 0 1= + + + +^ h   

   0.568 0.568 0.803 0.785 0.803 0.25j + + π= + = =

\ The 8-point DFT sequence X(k) is given by, 

( ) , . . , . . , . . , . , . . ,
. . , . .

X k 1 0 0 803 0 25 0 333 0 5 0 139 0 25 0 333 0 0 139 0 25
0 333 0 5 0 803 0 25
+ + + + + +

+ +

π π π π
π π

= − − −"

,

`  Magnitude Function, ( ) , . , . , . , . , . , . , .X k 1 0 803 0 333 0 139 0 333 0 139 0 333 0 803= " ,

Phase Function, ( ) , . , . , . , , . , . , .X k 0 0 25 0 5 0 25 0 0 25 0 5 0 25+ π π π π π π= − − −" ,

The magnitude spectrum of X(k) is shown in Figs 1, 2 and 3 for N = 4, N = 8 and N = 16, respectively. The 
curve shown in a dotted line is the sketch of magnitude function of X(ejw) for w in the range 0 to 2π. Here it is observed 
that the magnitude of DFT coefficients are samples of magnitude function of X(ejw).

The phase spectrum of X(k) is shown in Figs 4, 5 and 6 for N = 4, N = 8 and N = 16, respectively. The curve 
shown in a dotted line is the sketch of phase function of X(ejw) for w in the range 0 to 2π. Here it is observed that the 
phase of the DFT coefficients are samples of phase function of X(ejw).

Phase angles are in radians.

cos sine jj !θ θ=! i

. .0 785 0 25#π π π=
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Example 1.7
Compute the DFT of the sequence, x(n) = {0, 1, 2, 3}. Sketch the magnitude and phase spectrum.

Solution

By the definition of DFT,  the 4-point DFT is given by,

( ) ( ) ( )X k x n e x n e4
j2 kn

n 0

4 1
2
j kn

n 0

3
= =

−

=

− −

=

r r

/ /

 x(0) e x(1) e x(2) x(3) ee0 2
j k

j k 2
j3 k

= + + +
-

-
-r

r
r

 e e e0 2 3
j k

j k
j k

2 3

3

= + + +
r

r
r-

-
-

 2cos sin cos sin cos sink j k k j k k j k
2 2

3
2
3

2
3π π π π π π= − + − + −c ^ cm h m

X k( )

1.0

0.8

0.6

0.4

0.2

0
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Magnitude spectrum of X(k) for N=4.Fig 1:

X k( )

Fig 2: Magnitude spectrum of X(k) for N=8.
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Fig 3: Magnitude spectrum of X(k) for N=16
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Fig 4: Phase spectrum of X(k) for N=4.
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Fig 5: Phase spectrum of X(k) for N=8.
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Fig 6: Phase spectrum of X(k) for N=16.
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Here, x(n) is 4-point sequence, 

∴ compute 4-point DFT

x(0) = 0, x(1) = 1, x(2) = 2, x(3) = 3  

cos sine jj !θ θ=! i
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0 ; (0) 2 3cos sin cos sin cos sinWhen k X j j j0 0 0 0 0 0= = − + − + +^ ^ ^h h h

 2 3j j j1 0 1 0 1 0= − + − + −^ ^ ^h h h

 6 6 0+= =

 1 ; (1) cos sin cos sin cos sinWhen k X j j
2 2

2 3
2
3

2
3π π π π π π= = − + − + −` ^ `j h j

 2 3j j j j0 1 1 0 0 1 2 2= − + − − + + = − +^ ^ ^h h h

 . . . .2 8 135 2 8 135
180

2 8 0 75o o

o
#+ + +π π= = =

2 ; (2) cos sin cos sin cos sinWhen k X j j j
2
2

2
2 2 2 2 3

2
6

2
6π π π π π π= = − + − + −` ^ `j h j

 2 3j j j1 0 1 0 1 0 2= − − + − + − + = −^ ^ ^h h h

 2 1 2 1 280 80
180

o o

o
#+ + +π π= = =

3 ; (3) cos sin cos sin cos sinwhen k X j j j
2
3

2
3 2 3 3 3

2
9

2
9π π π π π π= = − − − + −` ^ `j h j

2 3 2j j j j0 1 1 0 0 1 2= + + − − + − = − −^ ^ ^h h h

2. 2. 1 2. .8 135 8 35
180

8 0 75o o

o
#+ + +π π= − = − = −

 ∴ X(k) = { 6 ∠0,   2.8∠0.75π,   2 ∠π,   2.8∠-0.75π}

	 Magnitude Spectrum,   |X(k)| = { 6,   2.8,   2,   2.8 }  

          Phase Spectrum,          ∠X(k) = { 0,   0.75π,   π,   -0.75π }

Note: When  k = 4,  X(4) = 2 3cos sin cos sin cos sinj j j
2
4

2
4 4 4

2
12

2
12π π π π π π− − − + −` ^ `j h j

          2 3j j j1 0 1 0 1 0 6 6 0+= − + − + − = =^ ^ ^h h h

Phase angles are in radians.
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Fig 1: Magnitude spectrum.
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Example 1.8
Compute the DFT of the sequence, x(n) = {0, 1, 2, 1}. Sketch the magnitude and phase spectrum.

Solution

The given signal x(n) is 4-point signal and so, let us compute 4-point DFT.

By the definition of DFT,  the 4-point DFT is given by,

( ) ( ) ( )X k x n e x n e4
j2 kn

n 0

4 1
2
j kn

n 0

3
= =

−

=

− −

=

r r

/ /

  x(0) e x(1) e x(2) e x(3) e 0 e 2 e e0 2
j k

j k 2
j3 k

2
j k

2
j3 k

j k
= + + + = + + +

-
-

- - -r
r

r r r
- r

 
sin cos sin cos sincos k j k k j k k j k

2 2
2

2
3

2
3π π π π π π= − + − + −^ h

 
cos cos cos sin sink k k j k k

2
2

2
3

2 2
3π π π π π= + + − +c cm m

0 ; (0) cos cos cos sin sinWhen k X j0 2 0 0 0 0= = + + − +^ ^h h

 4 4 0j1 2 1 0 0 += + + − + = =^ ^h h

 1 ; (1) cos cos cos sin sinWhen k X j
2

2
2
3

2 2
3π π π π π= = + + − +` `j j

 2 2 180 2j0 2 0 1 1 + + π= − + − − = − = = −c^ ^h h

2 ; (2) cos cos cos sin sinWhen k X j2 2 3 3π π π π π= = + + − +^ ^h h

0j1 2 1 0 0 0+= − + − − + =^ ^h h

3 ; (3) cos cos cos sin sinWhen k X j
2
3 2 3

2
9

2
3

2
9π π π π π= = + + − +` `j j

2 2 180 2j0 2 0 1 1 + +π= − + − − + = − = =c^ ^h h

 ∴ X(k) = { 4 ∠0,   2∠-π,   0∠0,   2∠π }

        Magnitude Spectrum,   |X(k)| = { 4,   2,   0,   2 }  

      Phase Spectrum,          ∠X(k) = { 0,   -π,   0,   π }

Note:   When  k = 4,  X(4) = cos cos cos sin sinj2 2 4 6 2 6π π π π π+ + − +^ ^h h

            0j1 2 1 0 0 4 4+= + + − + = =^ ^h h

Fig 1: Magnitude spectrum.
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1.6  Properties of DFT

1.6.1  Periodicity

If a sequence x(n) is periodic with periodicity of N samples, then N-point DFT, X(k) is also periodic 
with a periodicity of N samples.

Hence, if x(n) and X(k) are N point DFT pair then,

x(n + N) = x(n)     ;   for all n                                                                       
X( k + N) = X(k)  ;   for all k                                                                      

Proof:

By definition of DFT, the (k + N)th coefficient of X(k) is given by,

( ) ( ) ( )X k N x n e x n e eN
j2 n(k N)

n 0

N 1
N
j2 nk

n 0

N 1
N
j2 nN

+ = =
− + − −r r r

=

-

=

-

/ /

 ( ) ( )x n e e x n eN
j2 nk

n 0

N 1
N
j2 nk

n 0

N 1
j2 n= =

− −r r

=

-

=

-
− r/ /

= X(k)

1.6.2  Symmetry

Let x(n) be a complex valued discrete time signal of length, N. Now, x(n) can be expressed as sum 
of two sequences as shown in equation (1.44).

x(n) = xr(n) + jxi(n)    ;    for n = 0, 1, 2, ....., N - 1                                                         .....(1.44)

where,  xr(n)  =  Sequence consisting of real parts of x(n)
	                           xi(n)  =  Sequence consisting of imaginary parts of x(n)

Let,   X(k) = DFT{x(n)}
Now by definition of N-point DFT,

( ) ( ) ; , , , ......,X k x n e for k N0 1 2 1N

j nk

n

N 2

0

1

= = −
r

-

=

-

/  

                     ( ) ( )x n jx n e N

j nk

n

N 2

0

1

r i= +
r

-

=

-

^ h/

                     ( ) ( ) cos sinx n jx n N
nk j N

nk2 2
n

N

0

1

r i

π π= + −
=

-

^ ah k/

                     ( ) ( ) ( ) ( )cos sin cos sinx n N
nk jx n N

nk jx n N
nk x n N

nk2 2 2 2
n

N

0

1

r r i i

π π π π= − + +
=

-

a k/

                                ( ) ( )cos sinx n N
nk x n N

nk2 2
n

N

0

1

r i

π π= +
=

-

a k/  

                                                         ( ) ( )sin cosj x n N
nk x n N

nk2 2
n

N

0

1

r i

π π− −
=

-

a k/                   .....(1.45)

                     = Xr(k) + jXi(k)    ;    for  k = 0, 1, 2, ......, N - 1

where,  Xr(k) = Sequence consisting of real parts of X(k)

	                      Xi(k) = Sequence consisting of imaginary parts of X(k)

for integer n, e-j2pn  = 1.

Using definition of DFT.

Using equation (1.44).

e-jθ = cos θ - jsin θ
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Here,  ( ) ( ) ( )cos sinX k x n N
nk x n N

nk2 2
n

N

0

1

r r i

π π= +
=

-

a k/                                                          .....(1.46)

          ( ) ( ) ( )sin cosX k x n N
nk x n N

nk2 2
n

N

0

1

i r i

π π= − −
=

-

a k/                                                           .....(1.47)

Case (i):    x(n) is real-valued signal (x(n) = xr(n))

Now, xi(n) = 0

On substituting xi(n) = 0, in equation (1.45) we get, 

( ) ( ) ( )cos sinX k x n N
nk j x n N

nk2 2
n

N

n

N

0

1

0

1

r r

π π= −
=

-

=

-

/ /

                     ( ) ( )cos sinx n N
nk j x n N

nk2 2
n

N

n

N

0

1

0

1π π= −
=

-

=

-

/ /                                                    .....(1.48)

          ( ) cos sinx n N
nk j N

nk2 2
n

N

0

1 π π= −
=

-

a k/

                     ( )x n e N

j nk

n

N 2

0

1

=
r

-

=

-

/                                                                                              .....(1.49)

On substituting k = N - k in equation (1.49) we get, 

( )X n k x n e
( )

N

j n N k

n

N 2

0

1

− =
r

-
-

=

-

^ h /

                            ( )x n e eN

j nN

N

j nk

n

N 2 2

0

1

=
r r

-

=

-

/

                            ( )x n e N

j nk

n

N 2

0

1

=
r

=

-

/

                            ( )x n e N

j nk

n

N 2

0

1 *

=
r

-

=

-

c m/

                            = X*(k)

Also,  X(n - k) = X(-k) 

         ∴ X(-k) = X*(k)

From equation (1.49),

 ( ) ( )X k x n e N

j nk

n

N 2

0

1

=
r

-

=

-

/

                        
-

( )x n e
n

N
N

j nk

0

1
2

=
r

=

-

/  ( ) 1x n
n

N

0

1

#=
=

-

/

                       ( )x n
n

N

0

1

=
=

-

/

Similarly,  ( )X N k x n
n

N

0

1

− =
=

-

^ h /    and so    ( )X N k X k− =^ h  

xr(n) = x(n)

cos θ - jsin θ = e-jθ

Using equation (1.49).

Since, n is integer,

e e 1N

j nN
j n

2
2= =

r
r- .

e N

j nN2r
-  is a phase factor and its 

magnitude contribution is 1.

1e N

j nN2

=
!
r

.
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Since x(n) is real, from equation (1.49) we can say that the phase is contributed only by the term, e N

j nk2r
- .

( )X k e N
nk2N

j nk2

` + + π= = −
r

-

( ) ( )X k N
nk X k2` + +π− = = −

Also,    ( ) ( )X k N
nk X k2*` + +π= = −

Case (ii):    x(n) is real and even signal

Since x(n) is real and even, it will satisfy the condition,
x(n) = x(N - n)   ;    for   n = 0, 1, 2, ......, N - 1

Since x(n) is real, xi(n) = 0.

On substituting xi(n) = 0, in equation (1.45) we get,

( ) ( ) ( )cos sinX k x n N
nk j x n N

nk2 2
n

N

n

N

0

1

0

1

r r

π π= −
=

-

=

-

/ /

In the above equation, 
( ) ( )x n x nr =    -   even signal         cos N

nk2p                   -   even signal

sin N
nk2p          -   odd signal           ( ) cosx n N

nk2
r` p     -   even signal

( ) sinx n N
nk2

r` p     -   odd signal

( ) sinx n N
nk2 0

n

N

0

1

r` π =
=

-

/

( ) ( ) ; , , , ......,cosX k x n N
nk for k N2 0 1 2 1

n

N

0

1

` π= = −
=

-

/

From the above discussion we can say that, if x(n) is real and even then X(k) is purely real and even.
∴ X(k) = Xr(k)   and   Xi(k) = 0

Case (iii):   x(n) is real and odd signal

Since x(n) is real and odd, it will satisfy the condition,
x(n) = - x(N - n)   ;    for   n = 0, 1, 2, ......, N - 1

Since x(n) is real, xi(n) = 0.
On substituting xi(n) = 0, in equation (1.45) we get,

( ) ( ) ( )cos sinX k x n N
nk j x n N

nk2 2
n

N

n

N

0

1

0

1

r r

π π= −
=

-

=

-

/ /

In the above equation, 
( ) ( )x n x nr =     -   odd signal               sin N

nk2p             -   odd signal

cos N
nk2p           -   even signal	  ( ) sinx n N

nk2
r

p    -   even signal

Product of even and odd 
signal is an odd signal.

Sum of samples of one 
period of odd signal 
is zero.

Product of even signals 
is an even signal.
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( ) cosx n N
nk2

r` p    -   odd signal

( ) cosx n N
nk2 0

n

N

0

1

r` π =
=

-

/

( ) ( ) ; , , , ......,sinX k j x n N
nk for k N2 0 1 2 1

n

N

0

1

` π= − = −
=

-

/

From the above discussion we can say that, if x(n) is real and odd then X(k) is purely imaginary and odd.

∴ X(k) = - jXi(k)   and   Xr(k) = 0

Case (iv):    x(n) is purely imaginary signal (x(n) = jxi(n))

Now,   xr(n) = 0
On substituting xr(n) = 0, in equation (1.45) we get,

( ) ( ) ( ) ; , , , .....,sin cosX k x n N
nk j x n N

nk for k N2 2 0 1 2 1
n

N

n

N

0

1

0

1

i i

π π= + = −
=

-

=

-

/ /

                     = Xr(k) + jXi(k)                                                                                                     .....(1.50)

where,   Xr(k)  =  Real part of X(k) ( ) ; 0,1, 2, ....., 1sinx n N
nk for k N2

n

N

0

1

i

π= = −
=

-

/

                                 Xi(k)  =  Imaginary part of X(k) ( ) ; 0,1, 2, ....., 1cosx n N
nk for k N2

n

N

0

1

i

π= = −
=

-

/

If x(n) is purely imaginary and even signal then,  

xi(n)             -   even signal              cos N
nk2p                 -   even signal

sin N
nk2p     -   odd signal               ( ) cosx n N

nk2
i` p    -   even signal

( ) sinx n N
nk2

i` p    -  odd signal

( ) sinx n N
nk2 0

n

N

0

1

i` π =
=

-

/

( ) ( ) ( )cosX k j x n N
nk jX k2

n

N

0

1

i i` π= =
=

-

/

From the above discussion we can say that, if x(n) is imaginary and even then X(k) is purely  
imaginary and even.

If x(n) is purely imaginary and odd signal then,  

xi(n)            -   odd signal              sin N
nk2p                  -   odd signal

cos N
nk2p    -   even signal	        ( ) sinx n N

nk2
i` p     -   even signal

( ) cosx n N
nk2

i` p    -   odd signal

Product of odd and even 
signal is an odd signal.

Sum of samples of one 
period of odd signal 
is zero.

Product of even and odd 
signal is an odd signal.

Sum of samples of one 
period of odd signal 
is zero.

Product of odd and even 
signal is an odd signal.

Product of odd signals 
is an even signal.

Product of even signals 
is an even signal.

Product of odd signals 
is an even signal.
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 Let, n = m

 Let, n = p

 Using the equations 
 (1.51) and (1.52).

( ) cosx n N
nk2 0

n

N

0

1

i` π =
=

-

/

( ) ( ) sinX k x n N
nk2

n

N

0

1

i` π=
=

-

/  = Xr(k)

From the above discussion we can say that, if x(n) is imaginary and odd then X(k) is purely real 
and odd.

Note: The symmetry properties of DFT are summarized in Table 1.4.

1.6.3  Circular Convolution

The convolution property of  DFT says that the DFT of  circular convolution of two sequences is 
equivalent to the product of their individual DFTs. 

Let,    DFT{x1(n)} = X1(k) and DFT{x2(n)} = X2(k), then by convolution property,

 DFT{x1(n) U  x2(n)} = X1(k) X2(k)

Proof:

Let, x1(n) and x2(n) be N-point sequences. Now by definition of DFT,

( ) ( ) ( ) ; 0,1, 2, ......., 1X k x n e x m e for k NN
j2 kn

N
j2 km

m 0

N 1

n 0

N 1

1 11= = = −
− −r r

=

-

=

-

// 	 .....(1.51)

( ) ( ) ( ) ; 0,1, 2, ......., 1X k x n e x p e for k NN
j2 kn

N
j2 kp

p 0

N 1

n 0

N 1
22 2= = = −

− −r r

=

-

=

-

// 	 .....(1.52)

Consider the product X1(k) X2(k). The inverse DFT of the product is given by,

DFT ( ) ( ) ( ) ( )X k X k N X k X k e1 N
j2 kn

k 0

N 1
1

1 2 1 2=
r

=

-
-

" , /

  ( ) ( )N x m e x p e e1 N
j2 km

m 0

N 1

k 0

N 1
N
j2 kp

p 0

N 1
N

j2 kn

21=
− −r r r

=

-

=

-

=

-

= >G H// /

  ( ) ( )N x m x p e1 N
j2 k(n m p)

k 0

N 1

p 0

N 1

m 0

N 1
21=

− −r

=

-

=

-

=

-

/// 		  .....(1.53)

Consider the summation e N
j2 k(n m p)

k 0

N 1 − −

=

− r

/  in equation (1.53).

Let, n - m - p = qN, where q is an integer.

e e e N1N
j2 k(n m p)

k 0

N 1
N

j2 kqN

k 0

N 1 j2 q k

k 0

N 1
k

k 0

N 1
` = = = =

− −r r
r

=

-

=

-

=

-

=

-

^ h/ / / / 		  .....(1.54)

Consider the summation ( )x p
p 0

N 1

2
=

−

/  in equation (1.53).

Since, n - m - p = qN,  p = n - m - qN

( ) ( ) ( , ) (( ))modx p x n m qN x n m N x n m
p 0

N 1

m 0

N 1

m 0

N 1

m 0

N 1

2 2 2 2 N` = − − = − = −
=

−

=

−

=

−

=

−

/ / / /  		               .....(1.55)

Sum of samples of one 
period of odd signal 
is zero.

Since q is an integer, ej2pq = 1.
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Using the equations (1.54) and (1.55), equation (1.53) can be written as shown below:

DFT ( ) ( ) ( ) (( )) ( ) (( ))X k X k N x m x n m N x m x n m1
m 0

N 1

m 0

N 1

m 0

N 1
1

1 2 1 2 N 1 2 N= − = −
= =

−

=

−−
-

" , / //

    =  x1(n)  U   x2(n)

        `   X1(k) X2(k)  =  DFT{x1(n)  U   x2(n)}

1.6.4  Linearity

The linearity property of  DFT states that the DFT of a linear weighted combination of two or more 
signals is equal to the similar linear weighted combination of the DFT of individual signals.	

Let,    DFT{x1(n)} = X1(k)   and    DFT{x2(n)} = X2(k) then by linearity property,

          DFT{a1 x1(n) + a2 x2(n)} =  a1 X1(k)  + a2 X2(k) , where a1 and a2 are constants.

Proof:
By the definition of discrete Fourier transform,

DFT( ) ( ) ( )X k x n x n e
n 0

N 1
N

j kn2

1 1 1= =
=

r--

" , / 					     .....(1.56)

DFT( ) ( ) ( )X k x n x n e N
j2 kn

n 0

N 1

2 2 2= =
−

=

− r

" , / 					     .....(1.57)

DFT ( ) ( ) [ ( ) ( )]a x n a x n a x n a x n e N
j2 kn

n 0

N 1

1 1 2 2 1 1 2 2+ = +
− r

=

-

" , /

  ( ) ( )a x n e a x n eN
j2 kn

N
j2 kn

n 0

N 1

1 1 2 2= +
− −

=

− r r

; E/

  ( ) ( )a x n e a x n eN
j2 kn

N
j2 kn

n 0

N 1

n 0

N 1

1 1 2 2= +
− −r r

=

-

=

-

//

  ( ) ( )a X k a X k1 1 2 2= +

1.6.5  Circular Time Shift 

The circular time shift property of DFT says that if a discrete time signal is circularly shifted in time 
by m units, then its DFT is multiplied by e N

j km2r-

.

DFT DFT. ., ( ) ( ), (( )) ( )i e if x n X k then x n m X k e N
j km2

N= − =
r-

" ", ,

Proof:

DFT (( )) (( )) ( )x n m x n m e x p e
n 0

N 1

p 0

N 1 ( )

N

j kn

N

j k p m2 2

N N− = − =
r r

=

- -

=

- - +

" , / /

    ( )x p e e
p 0

N 1 N
j2 kp

N
j2 km

=
− −r r

=

-

/

    ( )x p e e
p 0

N 1
N
j2 kp

N
j2 km

=
− −r r

=

-

> H/

    ( )X k e N
j2 km

=
− r

Using equations (1.56) and (1.57).

Let p = n - m, ∴ n = p + m

Using definition of DFT.

Using definition of circular convolution.
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1.6.6  Time Reversal

The time reversal property of  DFT says that reversing the N-point sequence in time is equivalent 
to reversing the DFT sequence.

i.e.,  if,  DFT{x(n)} = X(k),  then DFT{x (N − n)} = X(N − k).	                                                                   

Proof:

eDFT ( ) ( ) ( )x N n x N n x m e
n 0

N 1

m 0

N 1
N
j2 kn

N
j2 k(N m)

− = − =
==

- -− − −r r

" , / /

 ( ) ( )x m e e x m e e
m 0

N 1
N
j2 kN

N
j2 km

m 0

N 1
N

j2 km
j2 k= =

r r r

=

- -

=

-
r-/ /

                                         ( ) ( )x m e x m e eN
j2 km

m 0

N 1

m 0

N 1
N

j2 km
j2 m= =

r r

=

-

=

-
r-/ /

                                         ( ) ( )x m e e x m e
m 0

N 1
N

j2 km
N

j2 mN

m 0

N 1
N

j2 m(N k)
= =

− −r r r

=

-

=

-

/ /

  ( )X N k= −

1.6.7  Conjugation 

Let, x(n) be a complex N-point discrete sequence and x*(n) be its conjugate sequence.

	 Now, if DFT{x(n)} = X(k), then DFT{x*(n)} = X*(N – k). 

Proof: 
DFT ( ) ( ) ( )x n x n e x n e

n 0

N 1

n 0

N 1
N
j2 kn

N
j2 kn

* *
*

= =
=

-

=

-− r r

= G" , / /    

  ( ) ( )x n e e x n e e
n 0

N 1

n 0

N 1
N

j2 kn
j2 n N

j2 kn
N
j2 nN* *

= =
=

-

=

- −r
r

r r
-= =G G/ /          

  ( ) ( ) ( )x n e X N k X N k
n 0

N 1
N

j2 n(N k) *
* *= = − = −

=

- − −r

= 6G @/                                   

1.6.8  Circular Frequency Shift

The circular frequency shift property of DFT says that if a discrete time signal is multiplied by 

e j
N
mn2r

, then its DFT is circularly shifted by m units. 

i.e., if,  DFT{x(n)} = X(k),  then  DFT{x(n) e j
N
mn2r

 } = X((k − m))N.

Proof:

DFT ( ) ( )x n e x n e e
n 0

N 1
N

j2 mn
N

j2 mn
N
j2 kn

=
=

- −r r r

" , /

 ( )x n e
n 0

N 1
N

j2 (k m)n

=
=

- − −r

/   (( ))X k m N= −

Let m = N - n ∴ n = N - m

Since m is an integer,e -j2pm = 1.

Since k is an integer,e -j2pk = 1.

Using definition of DFT.

e-j2pn = 1

Using definition of DFT.

Using definition of DFT.
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1.6.9  Multiplication 

The multiplication property of DFT says that the DFT of  product of  two discrete time sequences 
is equivalent to the circular convolution of the DFTs of the individual sequences scaled by a factor 1/N. 

i.e., if,  DFT{x(n)} = X(k),  then DFT{ x1(n) x2(n) }= ( ) ( )N X k X k1
1 2U6 @

Proof:

By definition of inverse DFT, 

( ) ( ) ( )x n N X k e N X m e1 1N
j2 kn

k 0

N 1
N

j2 mn

m 0

N 1

1 1 1= =
r r

=

-

=

-

/ / 				    .....(1.58)

By definition of  DFT,

DFT ( ) ( ) ( ) ( ) ( ) ( )x n x n x n x n e N X m e x n e1N
j2 kn

n 0

N 1
N

j2 mn

m 0

N 1

n 0

N 1
N
j2 kn

1 2 1 2 1 2= =
=

− −r r r

=

-

=

--

= G" , / //

     ( ) ( )N X m x n e e1
m 0

N 1
N
j2 kn

n 0

N 1
N

j2 mn

1 2=
− r r

=

-

=

-

= G/ /

     ( ) ( ) ( ) (( ))N X m x n e N X m X k m1 1
m 0

N 1
N

j2 (k m)n

n 0

N 1

m 0

N 1

1 2 1 2 N= = −
− −r

=

-

=

-

=

-

= G/ / /

     ( ) ( )N X k X k1
1 2U= 6 @

Note: The circular convolution of two N-point sequences x1(n) and x2(n) is defined as,

( ) ( ) ( ) (( ))x n x n x m x n m
m

N

0

1

N221 1U = −
=

-

/
 

1.6.10  Circular Correlation

The circular correlation of two sequences x(n) and y(n) is defined as,

N
( ) ( ) (( ))r m x n y n m

n

N

0

1
*= −

=

-

xy /
Let     DFT{x (n)} = X(k) and  DFT{y (n)} = Y(k),  then by correlation property,

DFT DFT( ) ( ) (( )) ( ) ( )r m x n y n m X k Y k
n

N

0

1
* *

xy N= − =
=

-

" ), 3/

Proof:

Let, x(n) and y(n) be N-point sequences. Now by definition of DFT,

( ) ( )X k x n e N
j2 kn

n 0

N 1
=

−

=

− r

/ 	 ;  for  k = 0, 1, 2, ......, N - 1			   .....(1.59)

( ) ( ) ( ) ; 0,1, 2, ......., 1Y k y n e y p e for k NN
j2 kn

N
j2 kp

p 0

N 1

n 0

N 1
= = = −

− −

=

−

=

− r r

// 		  .....(1.60)

Let, k = m

Using equation (1.58).

Using definition of circular convolution.

Rearranging the order of summation. 

Using definition of DFT.

  Refer equation (1.17). 

 Let, n = p
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Consider the product X(k) Y*(k). The inverse DFT of the product is given by,

DFT ( ) ( ) ( ) ( ) ( ) ( )X k Y k N X k Y k e N X k Y k e1 1N
j2 kn

k 0

N 1
N

j km

k

N 2

0

1
1 * * *= =

=

− r r

=

-
− " , / /

  ( ) ( )N x n e y p e e1
0

N 1

k 0

N 1
N
j2 kp

p 0

N 1
N

j kn

n

N

j km2 2*
=

=

−

=

− −

=

−r r r-

= =G G// /

  ( ) ( )N x n y p e1
p 0

N 1

0

N 1
N

j2 k(m n p)

k 0

N 1

n

*=
=

−

=

− − +

=

− r

// / 			   .....(1.61)

Consider the summation e N
j2 k(m n p)

k 0

N 1 − +

=

− r

/   in equation (1.61).

Let, m - n + p = qN, where q is an integer.

( )e e e N1N
j2 k(m n p)

k 0

N 1
N

j2 kqN

k 0

N 1
k

k 0

N 1
k

k 0

N 1
j q2` = = = =

+−

=

−

=

−

=

−

=

−r r
r/ / / / 		  .....(1.62)

Consider the summation ( )y p
p 0

N 1
*

=

−

/   in equation (1.61).

Since, m - n + p = qN,  p = n - m + qN

( ) ( ) ( , ) (( ))mody p y n m qN y n m N y n m
p 0

N 1

n 0

N 1

n 0

N 1

n 0

N 1
* * * *

N` = − + = − = −
=

−

=

−

=

−

=

−

/ / / / 	             .....(1.63)

Using the equations (1.62) and (1.63), equation (1.61) can be written as shown below:

 DFT ( ) ( ) ( ) (( ))X k Y k N x n y n m N1
n 0

N 1

0

N 1

n

1 * *
N= −

=

−

=

−
- " , //

   ( ) (( )) ( )x n y n m r m
0

N 1

n

*
N xy= − =

=

−

/

   DFT( ) ( ) ( )X k Y k r m*
xy` = $ .   

1.6.11  Parseval’s Relation

Let, DFT{x1(n)} = X1(k) and DFT{x2(n)} = X2(k) then by Parseval’s relation,

( ) ( ) ( ) ( )x n x n N X k X k1* *

k

N

n

N

1 1

0

1

0

1

2 2=
=

-

=

-

//
Proof: 

Let, x1(n) and x2(n) be N- point sequences.

Now by definition of  DFT,  ( ) ( )X k x n e N
j2 kn

n 0

N 1

1 1=
−

=

− r

/ 				    .....(1.64)

Now by definition of inverse DFT,  
j2 knr

( ) ( )x n N X k e1 N

k 0

N 1

2 2=
=

−

/ 	 .....(1.65)

 Using the equations 
 (1.59) and (1.60).

Since q is an integer, ej2pq = 1.

Using definition of circular convolution.
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Consider the right-hand side term of Parseval’s relation,

( ) ( ) ( ) ( )N X k X k N x n e X k1 1
k 0

N 1
N
j2 kn

n 0

N 1

k 0

N 1
* *

1 2 1 2=
=

− −

=

−

=

− r

= G/ //

 ( ) ( ) ( ) ( )x n N X k e x n N X k e1 1N
j2 kn

k 0

N 1

n 0

N 1
N

j2 kn

k 0

N 1

n 0

N 1
*

*

1 2 1 2= =
−

=

−

=

−

=

−

=

−r r

= =G G// //

 ( ) ( )x n x n
n 0

N 1
*

1 2=
=

−

/

Table 1.4: Properties of Discrete Fourier Transform (DFT)
 

Property Discrete Time Signal Discrete Fourier Transform

Linearity a1x1(n) + a2x2(n) a1X1(k) + a2X2(k)

Periodicity x(n + N) = x(n) X(k + N) = X(k)
Circular time shift x((n - m))N X(k) e N

j km2r-

Time reversal x(N - n) X(N - k)
Conjugation x*(n) X*(N - k)
Circular frequency shift

x(n) e N
j mn2r X((k - m))N

Multiplication x1(n) x2(n) ( ) ( )N X k X k1
1 2U6 @

Circular convolution
( ) ( ) ( ) (( ))x n x n x m x n m

m

N

0

1

21 N1 2U = −
=

-

/ X1(k) X2(k)

Circular correlation rxy ( )m ( ) (( ))x n y n m
n

N

0

1
*

N= −
=

-

/ X(k) Y*(k)

Symmetry of 
real signals

x(n) is real ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

X k X N k
X k X N k
X k X N k
X k X N k
X k X N k

*

i

r r

i

+ +

= −
= −
= − −
= −
= − −

Symmetry of 
real and even signal

x(n) is real and even 
x(n) = x(N - n)

X(k) = Xr(k) and Xi(k) = 0

Symmetry of 
real and odd signal

x(n) is real and odd
x(n) = - x(N - n)

X(k) = j Xi(k) and Xr(k) = 0

Parseval’s relation
( ) ( )x n x n*

n

N

0

1

1 2

=

-

/ ( ) ( )N X k X k1 *

k

N

0

1

1 2

=

-

/

Using equation (1.64).

Using equation (1.65).
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1.7  Linear Filtering using DFT

The response of an LTI system is given by linear convolution of input and impulse response of the 
system. A filter is basically an LTI system and so the response of a filter is given by the linear convolution 
of input and impulse response of the filter. 

Let,    x(n) = Input to filter  

            h(n) = Impulse response of the filter

            y(n) = Output or response of the filter

Now, the response or output of the filter y(n) is given by linear convolution of x(n) and h(n) as 
shown below:

Response, y(n) = x(n) h(n))  

where, x(n) h(n) x(m) h(n m)
m

= -
3

3+

=-

) / 				       .....(1.66)

The DFT supports only circular convolution and so the linear convolution of equation (1.66) has 
to be computed via circular convolution. If x(n) is N1-point sequence and h(n) is N2-point sequence, then 
linear convolution of  x(n) and h(n) will generate y(n) of size N1 + N2 − 1. 

Therefore, in order to perform linear convolution via circular convolution, the x(n) and h(n) 
should be converted to N1 + N2 − 1 point sequences by appending zeros. Now the circular convolution of  
N1 + N2 − 1 point sequences x(n) and h(n) will give the same result as that obtained by linear convolution.

Let, x(n) be N1-point sequence and h(n) be N2-point sequence. 

Let us convert x(n) and h(n) to N1 + N2 − 1 point sequences.

Let,    Y(k) = N1 + N2 − 1 point DFT of y(n)  

          X(k) = N1 + N2 − 1 point DFT of x(n)  

          H(k) = N1 + N2 − 1 point DFT of h(n) 

Now, by circular convolution theorem of DFT,

DFT{x(n) U  h(n)} = X(k) H(k)

On taking inverse DFT of the above equation we get,

x(n) U  h(n) = DFT 
–1 {X(k) H(k)}

Since, x(n) U  h(n) = y(n), the above equation can be written as,	

Response, y(n)  =  DFT 
–1{X(k) H(k)}					    .....(1.67)

From equation (1.67), we can say that the filter output or response y(n) is given by the inverse DFT 
of the product of X(k) and H(k). 

The following procedure can be followed to compute response of filter using DFT.
1.   Let x(n) be N1-point sequence and h(n) be N2-point sequence and so the response y(n) of the 

                 filter is N1 + N2 - 1 point sequence. Let, N1 + N2 - 1 = M.
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2.   Compute M-point DFT of x(n) to get X(k).
3.   Compute M-point DFT of h(n) to get H(k).
4.   Determine the product of X(k) and H(k). Let,  Y(k) = X(k) H(k).
5.   Take M-point inverse DFT of Y(k) to get y(n) which is the response of the filter.

1.7.1  Filtering Long Data Sequences

In real time applications the input sequence of the filter may be very long or continuous stream 
of data. In such cases, the filter response is computed by dividing the input into small blocks of data and 
the response of each block is computed separately. Then overall response is obtained by combining the 
individual responses. This concept is discussed in sectioned convolution in Section 1.1.15.

In digital computers, the computation of sectioned convolution is performed via DFT. In sectioned 
convolution via DFT, the computation of convolution of each section is performed by DFT and IDFT as 
discussed in Section 1.7. In DFT techniques, the procedure of dividing the input sequence into smaller 
sequence, converting the sequences to size of output sequence and combining the result of output sequences 
are same as that of sectioned convolution discussed in Section 1.1.15. The only difference is the convolution 
of each section is performed via DFT and so in DFT techniques also we have two methods of sectioned 
convolution: overlap add method and overlap save method. 

1.7.2  Overlap Add Method

In the overlap add method, the input sequence is divided into smaller sequences. Then linear 
convolution of each section of the input sequence and the filter impulse response sequence is performed. 
The overall filter output sequence is obtained by combining the output of the sectioned convolution.

Let, 	 N1 = Length of input sequence
	 N2 = Length of filter impulse response sequence

Let the input sequence be divided into sections of size N3 samples.

The linear convolution of each section with input sequence will produce an output sequence of 
size  N3 + N2 –1 samples. Hence the sections of input sequence and filter impulse response sequence are 
converted to size of output sequence by appending zeros in order to compute linear convolution via circular 
convolution. 

In this method the last N2 –1 samples of each output sequence overlap  with the first N2 –1 samples 
of the next section [i.e., there will be a region of N2 –1 samples over which the output sequence of qth 
convolution overlaps with the output sequence of (q +1)th convolution]. While combining the output 
sequences of the various sectioned convolutions, the corresponding samples of overlapped regions are 
added and the samples of non-overlapped regions are retained as such.

Fig 1.32: Overlapping of output sequence of sectioned convolution by overlap add method.
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1.7.3  Overlap Save Method

In the overlap save method, the sections of input sequences are converted to size of output sequence 
using samples of next or previous section in order to perform linear convolution via circular convolution. In 
this method, the input sequence is divided into smaller sequences. Each section of the input sequence and 
the impulse response sequence are converted to the size of the output sequence of sectioned convolution. 
The circular convolution of each section of the input sequence and the filter impulse response sequence is 
performed. The overall output sequence is obtained by combining the outputs of the sectioned convolution.

Let,	 N1 = Length of input sequence
	 N2 = Length of impulse response sequence
Let the input sequence be divided into sections of size N3 samples.
The impulse response sequence is converted to the size of N3 + N2 –1 samples, by appending with 

zeros. The conversion of each section of  the input sequence to the size N3 + N2 –1 samples can be performed 
by two different methods.

Method-1

In this method, the first N2 –1 samples of a section are appended as last N2 –1 samples of the previous 
section [i.e., the overlapping samples are placed at the beginning of the section]. The circular convolution 
of each section will produce an output sequence of size N3 + N2 –1 samples. In this output, the first N2 –1 
samples are discarded and the remaining samples of the output of sectioned convolutions are saved as the 
overall output sequence.

���

���

Appended
with zero

Fig 1.33: Appending of sections of input sequence
in method-1 of overlap save method.
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Overlapped region

Fig 1.34: Overlapping of output sequence of sectioned convolution
by method-1 of overlap save method.
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Method-2

In this method, the last N2–1 samples of a section are appended as last N2 –1 samples of the next 
section (i.e, the overlapping samples are placed at the end of the sections). The circular convolution of each 
section will produce an output sequence of size N3 + N2 –1 samples. In this output, the last N2 –1 samples 
are discarded and the remaining samples of the output of sectioned convolutions are saved as the overall 
output sequence.

Example 1.9
Compute the circular convolution of the following two sequences using DFT. 

x1(n) = { 0, 1, 0, 1 }  and   x2(n) = { 1, 2, 1, 2 }  

              ↑                                          ↑

Solution

The 4-point DFT of x1(n) is,

DFT ( ) x (n)e x (n)e ; k 0,1, 2, 3x n X k
n 0

4 1
4

j2 kn

n 0

3
2
j kn

11 1 1 = == =
==

− − −r r

^ h" , / /

  x (0) e x (1) e x (2) e x (3) e0 2
j k

2
j3 k

j k
1 1 11 + + +=

− −r r
− r

  0 0 e e ee 2
j k

2
j3 k

2
j k

2
j3 k

+ + = += +
− − − −r r r r

0 ; (0) 1 1 2When k X e e1
0 0= = + = + =

1 ; (1) 0When k X e e j j2
j

2
j3

1= = + = − + =
− −r r

Fig 1.35: Appending of sections of input sequence
in method-2 of overlap save method.
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���
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with zero
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Fig 1.36: Overlapping of output sequence of sectioned convolution
by method-2 of overlap save method.
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2 ; (2) 1 1 2When k X e ej j3
1= = + = − − = −r- r-

3 ; (3) 0When k X e e j j2
j3

2
j9

1= = + = − =
− r − r

The 4-point DFT of x2(n) is,

DFT ( ) x (n)e x (n)e ; k 0,1, 2, 3x n X k
n 0
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4

j2 kn
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2
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Let X3(k) be the product of X1(k) and X2(k). 	

∴ X3(k) = X1(k) X2(k)

When k = 0 ;     X3(0)  =  X1(0)  ×  X2(0)  =   2  × 6    = 12		

When k = 1 ;     X3(1)  =  X1(1)  ×  X2(1)  =   0  × 0    =  0

When k = 2 ;     X3(2)  =  X1(2)  ×  X2(2)  =  –2 × –2 =  4

When k = 3 ;     X3(3)  =  X1(3)  ×  X2(3)  =   0  ×  0  =  0

\ X3(k)  =  { 12,   0,   4,   0 }	

By circular convolution theorem of DFT, we get,

DFT {x1(n)Ux2(n)}  =  X1(k) X2(k)   ⇒   x1(n) U  x2(n)  =  DFT 
−1   { X1(k) X2(k) } = DFT 

−1  {X3(k)}

Let x3(n) be the 4-point sequence obtained by taking inverse DFT of X3(k).

DFT( ) ( ) ( ) ( ) ; 0,1, 2, 3x n X k X k e X k e n
4
1

4
1

k 0

4 1
4

j2 kn

k 0

2
j kn3

1
3 3 3 3= = = =

=

−

=

r r
-

" , / /

                                          ( ) ( ) ( ) ( )X e X e X e X e
4
1 0 1 2 30 2

j n
j n 2

j3 n

3 3 33= + + +
r

r
r

; E

               3 3 3cos sin cose e n j n n
4
1 12 0 4 0j n j n π π π= + + + = + = + + = +r r6 @

cos sine jj !θ θ=! i

x2(0) = 1

x2(1) = 2

x2(2) = 1

x2(3) = 2

sin pn = 0 for integer n
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When  n = 0 ;   x3(0)  =  3 + cos 0    =  3 + 1  =  4		

When  n = 1 ;   x3(1)  =  3 + cos p    =  3 - 1  =  2

When  n = 2 ;   x3(2)  =  3 + cos 2p  =  3 + 1  =  4

When  n = 3 ;   x3(3)  =  3 + cos 3p  =  3 - 1  =  2

\  x1(n) U  x2(n)  =  x3(n)  =  {4, 2, 4, 2}
    ↑

Example 1.10
Compute the linear and circular convolution of the following two sequences using DFT.

	 x(n) = {1, 2 }  and   h(n) = { 2, 1 }  

                       ↑                                  ↑

Solution

Linear Convolution by DFT

DFT will not support linear convolution and so linear convolution is performed via circular convolution. The 
input sequences are converted to size of output sequence of linear convolution by appending zeros. Then the circular 
convolution of appended sequences will give the result of linear convolution.

Here, x(n) and h(n) are 2 sample sequences. Therefore, the linear convolution of x(n) and h(n) will produce 
a (2 + 2 - 1 = 3) 3-sample sequence. To avoid time aliasing we convert the 2-sample input sequences into 3-sample 
sequences by padding with zeros.

\ x(n) = {1, 2, 0 }  and   h(n) = { 2, 1, 0 }  

                            ↑                                     ↑

By definition of N-point DFT, the 3-point DFT of x(n) is,

( ) ( ) (0) (1) (2) 1 2X k x n e x e x e x e e3
j2 kn

n 0

3 1
3
j2 k

3
j4 k

3
j2 k

0= = + + = +
−

=

− − − −r r r r

/

0 ; (0) 1 2 1 2 3When k X e0= = + = + =

1 ; (1) 1 2 1 2( 0.5 0.866) 1.732When k X e j j3
j2

= = + = + − − = −
− r

2 ; (2) 1 2 1 2( 0.5 0.866) 1.732When k X e j j3
j4

= = + = + − + =
− r

By the definition of N-point DFT, the 3-point DFT of h(n) is,

( ) ( ) (0) (1) (2) 2H k h n e h e h e h e e3
j2 kn

n 0

3 1
3
j2 k

3
j k

3
j2 k4

0= = + + = +
=

−− − − −r r r r

/

0 ; (0) 2 2 1 3When k H e0= = + = + =

1 ; (1) 2 2 0.5 0.866 1.5 0.866When k H e j j3
j2

= = + = − − = −
− r

2 ; (2) 2 2 0.5 0.866 1.5 0.866When k H e j j3
j4

= = + = − + = +
− r

Let Y(k) = X(k) H(k)        ;     for k = 0, 1, 2

When  k = 0 ;      Y(0) = X(0)  H(0) = 3 × 3 = 9

When  k = 1 ;      Y(1) = X(1)  H(1) = – j1.732 × (1.5–j0.866) = –1.5 – j2.598

x(0) = 1, x(1) = 2, x(2) = 0

cos sine jj !θ θ=! i

h(0) = 2, h(1) = 1, h(2) = 0  



      Discrete Time Signal Processing1. 74

When  k = 2 ;      Y(2) = X(2)  H(2) = j1.732 × (1.5+j0.866) = –1.5 + j2.598

∴ Y(k) = {9,    – 1.5 – j2.598,   – 1.5 + j2.598}

                 ↑

By circular convolution theorem of DFT, we get,

DFT {x(n) U  h(n)}  =  X(k) H(k)   ⇒   x(n) U  h(n)  =  DFT 
−1   { X(k) H(k) } = DFT 

−1  { Y(k)}

Therefore, the sequence y(n) is obtained from inverse DFT of Y(k). By definition of inverse DFT,

DFT( ) ( ) ( ) ; 0,1, 2, ........, 1y n Y k
N

Y k e for n N1
k 0

N 1
N

j2 kn
1= = = −

=

− r
- " , /

( ) ( )y n Y k e
3
1

k 0

2
3

j2 kn

` =
=

r

/

( ) ( ) ( ) ; 0,1, 2Y e Y e Y e for n
3
1 0 1 23

j2 n
3

j4 n
0= + + =

r r

; E

( . . ) ( . . )j e j e
3
1 9 1 5 2 598 1 5 2 5983

j2 n
3

j4 n

= + − − + − +
r r

; E

3 ( 0.5 0.866) ( 0.5 0.866)j e j e3
j2 n

3
j4 n

= + − − + − +
r r

0 ; (0) 3 . . . .When n y j e j e0 5 0 866 0 5 0 8660 0= = + − − + − +^ ^h h

 3 0.5 0.866 0.5 0.866 2j j= − − − + =

1 ; (1) 3 . . . .When n y j e j e0 5 0 866 0 5 0 8663
j2

3
j4

= = + − − + − +
r r

^ ^h h

 . . . . . . . .j j j j3 0 5 0 866 0 5 0 866 0 5 0 866 0 5 0 866= + − − − + + − + − −^ ^ ^ ^h h h h

 3 0.5 0.866 . . 3 1 1 50 5 0 8662 2 2 2= + + + + = + + =^ ^h h

2 ; (2) 3 . . . .When n y j e j e0 5 0 866 0 5 0 8663
j4

3
j8

= = + − − + − +
r r

^ ^h h

 . . . . . . . .j j j j3 0 5 0 866 0 5 0 866 0 5 0 866 0 5 0 866= + − − − − + − + − +^ ^ ^ ^h h h h

 3 . . . .j j0 5 0 866 0 5 0 8662 2= + − − + − +^ ^h h

 3 0.5 0.866 0.5 0.866 2j j= − + − − =

\ ( ) ( )x n h n)   =  y(n)  =  {2,  5,  2}

                                                      ↑

Circular Convolution by DFT

The given sequences are 2-point sequences. Hence, 2-point DFT of the sequences are obtained as follows.

The 2-point DFT of x(n) is given by, 

( ) ( ) (0) (1) 1 2 ; 0,1X k x n e x e x e e for k2
j2 kn

n 0

2 1
j k j k0= = + = + =

=

−− r
r r- -/

When k = 0;   X(0) = 1 + 2 e0 = 1 + 2 = 3

When k = 1;   X(1) = 1 + 2 e–jπ  = 1 – 2 = −1

\ X(k)  =  {3,  -1}
                                 ↑

N = 3

cos sine jj !θ θ=! i

(a + b) (a - b) = a2 - b2

x(0) = 1, x(1) = 2 
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The 2-point DFT of h(n) is given by,

( ) ( ) (0) (1) 2 ; 0,1H k h n e h e h e e for k2
j2 kn

n 0

2 1
j k j k0= = + = + =

=

−− r
r r- -/

When k = 0;    H(0) = 2+ e0 = 2 + 1 = 3

When k = 1;    H(1) = 2 + e–jπ  = 2 – 1 = 1

\ H(k) =  {3, 1}
                                ↑

Let, the product of X(k) and H(k) be equal to Y(k).

\ Y(k)  =  X(k) H(k) ;   for k = 0, 1

 When  k = 0 ;   Y(0) = X(0)  H(0) = 3 × 3 = 9

When  k = 1 ;   Y(1) = X(1)  H(1) =  -1 × 1  = –1

∴ Y(k) = {9, – 1}

                             ↑  

By circular convolution theorem of DFT we get,

DFT {x(n) U  h(n)}  =  X(k) H(k)   ⇒   x(n) U  h(n)  =  DFT 
−1  {X(k) H(k)} = DFT 

−1  {Y(k)}

Therefore, the sequence y(n) is obtained from inverse DFT of Y(k). By the definition of inverse DFT,

DFT( ) ( ) ( ) ; 0,1, 2, ........, 1y n Y k
N

Y k e for n N1
k 0

N 1
N

j2 kn
1= = = −

=

− r
- " , /

j n j n j nr r r( ) ( ) ( ) ( ) 4.5 0.5y n Y k e Y Y e e e
2
1

2
1 0 1

2
1 9

k 0

1
2

j2 kn

` = = + = − = −
=

r

6 6@ @/

0 ; (0) 4.5 0.5 4.5 0.5 4When n y e0= = − = − =

1 ; (1) 4.5 0.5 4.5 0.5 5When n y ej= = − = + =r

\ x(n) U  y(n)  =  y(n)  =  {4, 5}

                                                       ↑

Example 1.11
Using DFT determine the response of FIR filter with impulse response, h(n) = {1, 2} for the input x(n) = {2, -1, 2}.

Solution

The response of FIR filter is given by convolution of input and impulse response.

Let, y(n) = x(n) * h(n) = Response of FIR filter.

Here, x(n) is 3-point sequence and h(n) is 2-point sequence.

Let, M = Length of y(n)

Now, M = 3 + 2 - 1 = 4

Since convolution is performed via DFT let us convert x(n) and h(n) to M-point sequences by appending zeros.

	 ∴  x(n) = {2, -1, 2, 0}

                 h(n) = {1, 2, 0, 0}

h(0) = 2, h(1) = 1 

N = 2

ejp = -1
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M-point DFT of x(n)

By the definition of DFT

	 DFTX(k) ( ) x(n) e ; 0,1, 2, 3x n for kN
j2 n

n 0

1 kM

= = =
=

− r
-" , /

                                               x(n) e x(n) e
j2 n

n 0

j n

n 0

k k
4

3

2

3

= =
= =

r r
- -/ /

                                               2 1 2e e e 0
j k

j k20
# # #= − + +

r
r- -

                                               2 2e e
j k

j k2= − +
r

r- -

When  k = 0,   X(0)  =  2 - e0       + 2e0      =  2 - 1 + 2 = 3

When  k = 1,   X(1)  =  2 2e e
j

j2− +
r

r- -    =  2 + j - 2  = j

When  k = 2,   X(2)  =  2 2e ej j2− +r r- -  =  2 + 1 + 2 = 5

When  k = 3,   X(3)  =  2 2e e
j

j2

3
3− +

r
r- -  =  2 - j - 2  = - j

	 ∴  X(k) = {3,  j,  5,  -j}

M-point DFT of h(n)

By the definition of DFT

	 DFT(k) ( ) (n) e ; 0,1, 2, 3H h n h for k
j2 n

n 0

1
M

kM

= = =
=

− r
-

" , /

                                               (n) e (n) eh h
j2 n

n 0

j n

n 0

k k
4

3
2

3

= =
= =

r r
- -/ /

                                               2 0e e2 0
j k

20
# #= + + +

r
-

                                               e1 2
j k

2= +
r

-

When  k = 0,   H(0) = 1 + 2e0       = 1 + 2 = 3

When  k = 1,   H(1) = 1 2e
j

2+
r

-
   = 1 - 2j

When  k = 2,   H(2) = 1 2e j+ r-     = 1 - 2 = - 1

When  k = 3,   H(3) = 1 2e
j

2

3

+
r

-
 = 1 + 2j

	 ∴  H(k) = {3,  1 - 2j,  -1,  1 + 2j}

Product of X(k) and H(k)

Let, Y(k) = X(k) H(k)

When  k = 0,   Y(0) = X(0) × H(0) = 3   × 3           = 9

When  k = 1,   Y(1) = X(1) × H(1) = j    × (1 - 2j) = 2 + j

When  k = 2,   Y(2) = X(2) × H(2) = 5   × (- 1)     = - 5

When  k = 3,   Y(3) = X(3) × H(3) = - j × (1 + 2j) = 2 - j

	 ∴  Y(k) = {9,  2 + j,  - 5,  2 - j}

x(0) = 2  ,  x(1) = -1

x(2) = 2  ,  x(3) = 0

e±jθ = cos θ ± jsin θ

e j
j

2 !=
!
r

1e e
j j3

= = −
! !r r

e 1
j2

=
! r

e j
j

2

3

"=
!
r

h(0) = 1  ,  h(1) = 2

h(2) = h(3) = 0
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Response of the FIR filter

The response y(n) of FIR filter is given by inverse DFT of Y(k).

By definition of inverse DFT,

	 DFT( ) ( ) ( ) e ; 0,1, 2, 3y n Y k
M

Y k for n1 j2 n

0

1
M

k

k

M
1= = =

=

− r
- " , /

                                                    ( ) e ( ) eY k Y k
4
1

4
1j2 n

0

j n

0

k

k

k

k

4

3

2

3

= =
= =

r r/ /

                                                   9 (2 ) 5 (2 )e j e e j e
4
1

j n
j n

j n

2 2

3
0

#= + + − + −
r

r
r

; E

                                                   ( ) ( )j e e j e
4
1 9 2 5 2

j n
j n

j n

2 2

3

= + + − + −
r

r
r

; E

When  n = 0,   y(0) = ( ) ( )j e e j e
4
1 9 2 5 20 0 0+ + − + −8 B  =  j j

4
1 9 2 5 2

4
8 2+ + − + − = =6 @

When  n = 1,   y(1) =  ( ) ( )j e e j e
4
1 9 2 5 2

j
j

j

2 2

3

+ + − + −
r

r
r

; E

                                ( ) ( ) ( ) ( )j j j j
4
1 9 2 5 1 2# # #= + + − − + − −6 @   ) 3j j

4
1 9 2 1 5 2 1

4
12= + − + − − = =6 @

When  n = 2,   y(2) =  ( ) ( )j e e j e
4
1 9 2 5 2j j j2 3+ + − + −r r r8 B

                                ( ) ( ) ( ) ( )j j
4
1 9 2 1 5 1 2 1# # #= + + − − + − −6 @   ) 0j j

4
1 9 2 5 2

4
0= − − − − − = =6 @

When  n = 3,   y(3) =  ( ) ( )j e e j e
4
1 9 2 5 2

j
j

j

2

3
3 2

9

+ + − + −
r

r
r

; E

                                ( ) ( ) ( ) ( )j j j j
4
1 9 2 5 1 2#= + + − − − + − ^ h6 @   4j j

4
1 9 2 1 5 2 1

4
16= − + + + + = =6 @

∴  Response, y(n) = {2,  3,  0,  4}

1.8  Fast Computation of DFT (or Fast Fourier Transform (FFT))
  Fourier Transform (FFT): It is a method (or algorithm) for computing the Discrete Fourier Transform 
	 (DFT) with reduced number of calculations. 

The computational efficiency is achieved if we adopt a divide and conquer approach. This approach 
is based on the decomposition of an N-point DFT into successively smaller DFTs. This basic approach 
leads to a family of an efficient computational algorithms collectively known as FFT algorithms.
Radix-r FFT

In an N-point sequence, if N can be expressed as N = rm, then the sequence can be decimated into 
r-point sequences. For each r-point sequence, r-point DFT can be computed. From the results of r-point 
DFT, the r2-point DFTs are computed. 

From the results of r2-point DFTs, the r3-point DFTs are computed and so on, until we get rm point 
DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this method the number of 
stages of computation will be m times. 

e j
j

2

9

=
r
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Radix-2 FFT

For radix-2 FFT, the value of N should be such that N = 2m, so that the N-point sequence is decimated 
into 2-point sequences and the 2-point DFT for each decimated sequence is computed. From the results 
of 2-point DFTs, the 4-point DFTs can be computed. From the results of 4-point DFTs, the 8-point DFTs 
can be computed and so on, until we get N-point DFT.

Number of Calculations in N-point DFT

Let X(k) be N-point DFT of  an L-point discrete time sequence x(n), where N ≥ L. Now, the N-point 
DFT is a sequence consisting of  N-complex  numbers. Each complex number of the sequence is calculated 
using the following equation (equation 1.39). 

( ) ( ) ; 0,1, 2, ......., 1X k x n e for k NN
j kn

n

N 2

0

1

= = −
r-

=

-

/

(0) (1) (2) (3) ............... ( 1)x e x e x e x e x N e
( )

N
j k

N
j k

N
j k

N
j N k

0
2 4 6 2 1

= + + + + + −
r r r r- - - - -

( ) (0) (1) ( ) ( ) ........... ( 1)X k x e x e x e x e x N e2 3
( )

1Complex additions

Complex

multiplication

N
j k

Complex

multiplication

N
j k

Complex

multiplication

Complex

multiplication

N
j N k

Complex

multiplication

N

0
2 4 2 1

N

j k6
` = + + + + + −

r r r- - - -

-

r-

1 2 344 44 1 2 344 44 1 2 344 44 1 2 34444 4444

1 2 344444444444444444444 44444444444444444444

S

From the above equation we can say that, 

The number of calculations to calculate X(k) for one value of k are,

N number of complex multiplications and

N – 1 number of complex additions.

The X(k) is a sequence consisting of N complex numbers.

Therefore, the number of calculations to calculate all the N complex numbers of the X(k) are,

N × N = N2 number of complex multiplications and

N × (N – 1) = N(N – 1) number of complex additions. 

Hence, in direct computation of N-point DFT, the total number of complex additions are N(N – 1) 
and total number of complex multiplications are N2.

Number of Calculations in Radix-2 FFT   

In radix-2 FFT,  N = 2m,  and so there will be m stages of computations, where m = log2N, with each 
stage having N/2  butterflies. (Refer section 1.9.2 and 1.10.2). 

The number of calculations in one butterfly are,

	 1 number of Complex multiplication and

	 2 number of Complex additions.

There are N2  butterflies in each stage. 
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Therefore, number of calculations in one stage are,

1N N Complex multiplications and2 2# =

2N N Complex additions2 # =

The N-point DFT involves m stages of computations. Therefore, the number of calculations for m 
stages are,

log logm N N N N N Complex multiplications and2 2 2# #= =
22

m N log N N Nlog N Complex additions.
2 2

# #= =

Hence, in radix-2 FFT, the total number of complex additions are reduced to Nlog2N and total 
number of complex multiplications are reduced to (N/2) log2N.

Table 1.5 presents a comparison of the number of complex multiplications and additions in
radix-2 FFT and in direct computation of DFT. From the table it can be observed that for large values of  
N, the percentage reduction in calculations is also very large.

Table 1.5: Comparison of Number of Computation in Direct DFT and FFT

		  Direct Computation	 Radix-2 FFT

Number    Complex	      Complex                   Complex	          Complex	
   of Points    additions Multiplications               additions		      Multiplication  
         N           N(N - 1)	 N2                                              Nlog2N	                          (N/2) log2N

	    4 (= 22)	   12	 16			   4 × log22
2 = 4 × 2 = 8	      2 2 4log

2
4

2
42

2
# #= =

	  8 (= 23)	   56	 64			   8 × log22
3 = 8 × 3 = 24	      

2
2 3 12log

2
8

2
83

# #= =

	16 (= 24)	  240	 256	  16 × log22
4 = 16 × 4 = 64    	      2 4 32log

2
16

2
164

2
# #= =

	32 (= 25)	  992	 1,024	  32 × log22
5 = 32 × 5 = 160	      

2
2 5 80log

2
32

2
325

# #= =

	64 (= 26)        4,032	 4,096	  64 × log22
6 = 64 × 6 = 384	      

2
2 6 192log

2
64

2
646

# #= =

	 128 (= 27)     16,256          	16,384        128 × log22
7 = 128 × 7 = 896	      

2
2 7 448log

2
128

2
1287

# #= =

Phase or Twiddle Factor

By the definition of DFT, the N-point DFT is given by,

( ) ( ) ; 0,1, 2, ......., 1X k x n e for k NN
j kn

n

N 2

0

1

= = −
r-

=

-

/                                                .....(1.68)         

mN 2=

2
log logN m2m= =

2

10

10log log
log

x y
x

y =

log22
m = m
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To simplify the notation it is desirable to define the complex valued phase factor WN (also called as 
twiddle factor) which is an Nth root of unity as,

W e N
j2

N =
r-

Here, W represents a complex number 1∠–2π. Hence, the phase or argument of W is –2π. Therefore, 
when a number is multiplied by W, only its phase changes by –2π but magnitude remains the same. 

\ W = e-j2π

The phase value –2π of W can be multiplied by any integer and it is represented as prefix in W. For 
example, multiplying –2π by k can be represented as Wk.

e Wj k k2 &` #r-

 The phase value –2π of W can be divided by any integer and it is represented as suffix in W. For 
example, dividing –2π by N can be represented as WN.

e e Wj N j
N2 2 1

N&` =' #r r- -  

nke e WN
j nk

j
N
nk2

2
` = =

#
r

r
-

-

N                                                                                   .....(1.69)

Using equation (1.69), the equation (1.68) can be written as,  	

( ) ( ) ; 0,1, 2, ......., 1X k x n W for k Nnk

n

N

0

1

= = −
=

-

N/                                                       .....(1.70)

Equation (1.70) is the definition of N-point DFT using phase factor and this equation is popularly 
used in FFT. 

1.9  Radix-2 Decimation in Time (DIT) Fast Fourier Transform (FFT)

The N-point DFT of a sequence x(n) converts the time domain N-point sequence x(n) into a frequency 
domain N-point sequence X(k). In Decimation In Time (DIT) algorithm, the time domain sequence x(n) 
is decimated and smaller point DFTs are performed. The results of smaller point DFTs are combined to 
get the result of N-point DFT.

In DIT radix-2 FFT, the time domain sequence is decimated into 2-point sequences. For each two 
point sequence, a 2-point DFT is computed. The results of 2-point DFTs are used to compute 4-point DFTs. 
A pair of 2-point DFT results are used to compute one 4-point DFT. The results of 4-point DFTs are used 
to compute 8-point DFTs. This process is continued until we get N-point DFT.

In general, we can say that in decimation in time algorithm, the N-point DFT can be realised from 
two numbers of N/2 point DFTs, the N/2 point DFT can be realised from two numbers of  N/4 point DFTs 
and so on. 

Let, x(n) be N-sample sequence. We can decimate x(n) into two sequences of N/2 samples. Let the 
two sequences be f1(n) and f2(n). Let f1(n) consists of even numbered samples of x(n) and f2(n) consists of 
odd numbered samples of x(n).
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( ) ( ) ; , , , ........,f n x n for n N2 0 1 2 3 2 11` = = −

( ) ( ) ; , , , ........,f n x n for n N2 1 0 1 2 3 2 1` = + = −2

Let,     X(k) = N-point DFT of x(n)

	 F1(k) = N/2 point DFT of f1(n)

	 F2(k) = N/2 point DFT of f2(n)

By definition of DFT, the N/2 point DFT of f1(n) and f2(n) are given by,

knkn
( ) ( ) ; ( ) ( )F k f n W F k f n W

n

N

N

n

N

N

0

2
1

2 0

2
1

2
1 1 2 2= =

=

-

=

-

/ /

Now, N-point DFT X(k), in terms of N/2 point DFTs F1(k) and F2(k) is given by,

( ) ( ) ( ), , 0,1, 2, 3, ...., 1X k F k W F k where k NN
k

1 2= + = −             	  .....(1.71)

The proof of equation (1.71) is given below.

Proof:

By definition of DFT, the N-point DFT of x(n) is,

( ) ( )X k x n W kn

n 0

N 1

N=
=

-

/

 ( ) ( ) ; 0,1, 2, ......, 1x n W x n W k Nkn
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kn
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 ( ) ( )x n W x n W2 2 1k(2n)

n 0

2
N 1

k(2n 1)

n 0

2
N 1

N N
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−

=

−

/ / 	 .....(1.72)

The phase factors in equation (1.72) can be modified as shown below.

W e e Wk(2n) N
k(2n)

N/2
kn

knj2 j2
N N/2

= = =r r- -^ ^h h 				    .....(1.73)

            W e e e e e W WN
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N/2
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N
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Using equations (1.73) and (1.74), equation (1.72) can be written as,

( ) (2 ) (2 1)X k x n W x n W Wkn

n 0

2
N 1

kn

n 0
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N 1

k kn

n 0

2
N 1

1 2N/2 N N/2
= +

=

−

=

−

/ / 	 .....(1.75)

By definition of DFT the N/2 point DFT of f1(n) and f2(n) are given by,

F (k) f (n) W and F (k) f (n)W
n 0

2
N 1

kn

n 0

2
N 1

kn
2 2 N 2/1 1 N/2 ==

=

-

=

-

/ / 	 .....(1.76)

Using equation (1.76) in equation (1.75) we get,

( ) ( ) ( ), , 0,1, 2, 3, ...., 1X k F k W F k where k NN
k

1 2= + = −

When n is replaced by 2n,even numbered
sample of x(n) are selected.
When n is replaced by 2n + 1, odd numbered
sample of x(n) are selected.

x(2n) = f1(n) and x(2n + 1)= f2(n)
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Having performed the decimation in time once, we can repeat the process for each of the sequences 
f1(n) and f2(n). Thus, f1(n) would result in two N/4 point sequences and f2(n) would result in another two 
N/4 point sequences.

Let the decimated N/4 point sequences of f1(n) be v11(n) and v12(n).

v (n) f (2n) ; for n 0,1, 2, ........., 4
N 1` -= =11 1

   v (n) f (2n 1) ; for n 0,1, 2, ........., 4
N 112 1 -= + =

Let the decimated N/4 point sequences of f2(n) be v21(n) and v22(n).

v (n) f (2n) ; for n 0,1, 2, ........., 4
N 121 2` -= =

  v (n) f (2n 1) ; for n 0,1, 2, ........., 4
N 122 2 -= + =

Let,     V11(k) = N/4 point DFT of v11(n) ;   V21(k) = N/4 point DFT of v21(n)

           V12(k) = N/4 point DFT of v12(n) ;   V22(k) = N/4 point DFT of v22(n)

Then like the earlier analysis we can show that,

		  ( ) ( ) ( ), 0,1, 2, 3, ...., 1F k V k W V k for k N
2/N

k
21 11 12= + = − 	                               .....(1.77)

 		  ( ) ( ) ( ), 0,1, 2, 3, ...., 1F k V k W V k for k N
2/N

k
22 21 22= + = −                                        .....(1.78)           

Hence, the N/2 point DFTs are obtained from the results of N/4 point DFTs.
The decimation of the data sequence can be repeated until the resulting sequences are reduced to 

2-point sequences. 

1.9.1  8-Point DFT using Radix-2 DIT FFT

The input sequence is 8-point sequence. Therefore, N = 8 = 23 = rm. Here, r = 2 and m = 3.
Therefore, the computation of 8-point DFT using radix-2 FFT involves three stages of computation. 

The given 8-point sequence is decimated to 2-point sequences. 
For each 2-point sequence, the 2-point DFT is 

computed. From the results of 2-point DFT, the 4-point 
DFT is computed. From the results of 4-point DFT, the 
8-point DFT is computed.

Let the given sequence be x(0), x(1), x(2), x(3), x(4), 
x(5), x(6), x(7), which consists of  8 samples. The 8-samples 
should be decimated into sequences of 2-samples. Before 
decimation they are arranged in bit reversed order, as shown 
in Table 1.6.

The x(n) in bit reversed order is decimated into 4 
numbers of 2-point sequences as shown ahead.

      Normal order      Bit reversed order

   x(0)	      x(000)         x(0)        x(000)

   x(1)	      x(001)         x(4)        x(100)

   x(2)	      x(010)         x(2)        x(010)

   x(3)	      x(011)         x(6)        x(110)

   x(4)  	      x(100)         x(1)        x(001)

   x(5) 	      x(101)         x(5)        x(101)

   x(6) 	      x(110)         x(3)        x(011)

   x(7) 	      x(111)         x(7)        x(111)

Table 1.6
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Note: In a discrete sequence x(n), if the samples of the sequence are arranged such that the binary 
representation of n is mirror image of  original binary representation then the sequence is set to be in 
bit reversed order.

Sequence-1:  {x(0), x(4)}

Sequence-2:  {x(2), x(6)}

Sequence-3:  {x(1), x(5)}

Sequence-4:  {x(3), x(7)}

Using the decimated sequences as input, the 8-point DFT is computed. Fig 1.37 shows the three 
stages of computation of an 8-point DFT.

Let us examine the 8-point DFT of an 8-point sequence in detail. The 8-point sequence is decimated 
into 4-point sequences and 2-point sequences as shown below:

Let, 	x(n) =  8-point sequence

 f1(n), f2(n)    =  4-point sequences obtained from x(n)

         v11(n), v12(n) =  2-point sequences obtained from f1(n)	

	 v21(n), v22(n) =  2-point sequences obtained from f2(n).

The relations between the samples of various sequences are given below.

v11(0) = f1(0) = x(0)	 v21(0) = f2(0) = x(1)	

v11(1) = f1(2) = x(4)	 v21(1) = f2(2) = x(5)

v12(0) = f1(1) = x(2)	 v22(0) = f2(1) = x(3)	

v12(1) = f1(3) = x(6)	 v22(1) = f2(3) = x(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Compute

2-point DFT

Fig 1.37: Three stages of computations of an 8-point DFT.
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X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Combine

2-point DFTs

to

get 4-point

DFT
Combine

4-point DFTs

to
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First Stage Computation

In the first stage of computation, the two point DFTs of the 2-point sequences are computed.

Let, V11(k) = DFT{v11(n)}.  

Using equation (1.70), the 2-point DFT of v11(n) is given by,

( ) ( ) (0) (1) ; 0,1V k v n W v W v W for k
,n

nk k

0 1

2 2
0

211 11 11 11= = + =
=

/

When k = 0 ;  ( ) (0) (0) (1) (0) (1) (0) (4)V k V v W v W v v x x2
0

2
0

11 11 11 11 11 11= = + = + = +

When k = 1 ;  ( ) (1) (0) (1) (0) (1) (0) (4)V k V v W v W v W v x W x2
0

2
1

2
0

2
0

11 11 11 11 11 11= = + = − = −

1 1 1cos sinW e e W e e j W W
2j j

2
0 2

2
0

2
1 2

1

2
0

2
0j0

#π π= = = = = = − = − = − = −
# #r r- r- ^ h

Let, V12(k) = DFT{v12(n)}. 

Using equation (1.70), the 2-point DFT of v12(n) is given by,

( ) ( ) (0) (1) ; 0,1V k v n W v W v W for k
,n

nk k

0 1

2 2
0

212 12 12 12= = + =
=

/

When k = 0 ;  ( ) (0) (0) (1) (0) (1) ( ) ( )V k V v W v W v v x x2 62
0

2
0

12 12 12 12 12 12= = + = + = +

When k = 1 ;  ( ) (1) (0) (1) (0) (1) ( ) ( )V k V v W v W v W v x W x2 62
0

2
1

2
0

2
0

12 12 12 12 12 12= = + = − = −

Let, V21(k) = DFT{v21(n)}. 

Using equation (1.70), the 2-point DFT of v21(n) is given by,  

( ) ( ) (0) (1) ; 0,1V k v n W v W v W for k
,n

nk k

0 1

2 2
0

221 21 21 21= = + =
=

/

When k = 0 ; ( ) (0) (0) (1) (0) (1) ( ) ( )V k V v W v W v v x x1 52
0

2
0

21 21 21 21 21 21= = + = + = +

When k = 1  ;  ( ) (1) (0) (1) (0) (1) ( ) ( )V k V v W v W v W v x W x1 52
0

2
1

2
0

2
0

21 21 21 21 21 21= = + = − = −

Let, V22(k) = DFT{v22(n)}. 

Using equation (1.70), the 2-point DFT of v22(n) is given by,

( ) ( ) (0) (1) ; 0,1V k v n W v W v W for k
,n

nk k

0 1

2 2
0

222 22= = + =
=

22 22/

When k = 0 ; ( ) (0) (0) (1) (0) (1) ( ) ( )V k V v W v W v v x x3 72
0

2
0

22 22 22 22 22 22= = + = + = +

When  k  =  1  ;  ( ) (1) (0) (1) (0) (1) ( ) ( )V k V v W v W v W v x W x3 72
0

2
1

2
0

2
0

22 22 22 22 22 22= = + = − = −

Second Stage Computation

In the second stage of computation, the 4-point DFTs are computed using the results of the first 
stage as input. Let, F1(k) = DFT{f1(n)}. The 4-point DFT of f1(n) can be computed using equation (1.77).
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( ) ( ) ( ) ; , , , .F k V k W V k for k 0 1 2 3k
41 11 12` = + =

When k = 0 ;  ( ) ( ) ( ) ( )F k F V W V0 0 04
0

1 1 11 12= = +

When k = 1 ;  ( ) ( ) ( ) ( )F k F V W V1 1 14
1

1 1 11 12= = +

When k = 2 ;  ( ) (2) (2) (2) (0) (0)F k F V W V V W V4
2

4
0

1 1 11 12 11 12= = + = −

When k = 3 ;  ( ) (3) (3) (3) (1) (1)F k F V W V V W V4
3

4
1

1 1 11 12 11 12= = + = −

 Let, F2(k) = DFT{f2(n)}. The 4-point DFT of f2(n) can be computed using equation (1.78).

( ) ( ) ( ) ; 0,1, 2, 3.F k V k W V k for kk
42 21 22` = + =

When k = 0 ;  ( ) (0) (0) (0)F k F V W V4
0

2 2 21 22= = +

When k = 1 ;  ( ) (1) (1) (1)F k F V W V4
1

2 2 21 22= = +

When k = 2 ;  ( ) (2) (2) (2) (0) (0)F k F V W V V W V4
2

4
0

2 2 21 22 21 22= = + = −

When k = 3 ;  ( ) (3) (3) (3) (1) (1)F k F V W V V W V4
3

4
1

2 2 21 22 21 22= = + = −

Third Stage Computation

In the third stage of computation, the 8-point DFTs are computed using the results of the second 
stage as inputs.

Let, X(k) = DFT{X(n)}. The 8-point DFT of x(n) can be computed using equation (1.71).

( ) ( ) ( ) ; 0,1, 2, 3, , , ,X k F k W F k for k 4 5 6 7k
81 2` = + =

When k = 0 ;  ( ) (0) (0) (0)X k X F W F8
0

1 2= = +

When k = 1 ;  ( ) ( ) ( ) ( )X k X F W F1 1 18
1

1 2= = +

When k = 2 ;  ( ) ( ) ( ) ( )X k X F W F2 2 28
2

1 2= = +

When k = 3 ;  ( ) ( ) ( ) ( )X k X F W F3 3 38
3

1 2= = +

When k = 4 ;  ( ) (4) (4) (4) ( ) ( )X k X F W F F W F0 08
4

8
0

1 2 1 2= = + = −

When k = 5 ;  ( ) ( ) ( ) ( ) ( ) ( )X k X F W F F W F5 5 5 1 18
5

8
1

1 2 1 2= = + = −

When k = 6 ;  ( ) ( ) ( ) ( ) ( ) ( )X k X F W F F W F6 6 6 2 28
6

8
2

1 2 1 2= = + = −

When k = 7 ;  ( ) ( ) ( ) ( ) ( ) ( )X k X F W F F W F7 7 7 3 38
7

8
3

1 2 1 2= = + = −
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V11(k) and V12(k) are periodic  
 with periodicity 
of 2 samples.
\ V11(k+2) = V11(k)
     V12(k+2) = V12(k)
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V21(k) and V22(k) are periodic 
with periodicity of 2 samples.
\ V21(k+2) = V21(k)
     V22(k+2) = V22(k)

F1(k) and F2(k) are periodic 
with periodicity of 4 samples.
\ F1(k+4) = F1(k)
    F2(k+4) = F2(k)
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1.9.2  Flow Graph for 8-Point DFT using Radix-2 DIT FFT

If we observe the basic computation performed at every stage of radix-2 DIT FFT in the previous 
section, we can arrive at the following conclusion.

1. In each computation two complex numbers "a" and "b" are considered.

2. The complex number "b" is multiplied by a phase factor " "WN
k .

3. The product " "bWN
k  is added to the complex number "a" to form a new complex number "A". 

4. The product " "bWN
k is subtracted from the complex number "a" to form a new complex number "B".

The above basic computation can be expressed by a signal flow graph shown in Fig 1.38.
(For detailed discussion on signal flow graph, refer Section 1.1.12).

The signal flow graph is also called a butterfly diagram since it resembles a butterfly. In radix-2 FFT, 
N/2 butterflies per stage are required to represent the computational process. The butterfly diagram used 
to compute the 8-point DFT via radix-2 DIT FFT can be arrived as shown below, using the computations 
shown in the previous section.

The sequence x(n) is arranged in bit reversed order and then decimated into two sample sequences 
as shown below.

	 x(0)	 x(2)	 x(1)	 x(3)

	 x(4)	 x(6)	 x(5)	 x(7)
Flow Graph or (Butterfly Diagram) for First Stage of Computation

A a b� �

B a b� �

Fig 1.38: Basic butterfly or flow graph of DIT radix-2 FFT.
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x(2) W x(6) = V (0)2
0

12�

x(1) W x(5) = V (1)2
0

21�

x(3) W x(7) = V (0)2
0

22�

x(3) W x(7) = V (1)2
0

22�

x(0) W x(4) = V (1)2
0

11�

x(1) W x(5) = V (0)2
0

21�

Input of first stage
[x(n) in bit reversed order]

x(0)

x(1)

x(2)
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x(7)

First stage of flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIT FFT.Fig 1.39:
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Flow Graph (or Butterfly Diagram) for Second Stage of Computation

Flow Graph (or Butterfly Diagram) for Third Stage of Computation
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1
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Fig 1.40: Second stage of flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIT FFT.
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The Combined Flow Graph (or Butterfly Diagram) of All the Three Stages of Computation

1.10  Radix-2 Decimation in Frequency (DIF) Fast Fourier Transform (FFT)

In decimation in frequency algorithm, the frequency domain sequence X(k) is decimated, (but in 
decimation in time algorithm, the time domain sequence x(n) is decimated).

In this algorithm, the N-point time domain sequence is converted to two numbers of N/2 point 
sequences. Then each N/2 point sequence is converted to two numbers of N/4 point sequences. Thus, we 
get 4 numbers of N/4 point sequences. 

This process is continued until we get N/2 numbers of 2-point sequences. Finally the 2-point DFT 
of each 2-point sequence is computed. The 2-point DFTs of N/2 numbers of 2-point sequences will give 
N samples, which is the N-point DFT of the time domain sequence.

Here the equations for forming N/2 point sequences, N/4 point sequences, etc., are obtained by 
decimation of frequency domain sequences. Hence, this method is called DIF. For example, the N-point 
frequency domain sequence X(k) can be decimated to two numbers of N/2 point frequency domain sequences 
G1(k) and G2(k). The G1(k) and G2(k) defines new time domain sequences g1(n) and g2(n), respectively, 
whose samples are obtained from x(n).

It can be shown that the N-point DFT of x(n) can be realised from two numbers of N/2 point DFTs. 
The N/2 point DFTs can be realised from two numbers of N/4 point DFTs and so on. The decimation 
continues upto 2-point DFTs.

Let x(n) and X(k) be N-point DFT pair. 

Let G1(k) and G2(k) be two numbers of N/2 point sequences obtained by the decimation of X(k).

Let G1(k) be N/2 point DFT of g 1(n), and G2(k) be N/2 point DFT of g2(n).
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Now, the N-point DFT X(k) can be obtained from the two numbers of  N/2 point  DFTs G1(k) and 
G2(k), as shown below.

X(k)k = even  =  G1(k)

X(k)k = odd  =  G2(k)

Proof:

By definition of DFT, the N-point DFT of x(n) is,

knknkn( ) ( ) ( ) ( )X k x n W x n W x n W
n 0

N 1

n 0

2
N 1

n 2
N

N 1
NN= = +
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=
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=

N/ / /

         knkn knk
( ) ( )x n W x n N W x n W x n N W W2 2n 0

2
N 1

N

n 2
N

n 0

2
N 1

n 0

2
N 1

n 0

2
N 1

2
kN

= + + = + +
=

+

= = =
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m m
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N 1
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n 0
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N 1
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Let us split X(k) into even and odd numbered samples.
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In the next stage of decimation the N/2 point frequency domain sequence G1(k) is decimated into 
two numbers of N/4 point sequences D11(k) and D12(k), and G2(k) is decimated into two numbers of N/4 
point sequences D21(k) and D22(k).
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Let, D 11(k) and D12(k) be two numbers of N/4 point sequences obtained by the decimation of G1(k).

Let, D11(k) be N/4 point DFT of d 11(n), and D12(k) be N/4 point DFT of d12(n).

Let, D 21(k) and D22(k) be two numbers of N/4 point sequences obtained by the decimation of G2(k).

Let, D21(k) be N/4 point DFT of d 21(n), and D22(k) be N/4 point DFT of d22(n).

Now, N/2 point DFTs can be obtained from two numbers of  N/4 point  DFTs as shown below.

G1(k)k = even  =  D11(k)                        

G1(k)k = odd   =  D12(k) 

G2(k)k = even  =  D21(k)

G2(k)k = odd   =  D22(k)     

Proof:

By definition of DFT, the N/2 point DFT of G1(k) is,
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Let us split G1(k) into even and odd numbered samples.
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Using equation (1.80),
replacing k by 2k.

(-1)2k = 1 

Using equation (1.80),
replacing k by 2k + 1. (-1)2k+1 = - 1 



1. 91Chapter 1 - Discrete Fourier Transform

          
kn knn

( ) ( ) ( )g n g n N W W d n W D k4n 0

4
N 1

N/2 N/4
n 0

4
N 1

N/4
k odd

12 121 1 1
= − + = =

= =

− −

=

( )G k` c m; E/ /

Similarly the N/2 point sequence G2(k) can be decimated into two numbers 
of N/4 point sequences.
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The decimation of the frequency domain sequence can be continued until the resulting sequence 
are reduced to 2-point sequences. The entire process of decimation involves m stages of decimation where 
m = log2N. The computation of the N-point DFT via the decimation in frequency FFT algorithm requires 
(N/2)log2N complex multiplications and N log2N complex additions (i.e., the total number of computations 
remains same in both DIT and DIF). 

1.10.1  8- point DFT using Radix-2 DIF FFT

The DIF computations for an eight sequence is discussed in detail in this section. Let x(n) be an  
8-point sequence. Therefore, N = 8 = 23 = rm. Here, r = 2 and m = 3. Therefore, the computation of 8-point 
DFT using radix-2 FFT involves three stages of computation.

The samples of x(n) are,
x(0),  x(1),  x(2), x(3), x(4),  x(5),  x(6),  x(7)  

First Stage Computation

In the first stage of computation, two numbers of 4-point sequences g1(n) and g2(n) are obtained 
from x(n) as shown below.
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When n = 0;   g1(n) = g1(0) = x(0) + x(4)

When n = 1;   g1(n) = g1(1) = x(1) + x(5) 

When n = 2;   g1(n) = g1(2) = x(2) + x(6)

When n = 3;   g1(n) = g1(3) = x(3) + x(7)
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When n = 0;   g2(n) = g2(0) = [x(0) - x(4)]W8
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When n = 2;   g2(n) = g2(2) = [x(2) - x(6)]W8
2

When n = 3;   g2(n) = g2(3) = [x(3) - x(7)]W8
3

Second Stage Computation

In the second stage of computation, 2 numbers of 2-point sequences d11(n)  and d12(n) are generated 
from the samples of g1(n), and  another 2 numbers of 2-point sequences d21(n) and d22(n) are generated 
from the samples of g2(n), as shown below. 

d11(n) = g1(n) + g1(n + N/4) =  g1(n) + g1(n + 2)  ; for n = 0, 1

When n = 0 ;   d11(n) = d11(0)  = g1(0) + g1(2) 

When n = 1 ;   d11(n) = d11(1)  = g1(1) + g1(3)

d12(n) = [g1(n) - g1(n + N/4)]
nW /N 2  =  [g1(n) - g1(n + 2)] nW4   ; for n = 0, 1

When n = 0 ;   d12(n) = d12(0) = [g1(0) - g1(2)] 0W4

When n = 1 ;   d12(n) = d12(1) = [g1(1) - g1(3)]W 1
4

d21(n) = g2(n) + g2(n + N/4) =  g2(n) + g2(n + 2)  ; for n = 0, 1

When n = 0 ;   d21(n) = d21(0) = [g2(0) + g2(2)]

When n = 1 ;   d21(n) = d21(1) = [g2(1) + g2(3)]

d22(n) = [g2(n) - g2(n + N/4)]
nW /N 2  =  [g2(n) - g2(n + 2)]

nW4   ; for n = 0, 1

When n = 0 ;   d22(n) = d22(0) = [g2(0) - g2(2)]W 0
4

When n = 1 ;   d22(n) = d22(1) = [g2(1) - g2(3)] 1W4

Third Stage Computation

In the third stage of computation, 2-point DFTs of the 2-point sequences d11(n), d12(n), d21(n) and 
d22(n) are computed. 

The 2-point DFT of the 2-point sequence d11(n) is computed as shown below.
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Similarly the 2-point DFTs of the 2-point sequences d12(n), d21(n) and d22(n) are computed and the 
results are given below.

(0) (0) (1)
(1) [ (0) (1)]
(0) (0) (1)
(1) [ (0) (1)]
( ) ( ) ( )
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( ) [ ( ) ( )]

D d d
D d d W
D d d
D d d W
D d d
D d d W
D d d
D d d W

0 0 1
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2
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0

2
0

11 11 11

11 11 11

12 12 12

12 12 12

21 21 21

21 21 21

22 22 22

22 22 22

= +
= −
= +
= −
= +
= −
= +
= −

Combining the Three Stages of Computation

The final output Dij(k) gives the X(k). The relation can be obtained as shown below.

From the above we observe that the output is in bit reversed order. In radix-2 DIF FFT, the input is 
in normal order the output will be in bit reversed order. 

1.10.2  Flow Graph For 8-point DFT using Radix-2 DIF FFT

If we observe the basic computation performed at every stage of radix-2 DIF FFT in the previous 
section, we can arrive at the following conclusion.

1.	 In each computation two complex numbers "a" and "b" are considered.

2.	 The sum of the two complex numbers is computed which forms a  new complex number "A".

X(2k) = G1(k) ; k = 0,1,2,3

\ X(0) = G1(0)

    X(2)  = G1(1)

    X(4)  = G1(2)

    X(6)  = G1(3)

X(2k+1) = G2(k) ; k = 0,1,2,3

\ X(1) = G2(0)

     X(3) = G2(1)

     X(5) = G2(2)

     X(7) = G2(3)

G1(2k) = D11(k) ; k = 0,1

 \  G1(0) = D11(0)

      G1(2) = D11(1)

G1(2k+1) = D12(k) ; k = 0,1

 \  G1(1) = D12(0)

      G1(3) = D12(1)

G2(2k) = D21(k) ; k = 0,1

 \  G2(0) = D21(0)

      G2(2) = D21(1)

G2(2k+1) = D22(k) ; k = 0,1

 \  G2(1) = D22(0)

      G2(3) = D22(1)

D11(0) = G1(0) = X(0)

D11(1) = G1(2) = X(4)

D12(0) = G1(1) = X(2)

D12(1) = G1(3) = X(6)

D21(0) = G2(0) = X(1)

D21(1) = G2(2) = X(5)

D22(0) = G2(1) = X(3)

D22(1) = G2(3) = X(7)
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3.	 Then subtract complex number "b" from “a” to get the term "a-b". The difference term "a-b" is 
		  multiplied with the phase factor or twiddle factor k" "W

N
to form a new complex number "B".

The above basic computation can be expressed by a signal flow graph shown in Fig 1.43. (For 
detailed discussion on signal flow graph, refer Section 1.1.12).

The signal flow graph is also called a butterfly diagram since it resembles a butterfly. In radix-2 
FFT, N/2 butterflies per stage are required to represent the computational process. 

The butterfly diagram used to compute the 8-point DFT via radix-2 DIF FFT can be arrived as shown 
below using the computations shown in previous section.

Flow Graph (or Butterfly Diagram) for First Stage of Computation

b

1

WN
k

1

1

�1

Fig 1.43: Basic butterfly or flow graph
of DIF radix-2 FFT.
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B a b)WN
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Output of first stage

First stage of flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIF FFT.Fig 1.44:
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Flow Graph (or Butterfly Diagram) for Second Stage of Computation

Flow Graph (or Butterfly Diagram) for Third Stage of Computation
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Fig 1.45: Second stage of flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIF FFT.
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Fig 1.46: Third stage of flow graph (or b erfly diagram) for 8-point DFT via radix-2 DIF FFT.utt

d  (0) + d  (1)  =  D  (0)  =  G (0)         =   X(0)11 11 11 1
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The Combined Flow Graph (or Butterfly Diagram) of All the Three Stages of Computation

1.10.3  Comparison of DIT and DIF Radix-2 FFT

Differences in DIT and DIF 

1.	 In DIT the time domain sequence is decimated, whereas in DIF the frequency domain sequence 
is decimated.

2.	 In DIT the input should be in bit-reversed order and  the output will be in normal order.  
For DIF the reverse is true, i.e., the input is in a normal order, while the output is bit reversed. 

3.	 Considering the butterfly diagram, in DIT complex multiplication takes place before  the add-
subtract operation, whereas in DIF complex multiplication takes place after the add-subtract 
operation.

Similarities in DIT and DIF
1.	 For both the algorithms, the value of N should be such that N = 2m and there will be  m stages 
	 of butterfly computations with N/2 butterfly per stage.
2.	 Both the algorithms involve the same number of operations. The total number of complex 
	 additions are Nlog2N and the total number of complex multiplications are (N/2) log2N.
3.	 Both the algorithms require bit reversal at some place during computation.

1.11  Computation of Inverse DFT using FFT    

Let, x(n) and X(k) be N-point DFT pair. 

Now by the definition of inverse DFT,
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In equation (1.81), the expression inside the bracket  is  similar to that of  DFT computation of a 
sequence with following differences.

	 1. The summation index is k instead of n.
	 2. The input sequence is X(k) instead of x(n).

3. The phase factors are conjugate of the phase factor used for DFT.

Hence, in order to compute inverse DFT of X(k), the FFT algorithm can be used by taking the 
conjugate of phase factors. Also from equation (1.81) it is observed that the output of FFT computation 
should be divided by N to get x(n).  

	 The following procedure can be followed to compute inverse DFT using FFT algorithm.
1. Take N-point frequency domain sequence X(k) as input sequence.
2. Compute FFT by using conjugate of phase factors.
3. Divide the output sequence obtained in FFT computation by N to get the sequence x(n).

Thus, a single FFT algorithm can be used for evaluation of both DFT and inverse DFT.

Example 1.12
An 8-point sequence is given by x(n) = {2, 1, 2, 1, 1, 2, 1, 2}. Compute 8-point DFT of x(n) by 

a) radix-2 DIT-FFT and  b) radix-2 DIF-FFT. Also sketch the magnitude and phase spectrum.

Solution

a)  8-point DFT by Radix-2 DIT-FFT

The given sequence is first arranged in the bit reversed order as shown 
in Table 1.

Table 1

          x(n)	         x(n) 
   Normal order	            Bit reversed order

x(0) = 2	       x(0) = 2

x(1) = 1	       x(4) = 1

x(2) = 2	       x(2) = 2

x(3) = 1	       x(6) = 1

x(4) = 1	       x(1) = 1

x(5) = 2	       x(5) = 2

x(6) = 1	       x(3) = 1

x(7) = 2	       x(7) = 2

The 8-point DFT by radix-2 FFT involves three stages of computation with 4-butterfly computations in 
each stage. The sequence rearranged in the bit reversed order forms the input to the first stage. For other stages of 
computation, the output of previous stage will be the input for the current stage.

First stage computation

The input sequence of first stage computation = { 2, 1, 2, 1, 1, 2,  1, 2}

The butterfly computations of first stage are shown in Fig 1.

The output sequence of first stage of computation = { 3,  1,  3,  1,  3,  –1,  3,  –1 }

The phase factor involved in 
first stage of computation is 
W2

0 . Since W 12
0 = , it is not 

considered for computation. 

x(0) = 2

x(6) = 1

x(1) = 1

1

x(3) = 1

x(5) = 2

x(7) = 2

Fig 1: Butterfly diagram for
first stage of radix-2 DIT FFT.
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Second stage computation

The input sequence to second stage computation = { 3,  1,  3,  1,  3,  –1,  3,  –1 }

The phase factors involved in second stage computation are W 0
4  and W 1

4 . 

The butterfly computations of second stage are shown in Fig 2.

The output sequence of second stage of computation  = { 6,  1 -  j,  0, 1 + j,  6,  -1 +  j,  0,  -1 -  j }

Third stage computation

The input sequence to third stage computation = {6, 1 – j, 0, 1 + j, 6,  –1 + j, 0, –1 – j}

The phase factors involved in third stage computation are , , ,W W W and W8
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The butterfly computations of third stage are shown in Fig 3.
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The output sequence of third stage of computation  = { 12, 1 + j0.414, 0, 1 + j2.414, 0, 1 - j2.414,  0,  1 - j0.414 }

The output sequence of third stage of computation is the 8-point DFT of the given sequence in normal order.

\ DFT { x(n) } = X(k) = { 12,  1 + j0.414,  0,  1 + j2.414,  0,  1 - j2.414,  0,  1 - j0.414 }

b)  8-point DFT by Radix-2 DIF-FFT

For 8-point DFT by radix-2 FFT we require three stages of computation with 4-butterfly computations in each 
stage. The given sequence is the input to first stage. For other stages of computations, the output of previous stage 
will be the input for the current stage.

First stage computation

The input sequence for first stage of computation  =  { 2,  1, 2,  1,  1,  2,  1,  2 }

The phase factors involved in first stage computation are , , , .W W W and W8
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The butterfly computations of first stage are shown in Fig 4.

The output sequence of third stage of computation  = { 3,  3,  3,  3,  1, j
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Second stage computation

The input sequence for second stage of computation  = { 3,   3,   3,   3,   1, j
2
1

2
1− + ,   -j,   j

2
1

2
1+  }

The phase factors involved in second stage computation are W4
0  and W4

1  . 	

The butterfly computations of second stage are shown in Fig 5.

The output sequence of second stage of computation  = { 6,   6,   0,   0 ,   1 - j,   j1.414,  1 + j,   j1.414 }
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Third stage computation

	 The input sequence to third stage of computation  = { 6,   6,   0,   0 ,   1 - j,   j1.414,  1 + j,   j1.414 }

The butterfly computations of third stage are shown in Fig 6.

The output sequence of third stage of computation = {12,   0,   0,   0,  1 + j0.414,   1 – j2.414,  1 + j2.414,  1 – j0.414 }

The output sequence of third stage of computation is the 8-point DFT of the given sequence in bit reversed order.

In DIF-FFT algorithm, the input to the first stage is in normal order and the output of the third stage is in the 
bit reversed order. Hence, the actual result is obtained by arranging the output sequence of third stage in normal 
order as shown in Table 2.
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The phase factor involved in 
third stage of computation is 
W2

0 . Since W 12
0 = , it is not 

considered for computation. 
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Table 2

∴ DFT {x(n)}  =  X(k)  =  { 12,    1+ j0.414,   0,   1+ j2.414,   0,   1– j2.414,   0,   1 – j0.414 }

Magnitude and phase specturm

Each element of the sequence X(k) is a complex number and they are expressed in rectangular coordinates. 
If they are converted to polar coordinates then the magnitude and phase of each element can be obtained.

Note: The rectangular to polar conversion can be obtained by using R → P conversion in calculator.

X(k) = {12,  1 + j0.414,  0,  1 + j2.414,  0,  1 - j2.414,  0,  1 - j0.414 } 
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The magnitude specturm is the plot of the magnitude of each sample of X(k) as a function of k as shown in 
Fig 7. The phase spectrum is the plot of phase of X(k) as a function of k as shown in Fig 8.

When N-point DFT is performed on a sequence x(n), then the DFT sequence X(k) will have a periodicity of 
N. Hence, in this example the magnitude and phase specturm will have a periodicity of 8 as shown in Figs 7 and 8.

  X(k)	                                   X(k)

Bit reversed order          Normal order

X(0) = 12	      X(0) = 12

X(4) = 0	      X(1) = 1+ j0.414

X(2) = 0	      X(2) = 0

X(6) = 0	      X(3) = 1+ j2.414

X(1) = 1+ j0.414	      X(4) = 0

X(5) = 1– j2.414	      X(5) = 1– j2.414

X(3) = 1+ j2.414	      X(6) = 0

X(7) = 1– j0.414	      X(7) = 1– j0.414
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k
Fig 7 : Magnitude spectrum.
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1.12  Linear Filtering using FFT

The concept of linear filtering using DFT is discussed in Section 1.7. The drawback in DFT is that 
the direct computation of DFT involves large number of calculations. This drawback can be overcome by 
using FFT algorithms for computing the DFT.

The following procedure can be followed to compute response of filter using FFT.

1.   Let input x(n) be N1-point sequence and filter impulse response h(n) be N2-point sequence and 
                 so the response y(n) of the filter is N1 + N2 - 1 point sequence. Let, N1 + N2 - 1 = M.

2.   Compute M-point FFT of x(n) to get X(k).

3.   Compute M-point FFT of h(n) to get H(k).

4.   Determine the product of X(k) and H(k). Let,  Y(k) = X(k) H(k).

5.   Take M-point inverse DFT using FFT of Y(k) to get y(n) which is the response of the filter.

Note: Refer Examples 1.13 and 1.14 for FIR filter response using FFT.

Example 1.13

In an FIR filter the input x(n) = {1, 2, 3} and the impulse response of FIR filter h(n) = {–1, –1}. Determine the 
response of the FIR filter by radix-2 DIT FFT.

Solution

The response y(n) of FIR filter is given by linear convolution of input x(n) and impulse response h(n).  

              ∴ Response or Output,  y(n) = x(n) )  h(n)

The DFT (or FFT) supports only circular convolution. Hence to get the result of linear convolution from circular 
convolution, the sequences x(n) and h(n) should be converted to the size of y(n) by appending with zeros and circular 
convolution of x(n) and h(n) is performed.

The length of x(n) is 3 and h(n) is 2. Hence, the length of y(n) is 3 + 2 – 1 = 4. Therefore, given sequences x(n) 
and h(n) are converted to 4-point sequences by appending zeros.

∴ x(n) = {1, 2, 3, 0} and h(n) = {–1, –1, 0, 0}

Now the response y(n) is given by, y(n) = x(n) U  h(n).

Let, DFT {x(n)} = X(k),    DFT {h(n)} = H(k),    DFT {y(n)} = Y(k).  

By convolution theorem of DFT we get,

DFT {x(n) U  h(n)} = X(k) H(k)

∴ y(n) = DFT–1 {Y(k)} = DFT –1 {X(k) H(k)} 

The various steps in computing y(n) are, 

	 Step-1 :   Determine X(k) using radix-2 DIT algorithm.

	 Step-2 :   Determine H(k) using radix-2 DIT algorithm.

	 Step-3 :   Determine the product X(k)H(k).

	 Step-4 :   Take inverse DFT of the product X(k)H(k) using radix-2 
                                   DIT algorithm.
Step-1: To determine X(k)

Since x(n) is a 4-point sequence, we have to compute 4-point DFT. 
The 4-point DFT by radix-2 FFT consists of two stages of computations with 
2-butterflies in each stage. The given sequence x(n) is first arranged in bit 
reversed order as shown in Table 1.

The sequence arranged in bit reversed order forms the input sequence to first stage computation.

       x(n)       	            x(n)  

Normal order   Bit reversed order

x(0) = 1              x(0) = 1

x(1) = 2              x(2) = 3

x (2) = 3             x(1) = 2

x(3) = 0              x(3) = 0

Table 1



1. 103Chapter 1 - Discrete Fourier Transform

First stage computation

Input sequence to first stage  = { 1,   3,   2,   0 }.  
The butterfly computations of first stage are shown in Fig 1.
Output sequence of first stage of computation = { 4,   - 2,   2,   2 }.

Second stage computation

Input sequence to second stage computation = { 4,   - 2,   2,   2 }

The phase factors involved in second stage computation are W4
0  and W4

1  . 

The butterfly computations of second stage are shown in Fig 2.

Output sequence of second stage computation = { 6,   −2 – 2j,   2,   −2 + 2j }  

The output sequence of second stage of computation is the 4-point DFT of x(n).

X(k) = DFT {x(n)} = {6,  - 2 - 2j,  2,  -2 + 2j }

Step-2: To determine H(k)

Since h(n) is a 4-point sequence, we have to compute 4-point DFT.  
The 4-point DFT by radix-2 FFT consists of two stages of computations with 
2-butterflies in each stage. The sequence h(n) is first arranged in bit reversed 
order as shown in the Table 2.

The sequence in bit reversed order forms the input sequence to first 
stage computation.

First stage computation

Input sequence of first stage = { –1,   0,   –1,   0 }. 

The butterfly computations of first stage are shown in Fig 3.

Output sequence of first stage computation = { –1,   –1,   –1,   –1 }
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       h(n)       	            h(n)  

Normal order  Bit reversed order

h(0) =  -1           h(0) =  -1

h(1) =  -1           h(2) =    0

h(2) =    0           h(1) =  -1

h(3) =    0           h(3) =    0

Table 2

The phase factor involved in 
first stage of computation is 
W2

0 . Since W 12
0 = , it is not 

considered for computation. 

The phase factor involved in 
first stage of computation is 
W2

0 . Since W 12
0 = , it is not 

considered for computation. 

Butterfly diagram of first stage of radix-2 DITFig 1: FFT of x(n).

x(0) = 1

2 0 = 2�

1 3 = 2� �

1 3 = 4�

x(2) = 3

x(1) = 2

x(3) = 0 2 0 = 2�

1

�1

1
1

1

1
1

�1

Butterfly diagram for second stage of radix-2 DIT FFT of x(n).Fig 2:

1

�1

1
1

1
1

1

1

1

W4
0 1�

W j4
1 � �

�1

4

�2

2

2

4 2 = 6 = X(0)�

� 2 2 ( j) = 2 2j = X(1)� � � �

4 2 = 2 = X(2)�

� � � �2 2 ( j) = 2 + 2j = X(3)

Butterfly diagram for first stage of radix-2 DIT FFT of h(n).Fig 3:

h(0) = 1�

h(2) = 0

h(1) = 1�

h(3) = 0

� � �1 0 = 1

� � �1 0 = 1

� � �1 0 = 1

� � �1 0 = 1

1

�1

1
1

1

1
1

�1



      Discrete Time Signal Processing1. 104

Second stage computation

Input sequence to second stage computation = { –1,   –1,   –1,   –1 }  

The phase factors involved are W4
0  and W4

1  .

The butterfly computations of second stage are shown in Fig 4.

Output sequence of second stage computation = { –2,   –1 + j,   0,   –1 – j }

The output sequence of second stage computation is the 4-point DFT of h(n).

	

Step-3: To determine the product X(k)H(k)

Let the product,   X(k) H(k)  =  Y(k);   for k = 0, 1, 2, 3.

when k = 0;     Y(0)  =  X(0) × H(0)  =  6 × (–2)                  =  –12

when k = 1;     Y(1)  =  X(1) × H(1)  =  (–2 – 2j) × (–1 + j) =  4

when k = 2;     Y(2)   =  X(2) × H(2)  =  2 × 0                     =  0

when k = 3;     Y(3)  =  X(3) × H(3)  =  (–2+2j)× (–1–j)      =  4

∴ Y(k)  =  { –12,   4,    0,   4}

Step-4: To determine inverse DFT of Y(k)

The 4-point inverse DFT of  Y(k) can be computed using radix-2 DIT 
FFT by taking   conjugate of the phase factors and then dividing the output 
sequence of FFT  by 4. 

Y(k) = { –12,   4,    0,   4}

The 4-point inverse DFT of Y(k) using radix-2  DIT FFT involves two 
stages of computations with 2-butterflies in each stage. The sequence Y(k) 
is arranged in bit reversed order as shown in the Table 3.

The sequence arranged in bit reversed order forms the input sequence 
to first stage computation.

First stage computation

Input sequence to first stage  = { –12,   0,   4,   4 }.  

The butterfly computations of first stage are shown in Fig 5.

The output sequence of first stage computation = { – 12,   – 12,   8,   0 } 
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∴ H(k)  =  DFT {h(n)}  =  { – 2,   –1 +  j,   0,   –1 – j }

       Y(k)       	            Y(k)  

Normal order   Bit reversed order

 Y(0)  = -12        Y(0)  =  -12

 Y(1)  =    4         Y(2)  =    0

 Y(2)  =    0         Y(1)  =    4

 Y(3)  =    4         Y(3)  =    4

Table 3

The phase factor involved in first stage of 

computation is W2
0 *

^ h . Since W 12
0 * =^ h , 

it is not considered for computation. 

Butterfly diagram for second stage of radix-2 DIT FFT of h(n) .Fig 4:

�1

�1

�1

�1

� � �1 + ( 1) = 2 = H(0)

� � � �1 + ( 1)( j) = 1 +  j = H(1)

1 ( 1) = 0 = H(2)� � �

� � � �1 1( 1)( j) = j = H(3)� �

1

�1

1
1

1
1

1

1

1

W4
0 1�

W j4
1 � �

�1

Y(0) = 12�

� � �12 0 = 12

� �12 + 0 = 12

Butterfly diagram for first stage of inverse DFT of Y(k).Fig 5:

Y(2) = 0

Y(1) = 4

Y(3) = 4

4 + 4 = 8

4 4 = 0�

1

�1

1
1

1

1
1

�1



1. 105Chapter 1 - Discrete Fourier Transform

Second stage computation

Input sequence to second stage computation = { – 12,  – 12,   8,   0 }

The phase factors involved are W and W4
0

4
1* *

^ ^h h

The butterfly computation of second stage is shown in Fig 6.

The output sequence of second stage computation = { – 4,   – 12,   – 20,   – 12 }

The sequence y(n) is obtained by dividing each sample of output sequence of second stage by 4.

∴ The response of the FIR filter, y(n) = , , ,
4
4

4
12

4
20

4
12- - - -$ .= { -1,   -3,   -5,   -3 }

Example 1.14
Determine the response of the FIR filter when the input sequence x(n) = {–1, 2, 2, 2, –1} by radix 2 DIT FFT. 

The impulse response of the FIR filter is h(n) = {–1, 1, –1, 1}.

Solution:
The response of an FIR filter is given by linear convolution of input x(n) and impulse response h(n). 

	 ∴  Response or Output, y(n) = x(n) *  h(n).

The DFT (or FFT) supports only circular convolution. Hence, to get the result of linear convolution from 
circular convolution, the sequence x(n) and h(n) should be converted to the size of y(n) by appending with zeros, and 
then circular convolution of x(n) and h(n) is performed.

The length of x(n) = 5, and h(n) = 4.  Hence the length of y(n) is 5 + 4 – 1 = 8.

Therefore, x(n) and h(n) are converted into 8-point sequence by appending zeros.

	 ∴ x(n) = { –1,   2,   2,   2,   –1,   0,   0,   0 }   and    h(n) = { –1,  1,   –1,   1,   0,   0,   0,   0 }

Now, the response y(n) is given by, y(n) = x(n) U  h(n).

Let,  DFT {x(n)} = X(k),   DFT {h(n)} = H(k),    DFT {y(n)} = Y(k). 

By convolution theorem of DFT we get,

 DFT {x(n) U  h(n)} = X(k) H(k)

 ∴ y(n) = DFT 
-1 {Y(k)} = DFT-1 {X(k) H(k)} 

The various steps in computing y(n) are, 

	 Step-1 :   Determine X(k) using radix-2 DIT algorithm.

	 Step-2 :   Determine H(k) using radix-2 DIT algorithm.

	 Step-3 :   Determine the product X(k)H(k).

	 Step-4 :   Take inverse DFT of the product X(k)H(k) using radix-2 DIT algorithm.
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Fig 1: Butterfly diagram for first stage of radix-2 DIT FFT of x(n).
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Step-1: To determine X(k)

Since x(n) is an 8 point sequence, we have to compute 8-point DFT.  

The 8-point DFT by radix-2 FFT algorithm consists of three 
stages of computations with 4-butterflies in each stage. The given 
sequence x(n) is arranged in bit reversed order as shown in Table 1.

The sequence arranged in bit-reversed order forms the input 
sequence to the first stage computation.

First stage computation

Input sequence to first stage  = { –1,  –1,  2,  0,  2,  0,  2,  0 }. 

The butterfly computation of first stage is shown in Fig 1.

Output sequence of first stage of computation  =  { –2,    0,    2,    2,    2,    2,    2,    2 }

Second stage computation

The input sequence to second stage of computation =  { –2,    0,    2,    2,    2,    2,    2,    2 }

Phase factors involved in second stage are W4
0  and W4

1  .
The butterfly computation of second stage is shown in Fig 2.

Output sequence of second stage of computation = { 0,   –2j,   –4,   2j,   4,   2 – 2 j,   0,    2 + 2j }

Table 1

           x(n)                            x(n)	                      

 Bit reversed order      Normal order   

 x(0)  =  -1                    x(0)  =   -1

 x(1)  =    2                    x(4)  =   -1

 x(2)  =    2                    x(2)  =     2

 x(3)  =    2                    x(6)  =     0

 x(4)  =  -1                    x(1)  =     2

 x(5)  =    0                    x(5)  =     0

 x(6)  =    0                    x(3)  =     2

 x(7)  =    0                    x(7)  =     0

The phase factor involved in 
first stage of computation is 
W2

0 . Since W 12
0 = , it is not 

considered for computation. 
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Third stage computation

Input sequence to third stage computation = { 0,    –2j,    –4,    2j,    4,   2 – 2j,    0,    2 + 2j }.

Phase factors involved are , ,W W W andW8
0

8
1

8
2

8
3 .

The butterfly computation of third stage is shown in Fig 3.

	 		  	

  

The output sequence of third stage of computation  = { 4, -j4.828, -4, -j0.828, -4,  j0.828,  -4,  j4.828 }

\ DFT  { x(n) } = X(k) = {  4, -j4.828, -4, -j0.828, -4,  j0.828,  -4,  j4.828 }

Step 2: To determine H(k)

Since h(n) is an 8-point sequence, we have to compute 8-point 

DFT.  The 8-point DFT by radix-2 FFT consists of three stages of 

computations with 4-butterflies in each stage.

The sequence h(n) is first arranged in bit reversed order as 

shown in  Table 2 .

The sequence arranged in bit reversed order forms the input 

sequence to the first stage.

First stage computation

Input sequence to first stage computation = { –1,    0,    –1,    0,    1,    0,    1,    0 }  

The butterfly computations of first stage is shown in Fig 4. 

Output sequence of first stage of computation = { –1,    –1,    –1,    –1,    1,    1,    1,    1 }
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   h(n)	 h(n)

Normal order	 Bit reversed order

   h(0)   =   –1                  h(0)   =    –1

   h(1)   =     1                  h(4)   =      0

   h(2)   =   –1                  h(2)   =    –1

   h(3)   =     1                  h(6)   =      0

   h(4)   =     0                  h(1)   =      1

   h(5)  =      0                  h(5)   =      0

   h(6)  =      0                  h(3)   =      1

   h(7)  =      0                  h(7)   =      0

Table 2

W
8

3 �

Fig 3: Butterfly diagram for third stage of radix-2 DIT FFT of x(n) .
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Second stage computation 

Input sequence to second stage of computation   =    { –1,    –1,    –1,    –1,    1,    1,    1,    1 }

Phase factors involved in second stage are W4
0  and W4

1 . 

The butterfly computations of second stage are shown in Fig 5.

Output sequence of second stage of computation  =  { –2,    –1 +  j,    0,    –1 – j,    2,    1 – j,    0,    1 + j } 

Third stage computation

Input sequence to third stage computation     =   { –2,    –1 +  j,    0,    –1 – j,    2,    1 – j,    0,    1 + j }

Phase factors involved in third stage computations are , , , and .W W W W8
0

8
1

8
2

8
3   

The butterfly computations of third stage are shown in Fig 6.

	  	 	

The phase factor involved in 
first stage of computation is 
W2

0 . Since W 12
0 = , it is not 

considered for computation. 

cos sin

W e e

W e e

j

j

1

2 2

4
0 j2

4
0

4
1 j2

4
1 j

2

0

π π

= = =

= =

= − + −

= −

#

# #

r

r r

-

- -

` `j j

1W e e8
0 j2

8
0

0= = =#r-

0.707 0.707cos sinW e e j j j
4 4 2

1
2
1

8
1 j

4j2
8
1 π π= = = − + − = − = −

#
r-#r-

` `j j

cos sinW e e j j
2 28

2 j2
8
2 j

2 π π= = = − + − = −
# #r r- -

` `j j

0.707 0.707cos sinW e e j j j
4
3

4
3

2
1

2
1

8
3 j2

8
3 j

4
3 π π= = = − + − = − − = − −

# #r r- -
` `j j

Fig 4: Butterfly diagram for first
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stage of radix-2 DIT FFT of h(n).
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Output  sequence to third stage computation = { 0, -1 - j0.414, 0, -1 - j2.414, -4, -1 + j2.414,  0,  -1 + j0.414 }

The output sequence of third stage computation is the 8-point DFT of h(n).

Step-3: To determine the product X(k)H(k)

Let the product of X(k)H(k) = Y(k);    for k = 0, 1, 2, 3, 4, 5, 6, 7

	 ∴ Y(k) = X(k)H(k)

When k = 0 ;   Y(0) = X(0)H(0)  =   4 × 0 = 0

When k = 1 ;   Y(1) = X(1)H(1)  =   -j4.828 × [ -1- j0.414 ]  = -2 + j4.828

When k = 2 ;   Y(2) = X(2)H(2)  =   - 4 × 0 = 0

When k = 3 ;   Y(3) = X(3)H(3)  =   -j 0.828 × [ -1-j 2.414 ] = -2 + j 0.828

When k = 4 ;   Y(4) = X(4)H(4)  =   - 4 × -4 = 16

When k = 5 ;   Y(5) = X(5)H(5)  =   j 0.828 × [ -1+j 2.414 ]   = -2 - j 0.828

When k = 6 ;   Y(6) = X(6)H(6)  =  -4 × 0 = 0

When k = 7 ;   Y(7) = X(7)H(7)  =  j4.828 × [ -1 + j0.414 ] = - 2 -  j4.828

Step-4: To determine inverse DFT of Y(k)

The 8-point inverse DFT of  Y(k) can be computed using 
radix-2 DIT FFT by taking conjugate of the phase factors and then 
dividing the output sequence of FFT  by 8. 

The 8-point inverse DFT of Y(k) using radix-2 DIT FFT 
involves three stages of computations with 4-butterflies in each 
stage. The sequence Y(k) is arranged in bit reversed order as shown 
in Table 3.

The sequence arranged in bit reversed order forms the input 
sequence to first stage computation.

\ DFT  { h(n) } = H(k) = { 0, -1 - j0.414, 0, -1 - j2.414, -4, -1 + j2.414,  0,  -1 + j0.414 }

\ Y(k) = { 0, -2 + j4.828, 0, -2 + j 0.828, 16,  -2 - j 0.828,  0,  -2 - j 4.828 }

Table 3

           Y(k)	                           Y(k)
     Normal order              Bit reversed order

Y(0) =     0	      Y(0) =    0
Y(1) =   -2 + j4.828	      Y(4) =   16
Y(2) =    0	      Y(2) =    0
Y(3) =   -2 + j0.828	      Y(6) =    0
Y(4) =   16	      Y(1) =   -2 + j4.828
Y(5) =   -2 - j0.828	      Y(5) =   -2 - j0.828
Y(6) =    0	      Y(3) =   -2 + j0.828
Y(7) =   -2 - j4.828	      Y(7) =   -2 - j4.828

Fig 6: Butterfly diagram for third stage of radix-2 DIT FFT of h(n) .
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First stage computation

Input sequence of first stage  = { 0,  16,  0,  0 ,  -2 +  j4.828,  -2 + j0.828,  -2 + j 0.828,  -2 - j4.828 }  

The butterfly computations of first stage are shown in Fig 7.

Output sequence to first stage = { 16, -16, 0, 0, - 4 + j4,  j5.656, - 4 - j4,  j5.656 }

Second stage computation 

Input sequence of second stage = { 16, -16, 0, 0, -4 + j4, j5.656, -4 - j4, j5.656 }

The butterfly computation of second stage is shown in Fig 8.

The phase factors involved are W and W4
0 *

4
1 *

^ ^h h .

	

Output sequence to second stage = { 16, -16, 16, -16, -8, - 5.656 + j5.656,  j8, 5.656 + j5.656 }

Third stage computation

Input sequence of third stage = { 16, -16, 16, -16, - 8, - 5.656 + j 5.656 , j8, + 5.656  + j 5.656 }

The butterfly computation of third stage is shown in Fig 9.

The phase factors involved are , , , .W W W and W8
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stage of computation is W2
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Fig 7: Butterfly diagram for first stage of inverse DFT of Y(k).
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Output sequence of third stage computation  = { 8,    –24,    8,    –24,    24,    –8,   24,   –8 }  

The sequence y(n) is obtained by dividing each sample of output sequence of third stage by 8.

∴ The response of the FIR system,  y(n)  =  , , , , , , ,
8
8

8
24

8
8

8
24

8
24

8
8

8
24

8
8- - - - -

$ .

                                                                     =  { 1,    –3,    1,    –3,    3,    –1,    3,    –1 }

1.13  Summary of Important Concepts
1.     A discrete signal is a function of a discrete independent variable.
2.	 In a discrete time signal, the value of discrete time signal and the independent variable time are discrete.
3.	 A digital signal is same as a discrete signal except that the magnitude of the signal is quantized.
4.	 A discrete time sinusoid is periodic only if its frequency is a rational number. 
5.	 Discrete time sinusoids whose frequencies are separated by an integer multiple of 2π are identical.
6.	 Sampling is the process of  a conversion of a continuous time signal into a discrete time signal.
7.	 The time interval between successive samples is called sampling time or sampling period. 
8.	 The inverse of sampling period is called sampling frequency.
9.	 Signals that can be completely specified by mathematical equations are called deterministic signals.
10.	 The convolution of N1 and N2 sample sequences produces a sequence consisting of N1+N2–1 samples.
11.	 In an LTI system response for an arbitrary input is given by convolution of input with impulse response. 
12.	 The output sequence of circular convolution is also periodic sequence with periodicity of N samples.
13.	 The DFT has been developed to convert a continuous function of ω to a discrete function of ω.
14.	 The DFT of a discrete time signal can be obtained by sampling the DTFT of the signal.
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15.	 The sampling of  the DTFT is conventionally performed at N equally spaced frequency points in the period,  
  	 0 ≤ ω ≤ 2π .
16.	 DFT sequence starts at k = 0, corresponding to ω = 0 but does not include k = N, corresponding to ω = 2π. 
17.	 X(k) is also called discrete frequency spectrum (or signal spectrum) of the discrete time signal x(n).
18.	 The plot of samples of magnitude sequence versus k is called magnitude spectrum. 
19.	 The plot of samples of phase sequence versus k is called phase spectrum.
20.	 The DFT sequence X(k) is periodic with periodicity of  N samples. 
21. 	The DFT of  circular convolution of two sequences is equivalent to the product of their individual  DFTs. 
22. 	The N-point DFT of a finite duration sequence can be obtained from the Z-transform of the sequence by evaluating 
	 the Z-transform at N equally spaced points around the unit circle.
23. 	The DFT supports only circular convolution and so linear convolution using DFT has to be computed  via circular  
	 convolution.
24. 	FFT is a method (or algorithm) for computing the DFT with reduced number of calculations.
25. 	In N-point DFT by radix-r FFT, the number of stages of computation will be “m” times, where m = logrN. 
26.	 In direct computation of N-point DFT, the total number of complex additions are N(N–1) and total number of  
	 complex multiplications are N2.
27. 	In computation of N-point DFT via radix-2 FFT, the total number of complex additions are Nlog2N and total 
	 number of complex multiplications are (N/2) log2N.
28.	 The complex valued phase factor or twiddle factor  WN  is defined as, W e N

j2

N =
r

- .
29.	 The term W in phase factor represents a complex number 1∠–2π. 
30.	 In DIT the time domain sequence is decimated, whereas in DIF  the frequency domain sequence is decimated.
31.	 In radix-2 FFT algorithm, the N-point DFT can be realised from two numbers of N/2 point DFTs, the   
	 N/2 point DFT can be realised from two numbers of N/4 points DFTs, and so on. 
32.	 In radix-2 FFT, N/2 butterflies per stage are required to represent the computational process. 
33.	 In radix-2 DIT FFT, the input should be in bit reversed order and  the output will be in normal order.
34.	 In radix-2 DIF FFT, the input should be in normal order and  the output will be in bit reversed order.
35.	 In butterfly computation of  DIT, the multiplication of  phase factor takes place before  the add-subtract operation.
36.	 In butterfly computation of  DIF, the multiplication of  phase factor takes place after  the add-subtract operation.
37. 	In FFT, the phase factor for computing inverse DFT will be conjugate of  phase factors for computing DFT.

1.14  Short-Answer Questions

Q1.1	 Express the discrete time signal x(n) as a summation of impulses.

	 If we multiply a signal x(n) by a delayed unit impulse δ(n – m), then the product is x(m), where x(m) is the  
	 signal sample at n = m [because δ(n – m) is 1 only at n = m and zero for other values of n]. Therefore, if we  
	 repeat this multiplication over all possible delays in the range − ∞ < m < ∞ and sum all the product sequences, 
	 then the result will be a sequence that is equal to the sequence x(n).

	          ∴  x(n) = ... x(–2) δ(n + 2) + x(–1) δ(n + 1) + x(0) δ(n) + x(1) δ(n – 1) + x(2) δ(n – 2) + ...

			       = x(m) n m
m

−δ
3

3

=-

^ h/   

Q1.2    State the need for sampling.

Sampling is needed for processing of a continous time signal using its sampled version of signal in digital  
            systems.
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Q1.3	 What are the basic elements used to construct the block diagram of a discrete time system?
	 The basic elements used to construct the block diagram of a discrete time system are adder, constant multiplier  
            and unit delay element.

Q1.4	 Perform convolution of the two sequences, x(n) = {2, 2}  and h(n) = {1, 1, 1, 1}
Solution:

The input sequences x(n) is arranged as a column and the impulse response is arranged as a row as shown  
                below. The elements of the two-dimensional array are obtained by multiplying the corresponding row element  
            with the column element. The sum of the diagonal elements gives the samples of y(n).

The input sequence starts at n = 0 and the impulse response sequence starts at n = 0. Therefore, the output  
            sequence starts at n = 0 + 0 = 0.

The input consits of 4 samples and impulse response consists of 2 samples, so the output consists of 
4 + 2 - 1 = 5 samples.

∴     y(0) = 2		   y(3) = 2 + 2 = 4

y(1) = 2 + 2 = 4 	  y(4) = 2

y(2) = 2 + 2 = 4

∴ y(n) = {2, 4, 4, 4, 2}
        ↑

Q1.5	 Perform convolution of the two sequences x(n) = {1, 1, 3} and h(n) = {1, 4, -1}
Solution:

The input sequence  x(n) is arranged as a column and the impulse response is arranged as a row as shown  
       below. The elements of the two-dimensional array are obtained by multiplying the corresponding row  
            element with the column element. The sum of the diagonal elements gives the samples of y(n).

	

The input sequence starts at n = 0 and the impulse response sequence starts at n = 0. Therefore, the output  
             sequence starts at n = 0 + 0 = 0.

The input and impulse response consists of 3 samples, so the output consists of 3 + 3 - 1 = 5 

x(n)
+

Fig a: Adder. Fig b: Constant multiplier.

a

Fig c: Unit delay element.
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∴     y(0) = 1		       y(3) = 12 -1 = 11

y(1) = 1 + 4 = 5	      y(4) = -3 

y(2) = 3 + 4 - 1 = 6

∴ y(n) = {1, 5, 6, 11, -3}
                 ↑

Q1.6	 Perform the following convolutions.
a)  x(n) ∗ d(n)            b) d(n) ∗ [h1(n) + h2(n)]

Solution:

a) x(n) (n) x(n) (n m)
m

=δ δ −
3

3

=

+

-

) /

                     x(n)
m n

= =
=

−x(m) (n m)δ

b) (n) [h (n) h (n)] (n) h (n) (n) h (n)1 2 1 2+ = +δ δ δ) ))

                                         =  h1(n) + h2(n)

Q1.7	 Perform the circular convolution of the two sequences x1(n) = {1, 2, 3} and x2(n) = {4, 5, 6}.

Solution:

	 Let x3(n) be the sequence obtained from circular convolution of x1(n) and x2(n). The sequence x1(n) can be 
           arranged as a column vector of order 3 ×1 and using the samples of x2(n) a 3 × 3 matrix is formed as shown 
            below. The product of  two matrices gives the sequence x3(n).
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		  ∴ x3(n) = x1(n) U  x2(n) = {31, 31, 28}.

Q1.8	 Perform the linear convolution of the two sequences x1(n) = {1, 2} and x2(n) = {3, 4} via circular convolution.
Solution:

	 Let x3(n) be the sequence obtained from linear convolution of x1(n) and x2(n). The length of  x3(n) will be 2 + 
            2 – 1 = 3. Let us convert x1(n) and x2(n) into three sample sequences by padding with zeros as shown below.

x1(n) = {1, 2, 0} and x2(n) = {3, 4, 0} 
	 Now the circular convolution of x1(n) and x2(n) will give x3(n). The sequence x1(n) is arranged as a column 
              vector and using the sequence x2(n), a 3×3 matrix is formed as shown below. The product of the two matrices 
            gives the sequence x3(n).
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                   ∴  x3(n) = x1(n)  ∗  x2(n) = {3, 10, 8}

Q1.9    In what way is zero padding implemented in the overlap save method?

	 In the overlap save method, zero padding is employed to convert the smaller input sequence to the size of the  
              output sequence of each sectioned convolution. It is also employed to convert either the last section or the first  
           section of the longer input sequence to the size of the output sequence of each sectioned convolution. (This  
            depends on the method of overlapping input samples).

d(n - m) = 1 ;  m = n
               = 0 ;  m ≠ n

Using solution of (a)
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Q1.10	 Compare the overlap add and overlap save method of sectioned convolutions.

	           Overlap add method                                              Overlap save method

1.	 Linear convolution of each section	  1.  Circular convolution of each section
	 of longer sequence with smaller		   of longer sequence with smaller
	 sequence is performed.                                        sequence is performed.(after converting
			    them to the size of the output sequence).
2. 	Zero padding is not required.	 2.	 Zero padding is required to convert the
                                                                                	smaller input sequence to the size of the 
                                                                                	output sequence.
3.	 Overlapping of samples of input sections	 3.	 The N2-1 samples of an input section of the
     is not required.                                                	 longer sequence is overlapped with the
                                                                                	next input section.
4.	 The overlapped samples in the output         	 4.	 Depending on the method of overlapping the 
     of sectioned convolutions are added to              	input samples, either last N2-1 samples or first
     get the overall output.                                        	N2-1 samples of output sequence of each 
                                                                                	sectioned convolution are discarded.

Q1.11  Calculate the DFT of the sequence x(n) = {1, 1, –2, –2}.
Solution:
The N-point DFT of x(n) is given by, 

DFT ( ) ( ) ( ) ; 0,1, 2, ....., 1x n X k x n e for k NN
j2 k

n 0

N 1
= = = −

=

r--

" , /
Since x(n) is a 4-point sequence, we can take 4-point DFT.
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r
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Q1.12  Find the DFT of the sequence x(n) = {1, 1, 0, 0}. Also find magnitude and phase sequence.
Solution:

The N-point DFT of x(n) is given by,
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Q1.13  Compute the DFT of the sequence x(n) = (–1)n for the period N = 16.
Solution:

Given that, x(n) = (–1)n = {...... 1, –1, 1, –1, 1, –1, ...........}.
On evaluating the sequence for all values of n, it can be observed that x(n) is periodic with periodicity of 2  

         samples. The DFT of x(nhas to be computed for the period N = 16. Let us consider the 16-sample of the  
            infinite sequence from n = 0 to n = 15. 

The 16-point DFT of x(n) is given by,
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Q1.14  Find the inverse DFT of Y(k) = {1, 0, 1, 0}.
Solution:
The inverse DFT of the sequence Y(k) of length 4 is given by,

DFT ( ) ( ) ( ) ; 0,1, 2, 3Y k y n Y k e for n4
11 4

j2 kn
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1 1j n π π π= + + + = + + = + =r6 6@ @

	 When n = 0;   y(0) = 0.25 (1 + cos 0)    = 0.5

	 When n = 1;   y(1) = 0.25 (1 + cos π)    = 0

	 When n = 2;   y(2) = 0.25 (1 + cos 2π)  = 0.5

	 When n = 3;   y(3) = 0.25 (1 + cos 3π)  = 0

	  ∴ y(n) = {0.5, 0, 0.5, 0}

Q1.15   Calculate the percentage saving in calculations in a 512-point radix-2 FFT, when compared to direct DFT.
Solution:

Direct computation of DFT

Number of complex additions = N(N – 1) = 512 × (512 – 1) = 2,61,632

Number of complex multiplications = N2 =  5122  =  2,62,144

Radix-2 FFT

Number of complex additions = Nlog2 N  =  512  ×  log2512 

		                                = 512 × log22
9 =  512 × 9 = 4,608
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For interger k,
sin 2πk = 0

For interger n,
sin pn = 0.

Y(0) =  1,    Y(1) =  0
Y(2) =  1,    Y(3) =  0
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Number of complex multiplications 512log logN N2 2
512

2 2#= =  

                                                          = 2 9 2,304log2
512

2
5129

2# #= =  

Percentage Saving

Percentage Saving in additions = 100 100Number of additions in direct DFT
Number of additions in radix FFT2

#- -     

                                                  = 100 , ,
, 100 98.2%2 61 632
4 608

#− =

            Percentage Saving in multiplications  = 100 100Number of multiplications in direct DFT
Number of multiplications in radix FFT2

#- -

                                                                         = 100 , ,
, 100 99.1%2 62 144
2 304

#− =

Q1.16   Arrange the 8-point sequence x(n) = {1, 2, 3, 4, – 1, – 2, – 3, – 4} in bit reversed order.

The x(n) in normal order = {1, 2, 3, 4, –1, –2, –3, –4}

The x(n) in bit reversed order = {1, –1, 3, –3, 2, –2, 4, –4}

Q1.17  Compare the DIT and DIF radix-2 FFT.

	 DIT radix-2 FFT	 DIF radix-2 FFT

	 1.	 The time domain sequence is 		  1.	 The frequency domain sequence is
		  decimated.			   decimated.

	 2.	 The input should be in bit reversed		  2.	 The input should be in normal order, the
		  order, the output will be in normal			   output will be in bit reversed order. 			 
	       order.					   

	 3.	 In each stage of computations the 		  3.	 In each stage of computations, the 
		  phase factors are multiplied before			   phase factors are multiplied after add 
		  add and subtract operations.			   and subtract operations.
	 4.	 The value of N should be expressed		  4.	 The value of N should be expressed 
		  such that N = 2m and this algorithm 			   such that, N = 2m and this algorithm 
		  consists of m stages of computations.			   consists of m stages of computations.
	 5.	 Total number of arithmetic operations		  5.	 Total number of arithmetic operations
		  are Nlog2N complex additions and			   are Nlog2N complex additions and
		  (N/2)log2N complex multiplications.			   (N/2)log2N complex multiplications.	

Q1.18  What are direct (or slow) convolution and fast convolution?

The response of an LTI system is given by convolution of input and impulse response. The computation of 
the response of the LTI system by convolution sum formula is called slow convolution because it involves 
very large number of calculations. The number of calculations in DFT computations can be reduced to a very 
large extent by FFT algorithms. Hence, computation of the response of  the LTI system by FFT algorithm is 
called fast convolution.

Q1.19  Why is FFT needed?
FFT is needed to compute DFT with reduced number of calculations. The DFT is required  for spectrum 
analysis and filtering operations on the signals using digital computers.
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Q1.20  What is bin spacing?
Solution:

The N-point DFT of x(n) is given by,

nk( ) ( ) ( )X k x n e x n W
j N
2 kn

n 0

N 1

n 0

N 1

N= =
= =

r-- -

/ /

where, 
nkW e j2 N

nk

= r-
N ^ h  is the phase factor or twiddle factor.

The phase factors are equally spaced around the unit circle at frequency increments of Fs/N, where Fs is the sampling 
frequency of the time domain signal.  This frequency increment or resolution is called bin spacing. (The X(k) 
consists of N-numbers of frequency samples whose discrete frequency locations are given by fk = kFs/N, for 
k = 0, 1, 2, ....., N – 1). 

1.15	MATLAB Programs

Program 1.1

Write a MATLAB program to generate the standard discrete time signals  

unit impulse, unit step and unit ramp signals.

%******************* program to plot some standard signals

n=-20 : 1 : 20;           	 %specify the range of n

%******************* unit impulse signal

x1=1;

x2=0;

x=x1.*(n==0)+x2.*(n~=0);   	 %generate unit impulse signal

subplot(3,1,1);stem(n,x);  	 %plot the generated unit impulse signal

xlabel(‘n’);ylabel(‘x(n)’);title(‘unit impulse signal’);

%******************* unit step signal

x1=1;

x2=0;

x=x1.*(n>=0)+x2.*(n<0);    	 %generate unit step signal

subplot(3,1,2);stem(n,x);  	 %plot the generated unit step signal

xlabel(‘n’);ylabel(‘x(n)’);title(‘unit step signal’);

%******************* unit ramp signal

x1=n;

x2=0;

x=x1.*(n>=0)+x2.*(n<0);   	 %generate unit ramp signal

subplot(3,1,3);stem(n,x);  	 %plot the generated unit ramp signal

xlabel(‘n’);ylabel(‘x(n)’);title(‘unit ramp signal’);

OUTPUT

	 The output waveforms of program 1.1 are shown in Fig P1.1.
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Program 1.2

Write a MATLAB program to generate the standard discrete time signals 

exponential and sinusoidal signals.

%******************* program to plot some standard signals

n=-20 : 1 : 20;         	 %specify the range of n

%******************* exponential signal
A=0.95;
x=A.^n;                    	 %generate exponential signal
subplot(2,1,1);stem(n,x);  	 %plot the generated exponential signal
xlabel(‘n’);ylabel(‘x(n)’);title(‘exponential signal’);

%******************* sinusoidal signal
N=20;                       	 %declare periodicity
f=1/20;                     	 %compute frequency
x=sin(2*pi*f*n);            	 %generate sinusoidal signal
subplot(2,1,2);stem(n,x);   	 %plot the generated sinusoidal signal
xlabel(‘n’);ylabel(‘x(n)’);title(‘sinusoidal signal’);

OUTPUT

	 The output waveforms of program 1.2 are shown in Fig P1.2.

Fig P1.1: Output waveforms of program 1.1.

Fig P1.2: Output waveforms of program 1.2.
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Program 1.3

Write a MATLAB program to perform convolution of the following two discrete 
time signals.

x1(n)=1; 1<n<10        x2(n)=1;   2<n<10     

%******************Program to perform convolution of two signals

%******************x1(N)=1; n= 1 to 10 and x2(n)=1; n= 2 to 10

n = 0 : 1 : 15; 	 %specify range of n

x1=1.*(n>=1 & n<=10);	 %generate signal x1(n)

x2=1.*(n>=2 & n<=10); 	 %generate signal x2(n)

N1=length(x1);

N2=length(x2);

x3=conv(x1,x2);  	 %perform convolution of signals x1(n) and x2(n)

n1=0 : 1 : N1+N2-2; 	 %specify range of n for x3(n)

subplot(3,1,1);stem(n,x1);

xlabel(‘n’);ylabel(‘x1(n)’);

title(‘signal x1(n)’);

subplot(3,1,2);stem(n,x2);

xlabel(‘n’);ylabel(‘x2(n)’);

title(‘signal x2(n)’);

subplot(3,1,3);stem(n1,x3);

xlabel(‘n’);ylabel(‘x3(n)’);

title(‘signal, x3(n) = x1(n)*x2(n)’);

OUTPUT

	 The input and output waveforms of program 1.3 are shown in Fig P1.3.

Program 1.4

Write a MATLAB program to perform circular convolution of the discrete 
time sequences x1(n)={0,1,0,1} and x1(n)={1,2,1,2} using DFT.

% Program to perform Circular Convolution via DFT

Fig P1.3: Output waveforms of program 1.3.
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clear all
clc

N = 4;      	 % declare the value of N
x1 = [0,1,0,1];	 % declare the input sequences
x2 = [1,2,1,2];

disp(‘The 4-point DFT of  x1(n) is,’);
X1 = fft(x1,N) 	 % compute 4-point DFT of x1(n)

disp(‘The 4-point DFT of  x2(n) is,’);
X2 = fft(x2,N) 	 % compute 4-point DFT of x2(n)

disp(‘The product of DFTs is,’);
X1X2 = X1.*X2  	 % product of DFTs

disp(‘Circular convolution of x1(n) and x2(n) is,’);
X3 = ifft(X1X2)	 % perform IDFT to get result of circular convolution

OUTPUT

The 4-point DFT of  x1(n) is,
X1 =
     2     0     –2     0

The 4-point DFT of  x2(n) is,
X2 =
     6     0     –2     0	   			 

The product of DFTs is,
X1X2 =
    12     0      4     0

Circular convolution of x1(n) and x2(n) is,
X3 =
    4      2      4     2

Note: Verify the above result with example 1.8.

Program 1.5

Write a MATLAB program to perform 16-point DFT of the discrete time sequence 
x(n)={1/3,1/3,1/3} and sketch the magnitude and phase spectrum.

% program to find DFT and frequency spectrum

clear all
clc

N = 16;           	   % specify the length of the DFT
j = sqrt(-1);

xn = zeros (1,N);   	   % initialize input sequence as zeros
xn(1) = 1/3;      	 %let given sequence be first three samples
xn(2) = 1/3;
xn(3) = 1/3;
Xk = zeros (1,N);  	 %initialize output sequence as zeros

for k = 0:1:N-1  	 % compute DFT
    for n = 0:1:N-1
    Xk(k+1) = Xk(k+1)+xn(n+1)*exp(-j*2*pi*k*n/N);
    end
end

disp (‘The DFT sequence is,’); Xk
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disp (‘The Magnitude sequence is,’);MagXk = abs(Xk)

disp (‘The Phase sequence is,’);PhaXk = angle(Xk)

Wk=0:1:N-1;    	 %specify a discrete frequency vector

subplot(2,1,1)

stem(Wk,MagXk);

title(‘Magnitude spectrum’)

xlabel(‘k’); ylabel(‘MagXk’)

subplot(2,1,2)

stem(Wk,PhaXk);

title(‘Phase spectrum’)

xlabel(‘k’); ylabel(‘PhaXk’)

OUTPUT

The DFT sequence is,

Xk =

  Columns 1 through 7 

  1.0000 	         0.8770 - 0.3633i	 0.5690 - 0.5690i	 0.2252 - 0.5437i

  0 - 0.3333i 	  -0.0299 - 0.0723i    
 
0.0976 + 0.0976i

	 Columns 8 through 14 

  0.2611 + 0.1081i    0.3333  + 0.0000i  
 
0.2611 - 0.1081i   0.0976 - 0.0976i  

  -0.0299 + 0.0723i  -0.0000 + 0.3333i   0.2252 + 0.5437i

  Columns 15 through 16 

  0.5690 + 0.5690i   0.8770 + 0.3633i

The Magnitude sequence is,

MagXk =

	 Columns 1 through 12 

  1.0000  0.9493   0.8047  
 
0.5885  0.3333   0.0782   0.1381  0.2826                   

  0.3333  0.2826   0.1381  0.0782

	 Columns 13 through 16 

  0.3333   0.5885  0.8047   0.9493

The Phase sequence is,

PhaXk =

  Columns 1 through 12

    0   	    -0.3927   -0.7854   -1.1781   -1.5708  -1.9635  0.7854  0.3927    		

          0.0000   -0.3927   -0.7854    1.9635

  Columns 13 through 16 

    1.5708   1.1781   0.7854    0.3927

The magnitude and phase spectrum of program 1.5 are shown in Fig P1.5.

     Note: Verify the above result with example 1.6.
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Program 1.6

Write a MATLAB program to perform 8-point DFT of the discrete time sequence 
x(n)={2,1,2,1,1,2,1,2} and sketch the magnitude and phase spectrum.

% program to find DFT and frequency spectrum

clear all

clc

N = 8;        	 % specify the length of the DFT

j=sqrt(-1);

xn = [2,1,2,1,1,2,1,2];	 % input sequence

Xk = zeros (1,N);   	 % initialize output sequence as zeros

for k = 0:1:N-1    	 % compute DFT

    for n = 0:1:N-1

    Xk(k+1) = Xk(k+1)+xn(n+1)*exp(-j*2*pi*k*n/N);

    end

end

disp (‘The DFT sequence is,’); Xk

disp (‘The Magnitude sequence is,’);MagXk = abs(Xk)

disp (‘The Phase sequence is,’);PhaXk = angle(Xk)

Wk=0:1:N-1;         	 % specify a discrete frequency vector

subplot(2,1,1)

stem(Wk,MagXk);

title(‘Magnitude spectrum’)

xlabel(‘k’); ylabel(‘MagXk’)

subplot(2,1,2)

stem(Wk,PhaXk);

title(‘Phase spectrum’)

xlabel(‘k’); ylabel(‘PhaXk’)

Fig P1.5: Magnitude and phase spectrum of program 1.5.
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OUTPUT

The DFT sequence is,

Xk =

12.0000	      1.0000 + 0.4142i  -0.0000 - 0.0000i	 1.0000 + 2.4142i        

0 - 0.0000i   1.0000 - 2.4142i  -0.0000 - 0.0000i 	 1.0000 - 0.4142i

The Magnitude sequence is,

MagXk =

12.0000  1.0824  0.0000   2.6131   0.0000  2.6131  0.0000  1.0824

The Phase sequence is,

PhaXk =

0  0.3927   -2.3201  1.1781  -1.5708  -1.1781 	-2.9644  -0.3927

The magnitude and phase spectrum of program 1.6 are shown in Fig P1.6.

Note: Verify the above results with example 1.10.

Program 1.7

Write a MATLAB program to perform inverse DFT. Take the frequency domain 
output sequence of Program 1.6 as input.

% program to compute N-point inverse DFT

clear all
clc
N = 8;         	 % declare the length of the inverse DFT
j=sqrt(-1);
              	 % Xk is input sequence

XK =	 xk = [12, 1+j*0.4142,0,1+j*2.4142,0,1-j*2.4142,0,1-j*0.4142];
	 xn = zeros (1,N); %initialize output sequence as zeros

for n= 0:1:N-1  	 % compute inverse DFT
for k = 0:1:N-1
xn(n+1) = xn(n+1)+(Xk(k+1)*exp(j*2*pi*n*k/N))/N;
end
end
disp(‘The inverse DFT sequence is,’ ); xn

Fig P1.6: Magnitude and phase spectrum of program 1.6.
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OUTPUT

The inverse DFT sequence is,
xn =

2.0000 + 0.0000i 1.0000 + 0.0000i 2.0000 - 0.0000i  1.0000 + 0.0000i 

      1.0000 + 0.0000i 2.0000 – 0.0000i 1.0000 + 0.0000i  2.0000 – 0.0000i

Program 1.8

Write a MATLAB program to perform 4-point DFT of the discrete time sequence 
x(n)={1,1,2,3} using function FFT and sketch the magnitude and phase spectrum.

Also perform inverse DFT on the frequency domain sequence using function 
IFFT to extract the time domain sequence.  

% program to demonstrate DFT and inverse DFT Computation using FFT

clear all
clc

N = 4;              	    % specify the value of N
xn = [1,1,2,3];     	    % input Sequence

disp(‘DFT of the sequence xn is, ‘)

Xk = fft(xn,N)      	    % compute N-point DFT of input

disp(‘The magnitude sequence is, ‘)

MagXk = abs(Xk)    	    % compute magnitude spectrum

disp(‘The phase sequence is, ‘)

PhaXk = angle(Xk)   	    % compute phase spectrum

disp(‘inverse DFT of the sequence Xk is, ‘)

Xn = ifft(Xk)      	    % compute inverse DFT

n = 0:1:N-1;       	    % declare a discrete time vector

Wk = 0:1:N-1;     	    % declare a discrete frequency vector

subplot(2,2,1)     	    % Plot the input sequence

stem(n,xn)

title(‘ Input sequence’)

xlabel(‘n’); ylabel(‘xn’)

subplot(2,2,2)

stem(n,Xn)

title(‘inverse DFT sequence’)	
 
% Plot the inverse DFT sequence

xlabel(‘n’); ylabel(‘Xn’)

subplot(2,2,3)       	    % Plot the magnitude spectrum

stem(Wk,MagXk)

title(‘Magnitude spectrum’)

xlabel(‘k’); ylabel(‘MagXk’)

subplot(2,2,4)     	    % Plot the frequency spectrum

stem(Wk,PhaXk)

title(‘Phase spectrum’)

xlabel(‘k’); ylabel(‘PhaXk’)
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OUTPUT

DFT of the sequence xn is, 

Xk =

7.0000     -1.0000 + 2.0000i  	   -1.0000       -1.0000 - 2.0000i

The magnitude sequence is,

MagXk =

7.0000    2.2361      1.0000      2.2361

The phase sequence is, 

PhaXk =

0    2.0344    3.1416   -2.0344

inverse DFT of the sequence Xk is, 

Xn =

1       1        2        3

The input sequence, inverse DFT sequence, magnitude spectrum, and phase spectrum of 

program 1.8 are shown in Fig P1.8.	

1.16  Exercises

I.	 Fill in the blanks with appropriate words. 

1.	 The _______ is called aperiodic convolution.
2.	 The _______ is called periodic convolution.
3.	 Appending zeros to a sequence in order to increase its length is called _______.
4.	 The two methods of sectioned convolutions are _______ and _______method.
5.	 In _______ method of sectioned convolution, overlapped samples of output sequences are _______.
6.	 In _______ method, the overlapped samples in one of the output sequences are discarded.
7.	 In an N-point DFT of a finite duration sequence x(n) of length L, the value of N should be such that  _______.
8.	 The N-point DFT of a L-point sequence will have a periodicity of _______.
9.	 The convolution property of DFT says that DFT{x(n) U  h(n)} = _______.
10.	 The N-point DFT of a sequence is given by Z-transform of the sequence at N equally spaced points around the  
	 _______ in the z-plane.

Fig P1.8: Input sequence, magnitude spectrum
and phase spectrum of program 1.8.



1. 127Chapter 1 - Discrete Fourier Transform

11.	 Convolution by FFT is called _______.

12.	 Convolution using convolution sum formula is called _______.

13.	 Appending zeros to a sequence in order to increase its length is called _______.

14.	 In DFT computation using radix-2 FFT, the value of N should be such that _______.

15.	 The number of complex additions and multiplications in radix-2 FFT are _______ and _______ , respectively.

16.	 The number of complex additions and multiplications in direct DFT are _______ and _______ , respectively.

17.	 In 8-point DFT by radix-2 FFT there are _______ stages of computations with _______ butterflies per stage.

18.	 In _______ butterfly diagram the _______ is multiplied after add-subtract operations.

Answers

1.  linear convolution	           6.  overlap save        11.  fast convolution 	 16. N(N–1), N2

2.  circular convolution	           7.  N ≥ L                   12. slow convolution	 17. four, four

3.  zero padding                         8.  N-samples           13. zero padding	 18. DIF, phase factor

4.  overlap add, overlap save     9.  X(k) H(k)             14. N = 2m

5.  overlap add, added              10. unit circle             15. Nlog2N,  (N/2)log2N

II.	State whether the following statements are True or False.

1.	 Discrete signals are continuous functions of an independent variable.

2.	 In a digital signal the magnitudes of the signal are unquantized.

3.	 A discrete time signal x(n) is defined for noninteger values of n.

4.	 In linear convolution, the length of the input sequences should be the same.

5.	 In circular convolution, the length of the input sequences need not be the same.

6.	 The DFT of a sequence is a continuous function of ω.

7.	 The DFT of a signal can be obtained by sampling one period of Fourier transform of the signal.

8.	 In sampling X(ejω), the value of sample at ω = 0 is the same as the value of sample at ω = 2π.

9.	 The DFT of even sequence is purely imaginary and DFT of odd sequence is purely real.

10.	 In a DFT of real sequence, the real component is even and imaginary component is odd.

11.	 The multiplication of the DFTs of two sequences is equal to the DFT of the linear convolution of the two sequences.

12.	 The DFT supports only circular convolution.

13.	 In FFT algorithm, the N-point DFT is decomposed into successively smaller DFTs.

14.	 In N-point DFT using radix-2 FFT, the decimation is performed m times, where m = log2N.

15.	 Both DIT and DIF algorithms involve the same number of computations.

16.	 Bit reversing is required for both DIT and DIF algorithms.

Answers
1.  False	      5.  False       9.   False           13. True
2.  False	      6.  False       10. True            14. True
3.  False         7.  True         11. False           15. True
4.  False         8.  True        12. True            16. True                                                                          
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III. Choose the right answer for the following questions.

1.	 Sectioned convolution is performed if one of the sequence is very much larger than the other in order 
	 to overcome,
	 a)	 long delay in getting output	 b)	 larger memory space requirment
	 c)	 both a and b			   d)	 none of the above	

2.	 In overlap save method, the convolution of various sections is performed by,

	 a)	 zero padding	      b)  linear convolution	 c)	 circular convolution	 d)	 both b and c

3.	 In N-point DFT of L-point sequence, the value of N to avoid aliasing in frequency spectrum is, 

	 a)  N ≠ L	 b)  N ≤ L	 c)  N ≥ L	 d)  N = L	

4.	 The inverse DFT of x(n) can be expressed as,
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5.	 If DFT {x(n)} = X(k), then DFT {x(n + m)N }

	 a)  X(k) e N
j2 kmr

-
	 b)  X(k) e mN

j2 kr
-

	 c)  X(k) e N
j2 kmr

	 d)  X(k) e mN
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6.	 The DFT of product of two discrete time sequences x1(n) and x2(n) is equivalent to,

	 N
1 X (k) X (k)a) 1 2U6 @		  N

1 X (k) X (k)b) 1 26 @

	 N
1 X (k) X (k)c) 1 2*U6 @		  X (k) X (k)d) 1 2U 	

7.	 By correlation property, the DFT of circular correlation of two sequences x(n) and y(n) is,

	 a)  X(k)Y*(k)	 b)  X(k) U  Y(k)	 c)  X(k) U  Y*(k)	 d)  X(k) Y(k)

8.	 The N-point DFT of a finite duration sequence can be obtained as,
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9.	 In an N-point sequence, if N = 16, the total number of complex additions and multiplications using  
	 Radix-2 FFT are,

	 a)  64 and 80	 b)  80 and 64	 c)  64 and 32	 d)  24 and 12

10.	The complex valued phase factor/twiddle factor, WN can be represented as,

	 a)  e-j2πN	 b)  e N
j2r

- 	 c)  e-j2π                                                     d)  e-j2πKN
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11.	The phase factors are multiplied before the add and subtract operations in,

	 a)  DIT radix-2  FFT		  b)  DIF radix-2  FFT	

	 c)  inverse DFT	                                                d)  both a and c

12.	If X(k) consists of N-number of frequency samples, then its discrete frequency locations are given by,

     	 f N
kFa) s

k = 	 f N
Fb) s

k =                        f F
kNc)
s

k =                        f Nd) k = 	 		

Answers 

1.  c	 5.  c  	   9.  c

2.  c 	 6.  a	 10.  b

3.  c	 7.  a	 11.  a

4.  b	 8.  b	 12.  a

IV.	Answer the following questions.

1.	 Define discrete and digital signal.
2.	 Define circular convolution.
3.	 What is the importance of linear and circular convolution in signals and systems?
4.	 How will you perform linear convolution via circular convolution?
5.	 What is sectioned convolution? Why is it performed?
6.	 What are the two methods of sectioned convolution?
7.	 Define DFT of a discrete time sequence.	
8.	 Define inverse DFT.	
9. 	 What is the relation between DTFT and DFT?	
10.	 What is the drawback in Fourier transform and how can it be overcome?
11.	 List any four properties of DFT.
12.	 State and prove the shifting property of DFT.
13.	 What is FFT?
14.	 What is radix-2 FFT?
15.	 How many multiplications and additions are involved in radix-2 FFT?
16. 	What is DIT radix-2 FFT?
17. 	What is phase factor or twiddle factor?
18. 	Draw and explain the basic butterfly diagram or flow graph of DIT radix-2 FFT.
19.	 What are the phase factors involved in the third stage of computation in the 8-point DIT radix-2 FFT?
20.	 What is DIF radix-2 FFT?
21.	 Draw and explain the basic butterfly diagram or flow graph of DIF radix-2 FFT.
22. 	What are the phase factors involved in the first stage of computation in 8-point DIF radix-2 FFT?
23. 	How will you compute inverse DFT using radix-2 FFT algorithm?
24. 	What is magnitude and phase spectrum?
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V. Solve the following problems. 

E1.1	 Perform circular convolution of the two sequences,

            a)   x1(n) = {1,  2,  −1,  −1}              ;           x2(n) = {2,  4,  6,  8}

            b)   x1(n) = {0,  0.6,  −1,  1.5,  2}     ;           x2(n) = {−2,  3,  0.2,  0.7,  0.8}   

E1.2	 The input x(n) and impulse response h(n) of an LTI system are given by,

            x(n) = {−1,  1,  −1,  1,  −1,  1}        ;           h(n) = {−0.5,  0.5,  −1,  0.5,  −1,  −2}
                                ↑                                                               ↑    

	 Find the response of the system using    

            a)  Linear convolution,      

            b)  Circular convolution.

E1.3	 Perform linear convolution of the following sequences by,

	 a)  Overlap add method 	

            b)  Overlap save method

            x(n) = {1,  −1,  2,  1,  −1,  2,  1,  2,  1,  −1,  2}             ;             h(n)  = {2,  3,  −1}

E1.4	 Compute 4-point DFT and 8-point DFT of causal sequence given by, x(n) 8
1 ; 0 n 3

0 ; else

# #=

=

E1.5	 Compute DFT of the sequence, x(n) = { 0,  2,  3, -1}. Sketch the magnitude and phase spectrum.

E1.6	 Compute DFT of the sequence, x(n) = {1, 3, 3, 3 }. Sketch the magnitude and phase spectrum 

E1.7	 Compute circular convolution of the following sequences using DFT.

	 x1(n) = {-1, 2, -2, -1 } and x2(n) = {1, -2, -1, -2 }
                            ↑		                          ↑

E1.8    Compute linear and circular convolution of the following sequences using DFT.

	 x(n) = {1, 0.2,  -1 } and h(n) = {1,  -1,  0.2 }.

E1.9	 Compute 8-point DFT of the discrete time signal, x(n) = {1, 2, 1, 2, 1, 3, 1, 3 },
  	 a) using radix-2 DIT FFT     and    b) using radix-2 DIF FFT. 

	 Also sketch the magnitude and phase spectrum.

E1.10	 In an LTI system the input, x(n) = {1, 2,  1 } and the impulse response, h(n) = {1,  3}. Determine  
	 the response of LTI system by radix-2 DIT FFT.

E1.11	 Compute the DFT and plot the magnitude and phase spectrum of  the discrete time sequence,  
	 x(n) = {4, 4, 0, 2 } and verify the result using the inverse DFT.

E1.12	 Determine the response of LTI system when the input sequence, x(n) = {-2,  -1, -1, 0, 2} by radix 
	 2 DIT FFT. The impulse response of the system is h(n) = {1, -1, -1, 1 }.
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Answers

 E1.1    a)   x3(n) = {8,  14,   4,   −6}     ;    b)   x3(n) = {6.08,  − 0.55,   6.4,  − 4.28,   0.72}
                                  ↑   	                                             ↑                                                                                    

 E1.2    y(n) = {0.5,  −1,  2,  − 2.5,  3.5,  − 1.5,  1,  −0.5,  −0.5,  1,  −2} 
                                     ↑ 

 E1.3    a)    Overlap add method    :  y(n) = {2,  1,  0,  9,  −1,  0,  9,  −1,  0,  7,  −2}  

             b)    Overlap save method   :  y(n) = {× ,  × ,  0,  9,  −1,  0,  9,  −1,  0,  7,  −2}

E1.4	 4-point DFT ;  X(k) = { 0.5, 0, 0, 0 }

	 8-point DFT ;  X(k) =  { 0.5+0, 0.326+- 0.374p, 0, 0.135+- 0.125p, 0, 0.135+0.125p , 0, 0.326+0.374p }

E1.5	 X(k) = { 4 +0,  4.243 +- 0.75p, 2 +0,  4.243 +0.75p }

	  |X(k)| = { 4, 4.243, 2, 4.243}

+X(k) = { 0, - 0.75p, 0, 0.75p }

E1.6	 X(k)  = { 10+0,  2+-π, 2+π,  2+π }
|X(k)| = { 10, 2, 2, 2}

            +X(k) = { 0, π, π, π }
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E1.7 	 x1(n) * x2(n) = { -1, 9, -3, 3}2(N)                

E1.8 	 x(n) *   h(n) = { 1, -0.8, -1, 1.04, -0.2 }

	 x(n) U  h(n) = {2.04, -1, -1}

E1.9	 X(k)  = { 14, j1.414, 0, j1.414, - 6, - j1.414, 0, - j1.414 }

	           = { 14, 1.414 +0.5π, 0, 1.414 +0.5π, 6 +π, 1.414 +- 0.5π, 0, 1.414 +- 0.5π }

	 |X(k)| = { 14,  1.414,  0,  1.414,  6,  1.414,  0,  1.414 }

+X(k) = { 0, 0.5π, 0, 0.5π, π, - 0.5π, 0, - 0.5π }

E1.10	y(n) = {1, 5, 7, 3 }

E1.11	 X(k) = { 10, 4 - j2, -2, 4 + j2 } = { 10 +0,  4.472 +- 0.15p, 2 +π,   4.472 +  0.15π }

|X(k)| = { 10, 4.472, 2, 4.472}  ;  +X(k) = { 0, - 0.15π, π, 0.15π }

E1.12	y(n) = {-2, 1, 2, 0, 2, -3, -2, 2 }

0 1 2 3 4

X k( )

Fig E1.9.1: Magnitude spectrum.
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