
Combinational Logic 

1.1  Introduction to Combinational Circuits

Electronic circuits constructed using digital logic gates and devices and designed to operate on digital 
inputs and outputs are called digital logic circuits. The digital logic circuits can be broadly classified into 
combinational circuits and sequential circuits.

The combinational circuits are digital logic circuits without feedbacks from output to input. Therefore, 
the outputs of combinational circuit will depend only on present inputs.

The sequential circuits are digital logic circuits with feedback from output to input, the sequential 
circuits are discussed in Chapter-2.

The combinational logic does not depend on feedback signals or previous output. The logical 
operations are performed using present inputs. The circuits that perform combinational logic operations 
are called combinational logic circuits and they are constructed using logic gates. The working of logic 
gates are governed by Boolean algebra and hence the design of combinational circuits requires a knowledge 
about Boolean algebra. 

In combinational circuits the output at any time depends on input at that time. In combinational 
circuits there is no storage element and there is no feedback from output to input. Therefore, combinational 
circuits are designed for applications which do not require a record of previous outputs and for applications 
in which the present outputs do not depend on previous outputs. Some examples of combinational circuits 
are shown in Fig. 1.2.
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1.1.1  Problem Formulation and Design of Combinational Circuits

The combinational circuits are designed to provide hardware based solution for logical problems. The 
design starts with problem specifications. The procedure to design a combinational circuit is given below:

1.   Determine the required inputs and outputs from the problem specifications. 
2.   Assign a symbol to each input and output.
3.   Derive the truth table.
4.   Draw K-map for every output and form the prime implicants.
5.   Determine the simplified Boolean function for every output from the prime implicants.
6.   Implement the Boolean functions of all the outputs as a digital circuit using logic gates.

1.2  Boolean Algebra
George Boole developed Boolean algebra in 1854.

Boolean algebra is an algebraic structure that includes a set of elements consisting of

●  Binary operators, " + " and " . "
●  Binary variables, x, y, z .....
●  Binary elements, 0 and 1
●  Boolean postulates and theorems

Let x and y be two boolean variables that can take all possible combination of binary value. The 
rules for binary operators " + " and " . " are listed in Table 1.1 using the two binary variables x and y. 
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Table 1.1: Rules for Binary Operators " + " and " . " 

Operator Precedence while Evaluating Boolean Expression
A statement written with Boolean variables, constants and operators is called Boolean expression. 
Examples of Boolean expression:    x + y . z'

                                                         (x . y) + z' + (x + y . z)'
In order to evaluate Boolean expression the operator precedence is as follows:
Step-1:  Evaluate expression with in paranthesis, i.e, within ( ).
Step-2:  Evaluate complement
Step-3:  Evaluate " . "
Step-4:  Evaluate " + "

Note: To simplify Boolean expression dot operation is represented without operator.

                      x . y  ⇒ x y                   y . z  ⇒  y z            x . y . z  ⇒  x y z

Example 1.1
Demonstrate the operator precedence in the evaluation of following Boolean expression.

a)  x + y . z'             b)  (x.y) + z' + (x + y . z)'

Solution
a)  x + y . z'

x + y . z'

           z' 

      y . z'

    x + y . z'

b)  (x.y) + z' + (x + y . z)'

(x . y) + z' + (x + y . z)'

   ↓              ↓
(x . y)   z'      (y . z)

                  x + (y . z)

                 (x + y . z)'

(x . y) + z' + (x + y . z)'

x      y     x . y   x + y   x     x'  

0       0        0        0        0     1

0       1        0        1        1     0

1       0        0        1

1       1        1        1

↓
↓

↓

First stage

Second stage

Third stage

↓

↓

↓

↓

↓

↓
↓

First stage

Second stage

Third stage

Fourth stage
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1.2.1  Duality

The duality principle of Boolean algebra states that every algebraic expression deducible from the 
postulates of Boolean algebra remains valid if the operator and identity element are interchanged. Here, 
the operators are " + " and " . " and the identity elements are " 0 " and " 1 ". 

Table 1.2: Basic Example of Duality

1.2.2  Postulates of Boolean Algebra  
Postulates of Boolean algebra are developed by E. V. Huntington in 1904.
Boolean structure have to satisfy the following postulates.

1.  a)  The structure is closed with the respect to operator " + " 

     b)  The structure is closed with respect to operator " . "
2.  a)  The element 0 is an identity element with respect to operator '' + ''

∴  x + 0 = x
     0 + x = x

where x is a Boolean variable that can take a value either 0 or 1.
     b)  The element 1 is an identity element with respect to operator '' . ''

∴  x . 1 = x
     1 . x = x

where x is Boolean variable that can take a value either 0 or 1.

     3.   a)  The structure is commutative with respect to operator '' + "

∴  x + y = y + x

where x and y are two Boolean variables.

          b)  The structure is commutative with respect to operator " ."
∴  x . y = y . x

     4.  a)  The operator " . " is distributive over operator " + "

∴  x . (y  +  z)  =  (x . y)  +  (x . z)

          b)   The operator " + " is distributive over operator " . "
∴  x  +  (y . z)  =  (x  +  y) . (x  + z)

     5.   a)   For every variable x there exists an element x' called complement of x

∴  x  +  x' = 1    and  x . x' = 0

     6.  There exists at least two variables x and y such that, x ≠ y.

x      y    x + y

0      0       0
0      1       1
1      0       1
1      1       1 

1      1       1
1      0       0
0      1       0
0      0       0 

▲

Change

0 to 1

and 1 to 0

x      y     x . y
0      0       0
0      1       0
1      0       0
1      1       1 →

→

→

→

 Change "+" to "." ▲

Distributive Law
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Verification of Postulates

1.    From the Table 1.1 it is obvious that results of "+" and "." operations are either 0 or 1 and so 
structure is closed with respect to operators " + " and " . "

2.      x + 0 = x,   when  x = 0,  x + 0 = 0 + 0 = 0 = x

                                      x = 1,  x + 0 = 1 + 0 = 1 = x

         0 + x = x,   when  x = 0,  0 + x = 0 + 0 = 0 = x

                                      x = 1,  0 + x = 0 + 1 = 1 = x

3.      x . 1 = x,    when  x = 0,  x . 1 = 0 . 1 = 0 = x
                                      x = 1,  x . 1 = 1 . 1 = 1 = x
        1 . x  = x,   when  x = 0,  1 . x = 1 . 0 = 0 = x
                                     x = 1,  1 . x = 1 . 1 = 1 = x

4.   Let x, y, z be three Boolean variables that takes all possible combinations of binary value.

       Construct a truth table for all possible combinations of x, y and z as shown in Table 1.3 to prove,

x . (y + z) = (x . y) + (x . z)
Table 1.3: Verification of (Distributive Law) x . (y + z) = (x . y) + (x . z)

Similarly, Table 1.4 is constructed to prove,
x + (y . z) = (x + y) . (x + z)

Table 1.4: Verification of (Distributive Law) x + (y . z) = (x + y) . (x + z)

x      y      z     y + z   x . (y + z)     x . y   x . z   (x . y) + (x . z)

0      0      0        0              0                0         0                0
0      0      1        1              0                0         0                0
0      1      0        1              0                0         0                0
0      1      1        1              0                0         0                0
1      0      0        0              0                0         0                0
1      0      1        1              1                0         1                1
1      1      0        1              1                1         0                1
1      1      1        1              1                1         1                1

x       y      z      y . z    x + (y . z)      (x + y)  (x + z)   (x + y) . (x + z)

0       0       0        0              0                   0             0                  0
0       0       1        0              0                   0             1                  0
0       1       0        0              0                   1             0                  0
0       1       1        1              1                   1             1                  1
1       0       0        0              1                   1             1                  1
1       0       1        0              1                   1             1                  1
1       1       0        0              1                   1             1                  1
1       1       1        1              1                   1             1                  1
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5.   x + x'  = 1  

              when x = 0,   x' = 1,        ∴  x + x'  = 0 + 1 = 1

              when x = 1,   x' = 0,        ∴  x + x'  = 1 + 0 = 1

      x . x' = 0

               when  x = 0,   x' = 1,      ∴  x . x'  = 0 . 1 = 0

               when  x = 1,   x' = 0,      ∴  x . x'  = 1 . 0 = 0

6.   Boolean algebra has two elements 1 and  0, where 1≠ 0.

      ∴ If x and y are two variables, then there is a possibility that

                    x = 0,  y = 1,       ∴  x ≠ y

            and  x = 1,  y = 0,       ∴  x ≠ y

1.2.3  Boolean Theorems

Theorem 1:             x + x = x
                                  x . x = x

Theorem 2:             x + 1 = 1
                                  x . 0  = 0

Theorem 3:             (x' )' = x
(Involution)

Theorem 4:              x + (y + z) = (x + y) + z
(Associative)           x . (y . z) = (x . y) . z

Theorem 5:             (x + y)'  =  x'. y'

(DeMorgan's Law      (x . y)'  = x' + y'

  or DeMorgan's
      Theorem)

Theorem 6:              x + (x . y) = x
(Absorption)              x . (x + y) = x
                                  (y is absorbed)

Theorem 7:              x . y + x' . z + y . z = x . y + x' . z
(Consensus                 (x + y) . (x' + z) . (y + z) = (x + y) . (x' + z)
  Theorem)
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Proof of Theorems
Theorem 1:     

 x + x = x                                                     x . x = x

            when, x = 0,  x + x = 0 + 0 = 0 = x         when, x = 0,  x . x = 0 . 0 = 0 = x

            when, x = 1,  x + x = 1 + 1 = 1 = x         when,  x = 1,  x . x = 1 . 1 = 1 = x

Theorem 2:    
x + 1 = 1                                                          x . 0 = 0

when,  x = 0,  x + 1 = 0 + 1 = 1                   when, x = 0,  x . 0 = 0 . 0 = 0

when,  x = 1,  x + 1 = 1 + 1 = 1                   when, x = 1,  x . 0 = 1 . 0 = 0 

Theorem 3: Involution
( x' )' = x

when, x = 0,  (x' )' = (0' )'  = 1' = 0 = x

when, x = 1,  (x' )' = (1' )' = 0' = 1 = x

Theorem 4: Associative
x + (y + z) = (x + y) + z                                             x . (y . z) = (x . y) . z

Construct a truth table for all possible                     Construct a truth table for all possible 
combinations of x, y and z as shown                        combinations of x, y and z as shown
in Table 1.5 to prove,                                                   in Table 1.6 to prove,

x + (y + z) = (x + y) + z                                             x . (y . z) = (x . y) . z

          Table 1.5: Verification of x + (y + z) = (x + y) + z

          Table 1.6: Verification of x . (y . z) = (x . y) . z

x    y     z     y + z   x + (y + z)    x + y   (x + y) + z

0    0      0       0             0                  0              0
0    0      1       1             1                  0              1
0    1      0       1             1                  1              1
0    1      1       1             1                  1              1
1    0      0       0             1                  1              1
1    0      1       1             1                  1              1
1    1      0       1             1                  1              1
1    1      1       1             1                  1              1

x      y      z      y . z    x . (y . z)     x . y   (x . y) . z
0      0      0         0             0                 0             0
0      0      1         0             0                 0             0
0      1      0         0             0                 0             0
0      1      1         1             0                 0             0
1      0      0         0             0                 0             0
1      0      1         0             0                 0             0
1      1      0         0             0                 1             0
1      1      1         1             1                 1             1
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Theorem 5: DeMorgan's Theorem
(x + y)' = x' . y' 			                   (x . y)'  = x' + y'

Construct a truth table for all possible 	          Construct a truth table for all possible
combinations of x and y as shown in 		           combinations of x and y as shown in
Table 1.7 to prove, 			            Table 1.8 to prove,  

(x + y)' = x' . y'      		                  (x . y)'  = x' + y'

Table 1.7: Verification of (x + y)' = x' . y'           Table 1.8: Verification of (x . y)' = x' + y'

Theorem 6: Absorption
x + (x . y) = x                                                        x . (x + y) = x

Construct a truth table for all possible 	          Construct a truth table for all possible
combinations of x and y as shown in 		           combinations of x and y as shown in
Table 1.9 to prove, 			            Table 1.10 to prove,  

x + (x . y) = x      		                  x . (x + y) = x

Table 1.9: Verification of x + (x . y) = x             Table 1.10: Verification of x . (x + y) = x

Theorem 7: Consensus Theorem
x . y + x' . z + y . z = x . y + x' . z                               (x + y) . (x' + z) . (y + z) = (x + y) . (x' + z)

Construct a truth table for all possible 	          Construct a truth table for all possible
combinations of x, y and z as shown 		           combinations of x, y and z as shown in
in Table 1.11 to prove, 			           Table 1.12 to prove,  

x . y + x' . z + y . z = x . y + x' . z      		    (x + y) . (x' + z) . (y + z) = (x + y) . (x' + z)

Table 1.11: Verification of x . y + x' . z + y . z = x . y + x' . z 

x      y     x + y    (x + y)'     x'     y'    x' . y'

0      0        0          1          1     1        1
0      1        1          0          1     0        0
1      0        1          0          0     1        0
1      1        1          0          0     0        0

x      y     x . y   (x . y)'    x'     y'   x' + y'

0      0        0            1         1      1       1   
0      1        0            1         1      0       1
1      0        0            1         0      1       1
1      1        1            0         0      0       0

x       y      x + y    x . (x + y)     

 0       0          0                  0         
 0       1          1                  0
 1       0          1                  1
 1       1          1                  1

x      y    x . y   x  + (x . y)     
0       0         0              0         
0       1         0              0
1       0         0              1
1       1         1              1

x    y     z      x'    x . y   x' . z   y . z   x.y + x' .z + y.z  x.y + x' .z
0    0      0      1       0         0        0                 0                     0
0    0      1      1       0         1        0                 1                     1
0    1      0      1       0         0        0                 0                     0
0    1      1      1       0         1        1                 1                     1
1    0      0      0       0         0        0                 0                     0
1    0      1      0       0         0        0                 0                     0
1    1      0      0       1         0        0                 1                     1
1    1      1      0       1         0        1                 1                     1
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Table 1.12: Verification of (x + y) . (x' + z) . (y + z) = (x + y) . (x' + z)

1.3  Binary Logic
Binary logic consists of binary variables and a set of logical operations. The binary variables are 

denoted by letters of alphabet, A, B, C, ......, x, y, z, ...... 

Each binary variable can take only two possible values 0 or 1. In positive logic, 0 is low and 1 is 
high. The basic logical operations are AND, OR and NOT.

AND operation is same as " . " operation. In positive logic, the logical AND of two or more variables 
will be 1 if and only if the value of all the variables is 1. 

OR operation is same as " + " operation. In positive logic, the logical OR of two or more variables 
will be 1 if the value of any one of the variables is 1. 

NOT operation is same as complement operation.
The results or outputs of logical operations of two or more variables for all possible combinations 

of the variables can be listed in a table called truth table. The truth tables of basic logical operations are 
shown in Table 1.13. 
Table 1.13: Truth Tables of AND, OR and NOT Operation of Two Variables 
                       AND operation                   OR operation             NOT operation         

Positive and Negative Logic
Binary constants are 1 and 0. Physically in a digital circuit they represent two voltage levels.
The two voltage levels are called high and low.
The voltage level of high and low depends on technology used to fabricate the gates.
In TTL logic (Transistor Transistor Logic) high is + 5 V and low is 0 V.
In CMOS (Complementry Symmetry MOSFET) high is + 3.3 V and low is 0 V.

If, 1 represent high voltage and 0 represent low voltage then logic system is called positive logic.

If, 1 represent low voltage  and 0 represent high voltage then the logic system is called negative logic.

x    y     z      x'    x + y   x' + z  y + z  (x + y) . (x' .+ z) . (y + z)     (x + y) . (x' + z)
0    0      0      1       0         1          0                          0                                  0
0    0      1      1       0         1          1                          0                                  0
0    1      0      1       1         1          1                          1                                  1
0    1      1      1       1         1          1                          1                                  1
1    0      0      0       1         0          0                          0                                  0
1    0      1      0       1         1          1                          1                                  1
1    1      0      0       1         0          1                          0                                  0
1    1      1      0       1         1          1                          1                                  1

x      y      x . y
0       0        0
0       1        0
1       0        0
1       1        1 

x      y     x + y
0      0        0
0      1        1
1      0        1 
1      1        1 

x      x'

0      1
1      0
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Table 1.14: Positive and Negative Logic Levels

1.4  Logic Gates
Logic gates are electronic devices or circuits that perform logical operations on one or more input 

logical variables and produce a binary output. The basic logic gates are AND, OR and NOT gates.

The logic gates have standard symbols as shown in Figs. 1.3 to 1.7.

AND Gate

AND gate is an electronic device that performs logical AND operation of two or more variables.

OR Gate

OR gate is an electronic device that performs logical OR operation of two or more variables.

NOT Gate (or inverter)

NOT gate is an electronic device that performs complement operation of a Boolean variable.

Other Logical Operations

With n variables it is possible to form 22n Boolean functions.

When,  n   =  2,            22n =  22×2  =  24  = 16

Therefore, with two variables we can form 16 Boolean functions.

All the 16 possible function of two variables are listed in Table 1.15.

The output of 16 functions are 16 binary combinations of 4-bit binary.

Let, F0, F1, F2, ........, F15 be 16 possible Boolean functions for two variables x, y.

Logic Type                                                 Technology

(or Logic System)                     TTL                           CMOS

Positive Logic                   1 = High = +5 V            1 = High = + 3.3 V

                                           0 = Low = 0 V              0 = Low = 0 V

Negative Logic                  0 = High = + 5 V          0 = High = + 3.3 V

                                           1 = Low = 0 V             1 = Low = 0 V  

Note: Theoretically, AND and OR gates can have any number of inputs.

Fig. 1.3: Two input AND gate.

x

y

z x.y=
a
b
c

d a.b.c

Fig. 1.4: Three input AND gate.

=

x

y

z x+y

Fig. 1.5: Two input OR gate.

=
a

b
c

d a+b+c

Fig. 1.6: Three input OR gate.

=

x

Fig. 1.7: NOT gate.

x’
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Table 1.15: Two-Variable Boolean Functions

Functions                    x         y          F

Null operation                0          0          0

F = F0 = 0                       0          1          0

                                       1          0          0

                                       1          1          0

AND operation              0          0           0

F = F1 = x . y                  0          1          0

                                       1          0          0

                                       1          1           1

Inhibition                       0           0           0

F = F2 = x . y'                 0          1           0

(x true, but y false)        1           0          1

                                       1           1           0  

Transfer                         0          0          0

F = F3 = x                       0          1           0

(Transfer x)                    1          0           1

                                       1          1          1

Inhibition                       0          0           0

F = F4 = x' . y                 0          1          1

(y true, but x false)        1           0          0

                                       1          1          0

Transfer                          0          0          0

F = F5 = y                        0           1          1

(Transfer y)                     1           0          0

                                       1           1          1

XOR operation              0          0           0

F = F6 = x ⊕ y                0          1           1

    =  x . y' + x' . y            1          0            1

                                       1          1           0

OR operation                 0           0          0

 F = F7 = x + y               0          1          1

                                      1           0          1

                                      1           1          1

 Functions                         x         y         F

NOR operation                       0          0          1

F = F8 = (x + y)'                  0          1          0

                                            1          0          0

                                            1          1          0

Exclusive NOR(XNOR)     0          0          1

(or equivalence)                  0          1          0

F = F9 = x 9  y = (x ⊕ y)'     1          0          0

   = x . y + x'. y'                   1          1          1

Complement of y                0          0          1

F = F10 =  y'                         0          1          0

                                            1          0          1

                                            1          1          0  

Implication                             0          0          1

F = F11 = x + y'                    0          1          0

(If y = 1, F = x                    1          0          1

 If y = 0, F = y' )                      1          1          1

Complement of x                0          0          1

F = F12 = x'                          0          1          1

                                            1          0           0

                                            1          1          0

Implication                             0          0          1

F = F13 = x' + y                       0          1          1

(If x = 1, F = y                    1          0          0

If  x = 0, F = x' )                      1          1          1

NAND operation                0          0          1

F = F14 = (x . y)'                  0          1          1

                                                1          0          1

                                            1          1           0

Identity                                   0          0          1

 F = F15 = 1                             0          1          1 

                                                1          0          1

                                                1          1          1
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Summary of Logic Gates

The AND, OR and NOT are basic gates. Using these basic gates some more useful logical operations 
can be defined. They are NAND, NOR, Exclusive-OR (XOR) and Exclusive-NOR (XNOR).

Besides logic gates, buffers or drivers are also used in digital circuits to augment or increase current 
levels of signals where ever required.

The summary of popular logic gates used in digital electronics are listed in Table 1.16.    

Table 1.16: Summary of Popular Logic Gates

              Gate                                       Symbol                                 Truth Table

AND Gate   

OR Gate   

Inverter Gate  
(or NOT gate)

Buffer      

NAND Gate                                           

                          

x   y    x . y
0   0      0
0   1      0
1   0      0 
1   1      1

x   y    x + y

0   0       0
0   1       1
1   0       1 
1   1       1

x       x'

0       1
1       0

x       

0       
1       

x    y   x.y  (x.y)'
0    0    0      1
0    1    0      1
1    0    0      1
1    1    1      0

x
y

x.y

x

y

x y+

x x’

x x

x

y

(x.y)’

(AU, Nov/Dec'22, 13 Marks)
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Table 1.16: Continued...

     Gate                                                Symbol                                       Truth Table

NOR Gate    

Exclusive-OR Gate (XOR)  

Exclusive-NOR Gate (XNOR)
(or equivalence)                                   

            

Note: Bubble at output of gate indicates NOT operation. 

Example 1.2
Prove the following identity.

a)  A B + A (B + C) + B (B + C) = B + A C   

b)  A B + A' B + A' B' = A' + B   

c)  A B' C + A' B C + A B C = A C + B C

Solution

a)  A B + A (B + C) + B (B + C) = A B + A B + A C + B B + B C

                                                             = A B + A C + B + B C             

									                = B(A + 1 + C) + A C = B.1 + A C                          

									                = B + A C

b)  A B + A' B + A' B' = A B + A' (B + B' )  

							           = A B + A' .1 = A B + A'                                      

							           = (A' + A) (A' + B) = 1.(A' + B)                                 

	                                          = A' + B

c)  A B' C + A' B C + A B C = A B C + A B' C + A' B C + A B C

								              = A C (B + B' ) + B C (A + A' ) 

	                                                 = A C + B C

x + x = x

x + x' = 1

x x = x

1 + x = 1

x + x' = 1

x   y   x + y  (x + y)'

0   0      0         1
0   1      1         0
1   0      1         0
1   1      1         0

x    y   x . y'  x' . y  x ⊕ y  
0    0     0        0        0        
0    1     0        1        1
1    0     1        0        1
1    1     0        0        0

x    y    x ⊕ y  (x ⊕ y)' = x 9  y 
0    0      0                1         
0    1      1                0         
1    0      1                0         
1    1      0                1         

 = x 9  y 

Repeated terms are considered once.

x

y

(x + y)’

x
y

x.y x .y+ ’’
= x y+

x
y

x.y x .y+ ’ ’
= (x y)’+
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(x + y)’
y

Fig. 1.9: NOR gate.

x (x + y)’
y

xx + yx
y

(x.y)’

Fig. 1.8: NAND gate.

x
y

(x.y)’x.y

Example 1.3

Prove the following identity using Boolean algebra: 

(A + B) (A + (AB)' ) C + A' (B + C' ) + A' B + A B C = C  (A + B) + A' (B + C' )  

Solution
L.H.S = (A + B ) (A + (A B)' ) C + A' (B + C' ) + A' B + A B C

R.H.S = C  (A + B) + A' (B + C' )  

L.H.S = (A + B ) (A + (AB)' ) C + A' (B + C' ) + A' B + A B C

          = (A + B ) (A + A' + B' ) C + A' B + A' C'  + B (A'  + A C)

          = (A + B) (1 + B' ) C + A' B + A' C' + B ((A' + A) (A' + C))

          = (A + B)1.C + A' B + A' C' + B (1.(A' + C)) 

          = A C + B C + A' B + A' C' + B (A' + C)

          = A C + B C + A' B + A' C' + A' B + B C

          = A C + B C + A' C' + A' B

          = C (A + B) + A' (B + C' ) 

          = RHS 

Example 1.4
Prove the following:

a)  A ⊕ B = A' ⊕ B'                 b)  (A ⊕ B)' = A ⊕ B'  = A' ⊕ B

Solution
a)  A ⊕ B = A ' ⊕ B' 

A ' ⊕ B'  = A' (B' )'  + (A' )' B' 

             = A'  B + A B' = A ⊕ B

b)  (A ⊕ B)' = A ⊕ B'  = A ' ⊕ B

A ⊕ B'  = A (B' )' + A' B' 

            = A B + A' B' = (A ⊕ B)'

 A' ⊕ B = A' B'  + (A' )' B 

            = A' B' + A B  = (A ⊕ B)'

1.4.1  Universal Gates

NAND and NOR gates are called universal gates, because any Boolean function can be realized 
only using NAND gates or only using NOR gates.

The NAND gate is a combination of AND followed by NOT gate. The NOR gate is a combination 
of OR followed by NOT gate.

x ⊕ y = x y' + x' y

⇒ ⇒

x + x' = 1

Repeated terms are considered once.

Using DeMorgan's theorem
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Table 1.17: Truth Table of NAND Gate                     Table 1.18: Truth Table of NOR Gate

The realization of basic gates using only NAND gates are shown in Table 1.19.
The realization of basic gates using only NOR gates are shown in Table 1.20.

Table 1.19: Realization of Basic Logic Gates using NAND Gates

x    y     (x . y)'
0    0         1
0    1         1
1    0         1
1    1         0

x    y     (x + y)'
0    0          1
0    1          0
1    0          0
1    1          0

x ⊕ y = x y' + x' y

               Gate                           Logic Circuit using NAND                               Truth Table

Inverter/NOT gate using 

NAND

AND using NAND

OR using NAND

NOR using NAND

XOR using NAND
 

x    x'

0    1
1    0      

x   y    x . y
0   0      0
0   1      0
1   0      0 
1   1      1

x   y     x + y

0   0       0
0   1       1
1   0       1 
1   1       1

x   y   x + y  (x + y)'

0   0      0         1
0   1      1         0
1   0      1         0
1   1      1         0

x   y   x . y' x' . y  x ⊕ y  
0   0     0       0        0         
0   1     0       1        1        
1   0     1       0        1         
1   1     0       0        0         

x (x.x) =x’ ’

x
y

(x.y)’ ((x.y)’ ’) = x.y

y y’

(x .y ) = x y+’ ’ ’

x’x

x .y =(x+y)’ ’ ’

y y’

(x .y )’ ’ ’

x’x

x x’

y
y’

(x .y)’ ’
((x .y) .(x y ) )’ ’ ’ ’ ’.

(x.y )’ ’

=

=

x .y x.y+’ ’
x y+
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Table 1.20: Realization of Basic Logic Gates using NOR Gates

               Gate                           Logic Circuit using NOR                                  Truth Table

Inverter/NOT gate 

using NOR

OR using NOR

AND using NOR

NAND using NOR

XOR using NOR

x   y    x . y
0   0      0
0   1      0
1   0      0 
1   1      1

x   y    x + y

0   0      0
0   1      1
1   0      1 
1   1      1

x        x'

0        1
1        0

x ⊕ y = x.y' + x'.y
       

x    y   x.y  (x.y)'

0    0    0      1
0    1    0      1
1    0    0      1
1    1    1      0

x   y   x . y'  x' . y  x ⊕ y  
0   0     0       0        0         
0   1     0       1        1        
1   0     1       0        1         
1   1     0       0        0         

x

(x x) x+ =’ ’
x’

x

y

(x y)+ ’
((x y) )+ ’ ’= x+y

y

(x +y ) = x.y’ ’ ’
x

y’

x’

y

(x y )+’ ’ ’
x

x +y =(x.y)’ ’ ’
y’

x’

y

x x’

y’
(x y ) x y+ =’ ’ ’.

(x y) x.y+ =’ ’ ’
(x.y x )+’ ’ ’.y

x.y x+’ ’.y

= x y+
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1.4.2  Positive and Negative Logic Gates

In positive logic, 1 is logic high and 0 is logic low. In negative logic, 0 is logic high and 1 is logic 
low. The logic gates discussed in Section 1.4 are positive logic gates which means that the logic levels of 
inputs and outputs are positive logic levels.  

Logic gates can also be designed to work with negative logic levels. The AND and OR operation 
in positive and negative logic are given below:

In this book, only positive logic gates are used for analysis and design of digital logic circuit.

AND operation:  AND operation of two or more variables is high only if all the variables are high.

OR operation:  OR operation of two or more variables is high if one of the variable is high.

In order to differentiate negative logic level gates from the positive logic level gates, a bubble is 
added at every input and output. The bubble basically represent an inverter which is used to invert the logic 
levels. When a bubble is added to the output end that already has a bubble then it represents double time 
inversion and so that output end will not have a bubble in negative logic representation. The conversion 
of positive logic level gates to negative logic level gates are listed in Table 1.25.

Table 1.21: Truth Table of Positive 
Logic AND Gate

         Inputs              Output
     a              b             a . b
 0 (low)     0 (low)       0 (low)
 0 (low)     1 (high)      0 (low)
 1 (high)    0 (low)       0 (low)
 1 (high)    1 (high)      1 (high) 

Table 1.22: Truth Table of Negative 
Logic AND Gate

         Inputs              Output
     a              b             a . b
 0 (high)    0 (high)      0 (high)
 0 (high)    1 (low)       1 (low)
 1 (low)     0 (high)      1 (low)
 1 (low)     1 (low)       1 (low) 

Table 1.23: Truth Table of Positive Logic OR Gate

         Inputs              Output
     a              b             a + b
 0 (low)     0 (low)       0 (low)
 0 (low)     1 (high)      1 (high)
 1 (high)    0 (low)       1 (high)
 1 (high)    1 (high)      1 (high) 

Table 1.24: Truth Table of Negative Logic OR Gate

         Inputs              Output
     a              b             a + b
 0 (high)    0 (high)      0 (high)
 0 (high)    1 (low)       0 (high)
 1 (low)     0 (high)      0 (high)
 1 (low)     1 (low)       1 (low) 
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Table 1.25: Summary of Positive and Negative Logic Gates

Using the output equations of logic gates listed in Table 1.25, the truth table of positive and negative 
logic gates are obtained as shown in Tables 1.26 to 1.29.

Gate                                           Positive Logic                                      Negative Logic

AND Gate

OR Gate

Inverter Gate

Buffer

NAND Gate

NOR Gate

XOR gate

x
y

z x.y=

x
y

z x y= +

x x’

x x

x
y

z (x.y)= ’

x
y

z (x y)= + ’

x
y

z x y= +

x

y

z (x .y= ’ ’ ’)

x
y

z = ( )’ ’x y’+

x x’

x x

x

y

z = ’ ’x .y

x
y

z x y= +’ ’

x
y

z = ’x y+ ’

Inputs     Output
 x      y     z = x . y
 0      0            0
 0      1            0
 1      0            0
 1      1            1 

Inputs    Complement       Output
                  of Inputs
 x      y          x'      y'        z = (x' . y' )'
 0      0           1       1                  0
 0      1           1       0                  1
 1      0           0       1                  1 
 1      1           0       0                  1 

a)  Positive Logic                                                                    b)  Negative Logic
Table 1.26: Truth Table of AND Gate

Inputs     Output
 x      y     z = x + y
 0      0            0
 0      1            1
 1      0            1
 1      1            1 

Inputs    Complement      Output
                  of Inputs
 x      y          x'      y'        z = (x' + y' )'
 0      0           1       1                   0
 0      1           1       0                   0
 1      0           0       1                   0 
 1      1           0       0                   1 

Table 1.27: Truth Table of OR Gate
a)  Positive Logic                                                                    b)  Negative Logic
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In negative logic AND gate, 

z = (x' . y' )'    ⇒     z = x + y 

Therefore, we can say that the negative logic AND gate is same as positive logic OR gate. 

In negative logic OR gate, 

z = (x' + y' )'    ⇒     z = x . y 

Therefore, we can say that the negative logic OR gate is same as positive logic AND gate. 

Table 1.28: Truth Table of NAND Gate

Table 1.29: Truth Table of NOR Gate

In negative logic NAND gate, 

z = x' . y'    ⇒     z = (x + y)' 

Therefore, we can say that the negative logic NAND gate is same as positive logic NOR gate.

In negative logic NOR gate,  

z = x' + y'    ⇒     z = (x . y)' 

Therefore, we can say that the negative logic NOR gate is same as positive logic NAND gate.

1.5  Boolean Functions
A Boolean function is described by a Boolean expression which consists of binary variables, binary 

constants 0 and 1 and logical operators, AND, OR and NOT. Binary variables are denoted by either lower 
case (a, b, c, ..... x, y, z) or upper case (A, B, C, ....... X, Y, Z) alphabets. 

Using DeMorgan's theorem

Using DeMorgan's theorem

Inputs       Output
 x      y     z = (x . y)'
 0      0             1
 0      1             1
 1      0             1
 1      1             0 

Inputs    Complement      Output
                  of Inputs
 x      y          x'      y'         z = x' . y'

 0      0           1       1                  1
 0      1           1       0                  0
 1      0           0       1                  0 
 1      1           0       0                  0 

a)  Positive Logic                                                                    b)  Negative Logic

a)  Positive Logic                                                                    b)  Negative Logic

Inputs       Output
 x      y     z = (x + y)'
 0      0              1
 0      1              0
 1      0              0
 1      1              0 

Inputs    Complement      Output
                  of Inputs
 x      y          x'      y'          z = x' + y' 
 0      0           1       1                   1
 0      1           1       0                   1
 1      0           0       1                   1 
 1      1           0       0                   0 

Using DeMorgan's theorem

Using DeMorgan's theorem
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Some examples of  Boolean functions are given below: 

F   =   (x . y) + z'              

F1  =  (x . z) + y'               

F2  =  (x . y . z) + (y . z' )           

Alternatively,

F (x, y, z)  = (x . y) + z'

F1 (x, y, z) = (x . z) + y'

F2 (x, y, z) = (x . y . z) + (y . z' )

A Boolean function can be evaluated for all possible combinations of binary values of the variables 
of the function. The variables of a function are also known as input variables or inputs.

 Let,     n   =  Number of variables in a Boolean function

            2n  =  Number of combinations of binary values of n variables.     

Truth table for a Boolean function can be constructed with 2n combinations of n input variables.

Note: To simplify Boolean expression dot or AND operation is represented without operator.

                      x . y  ⇒ x y                   y . z  ⇒  y z            x . y . z  ⇒  x y z

Example 1.5
Construct the truth table for the following functions.

a)  F1 = x y + x y' + y' z     b)  F2 = b c + a' c'

Solution

a)  F1 = x y + x y' + y' z   				    b)  F2 = b c + a' c'                                                           

Table 1: Truth Table of Function, F1 		              Table 1: Truth Table of Function, F2

  Input Variables                 Product             Function
 and Complement                Terms                Output

x       y      z       y'     x y     x y'       y' z          F1        

0         0       0        1          0           0            0               0 

0         0       1        1          0           0            1               1

0         1       0        0          0           0            0               0

0         1       1        0          0           0            0               0

1         0       0        1          0           1            0               1       

1         0       1        1          0           1            1               1 

1         1       0        0          1           0            0               1

1         1       1        0          1           0            0               1

       Input Variables             Product     Function
     and Complements             Terms       Output                     
 a      b        c       a'       c'     bc      a' c'        F2        
 0       0          0        1         1         0         1             1

 0       0          1        1         0         0         0             0

 0       1          0        1         1         0         1             1

 0       1          1        1         0         1         0             1 

 1       0          0        0         1         0         0             0      

 1       0          1        0         0         0         0             0  

 1       1          0        0         1         0         0             0

 1       1          1        0         0         1         0             1



Chapter 1 - Combinational Logic	 1.21

Example 1.6
Realize 2-input XNOR gate using NOR gates.

Solution

The XNOR operation is given by the following Boolean equation.

x 9  y = x y + x' y'

The above equation can be implemented using NOR gate as shown in Fig. 1.  

Example 1.7
Realize the 3-input gate using 2-input gates for the folowing gates:

a)  AND     b)  OR     c)  NAND     d)  NOR

Solution
a)  AND

b)  OR

c)  NAND

d)  NOR

x x’

Fig. 1: XNOR operation using only NOR gates.

(x y )+ ’’ ’ = xy

y y’

(x y)+ ’ = x y’ ’

(xy )+ ’x y’ ’
xy + x y’ ’

A
B
C Y = ABC

A

B

C

AB

Y = ABC

Fig. 1: 3-input AND gate using 2-input AND gate.

= (AB)C

A
B
C Y = A + B + C

= (A + B) + C

A

B

C

Fig. 2: 3-input OR gate using 2-input OR gate.

A + B

Y = A + B + C

A
B
C Y = (ABC)’

= (((AB) C)’ ’ ’)

A

B

C

(AB)’

Y = (ABC)’

Fig. 3: 3-input NAND gate using 2-input NAND gate.

( ) =AB’(AB)’

A
B
C Y = (A + B + C)’

= (((A + B) ) + C)’ ’ ’

A

B

C

Fig. 4: 3-input NOR gate using 2-input NOR gate.

(A + B)’

Y = (A + B + C)’

((A + B)’) =A + B’
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1.5.1  Implementation of Boolean Functions by Logic Gates

A Boolean function basically involves product of variables, sum of variables and complement of 
variables. Therefore, the straight forward implementation of Boolean function can be made by using basic 
gates AND, OR and NOT. The complement of a variable is obtained using NOT gate. The product term is 
realized using AND gate. The sum term is realized using OR gate.

Example 1.8
Implement the following functions using basic logic gates. 

a)  F1 = x y + x y' + y' z             b)  F2 = b c + a' c'

Solution

a)  F1 = x y + x y' + y' z			       

b)  F2 = b c + a' c'

1.5.2  Minterms

Minterms are 2n possible combinations of AND terms (or product terms) with n variables such that 
the logical AND of all the variables is 1.

The minterms can be formed with two, three, four, ...... variables. The 2n minterms are denoted as 
m0, m1, m2, m3 ........, mq where q = 2n - 1.

The 2n combination of AND terms, for n = 2 and 3 are shown below. The AND terms are formed 
from 2n combinations of n-bit binary. In AND terms a literal is primed if its value is 0 and unprimed if its 
value is 1. So that the AND of all literals is always 1.

Let,  n = 2

Let x and y be the two variables to denote the two bits of binary.

 When n = 2, 2n = 22 = 4

F1

x

y

xy

z

Fig. 1: Logic circuit for function, F .1

y’
xy’

y z’

a

b

c
F2

bc

Fig. 2: Logic circuit for function, F .2

a’

c’ a c’ ’
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Therefore, four combinations of AND terms with two variables are possible as shown below:
0 0          x'. y'   (0' . 0' = 1)            x' y' =  m0

0 1   ⇒   x'. y    (0' . 1 = 1)     ⇒    x' y   =  m1

1 0          x . y'   (1 . 0' = 1)             x y'  =  m2

1 1          x . y    (1 . 1 = 1)             x y   =  m3

Let,  n = 3 

Let x, y and z be the three variables to denote the three bits of binary.

When n = 3,  2n = 23 = 8

Therefore, eight combinations of AND terms with three variables are possible as shown below:

0 0 0           x' . y' . z'   (0' . 0' . 0' = 1)           x' y' z'  =  m0

0 0 1    ⇒   x' . y' . z    (0' . 0' . 1 = 1)    ⇒    x' y'  z  =  m1

0 1 0           x' . y  . z'   (0' . 1 . 0' = 1)           x' y z'   =  m2 

0 1 1           x' . y .  z    (0' . 1 . 1 = 1)            x' y z    =  m3   

1 0 0           x . y' . z'    (1 . 0' . 0' = 1)           x  y' z'  =  m4

1 0 1   ⇒    x . y' . z     (1 . 0' . 1 = 1)     ⇒   x  y' z   =  m5

1 1 0           x . y .  z'    (1 . 1 . 0' = 1)            x  y  z'  =  m6

1 1 1           x . y .  z     (1 . 1 . 1 = 1)            x  y  z   =  m7

Table 1.30: Two-Variable Minterms                                                               

Table 1.31: Three-Variable Minterms

x      y     Minterm   Notation

0      0          x'. y'            m0

0      1          x'. y             m1

1      0          x . y'            m2

1      1          x . y             m3

x    y     z     Minterm    Notation

0    0      0      x'. y'. z'            m0

0    0      1      x'. y'. z             m1

0    1      0      x'. y. z'             m2

0    1      1      x'. y. z              m3

1    0      0      x . y'. z'            m4

1    0      1      x . y'. z             m5

1    1      0      x . y . z'            m6

1    1      1      x . y . z             m7

a    b     c     d        Minterm        Notation
0    0      0      0      a' . b' . c' . d'           m0

0    0      0      1      a' . b' . c' . d            m1

0    0      1      0      a' . b' . c . d'            m2

0    0      1      1      a' . b' . c . d             m3

0    1      0      0      a' . b  . c'.  d'           m4

0    1      0      1      a' . b  . c'.  d            m5

0    1      1      0      a' . b  . c .  d'           m6

0    1      1      1      a' . b  . c .  d            m7

1    0      0      0      a  . b' . c'.  d'           m8

1    0      0      1      a  . b' . c'.  d            m9

1    0      1      0      a  . b' . c .  d'           m10

1    0      1      1      a  . b' . c .  d            m11

1    1      0      0      a  . b  . c' . d'           m12

1    1      0      1      a  . b  . c' . d            m13

1    1      1      0      a  . b  . c .  d'           m14  
1    1      1      1      a  . b  . c .  d            m15         

Table 1.32: Four-Variable Minterms
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1.5.3  Maxterms
Maxterms are 2n possible combinations of OR terms (or sum terms) with n variables such that the 

logical OR of all the variables is 0.

The maxterms can be formed with two, three, four, ....... variables.

The 2n maxterms are denoted as M0, M1, M2, M3, ......, Mq where q = 2n - 1.

The 2n combinations of OR terms, for n = 2 and 3 are shown below. The OR terms are formed from 
2n combinations of n-bit binary. In OR terms a literal is primed if its value is 1, and unprimed if its value 
is 0 so that the OR of all literals is always 0.

Let,  n  =  2

Let x and y be the two variables to denote two bits of binary.

When n = 2,   2n = 22 = 4

Therefore, four combinations of OR terms with two variables are possible as shown below:

  0  0            x + y      (0 + 0   = 0)              x + y   =  M0

  0  1            x + y'     (0 + 1'  = 0)              x + y'  =  M1

  1  0   ⇒     x' + y     (1' + 0  = 0)     ⇒     x' + y  =  M2

  1  1            x' + y'    (1' + 1' = 0)               x' + y' =  M3

Let,  n = 3

Let x, y and z be the three variables to denote three bits of binary. 

When n = 3,   2n = 23 = 8
Therefore, eight combinations of OR terms with three variables are possible as shown below:

0  0  0             x + y + z      (0  +  0  +  0  = 0)           x + y + z   =  M0

0  0  1             x + y + z'     (0  +  0  +  1' = 0)           x + y + z'  =  M1

0  1  0             x + y' + z     (0  +  1' +  0  = 0)           x + y' + z  =  M2

0  1  1    ⇒     x + y' + z'     (0  +  1' +  1' = 0)   ⇒    x + y' + z' =  M3

1  0  0             x' + y + z     (1' +  0  +  0  = 0)           x' + y + z  =  M4

1  0  1             x' + y + z'     (1' +  0  +  1' = 0)           x' + y + z' =  M5

1  1  0             x' + y' + z     (1' +  1' +  0  = 0)           x' + y' + z  =  M6

1  1  1             x' + y' + z'    (1' +  1' +  1' = 0)           x' + y' + z' =  M7
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Table 1.33: Two-Variable Maxterms                        

 

1.5.4  Standard Forms
There are three types of standard forms of expressing a Boolean function. They are,

1.  Sum-of-products (SOP) form
2.  Product-of-sums (POS) form
3.  Canonical form

The canonical form is also expressed in SOP or POS form. The SOP or POS form is said to be 
canonical only if all the variables are present in every term of the SOP or POS form. 

In SOP or POS form each term of the Boolean expression need not have all the variables of the 
function. Hence SOP and POS forms are also simplified forms of Boolean functions.

1.5.5  Sum-of-Products and Product-of-Sums Simplification
Sum-of-products (SOP) can be realized by AND operation of literals followed by OR operation 

of output of AND. Here, AND operation of literals are the products and OR operation of output of AND 
is the sum of product terms. Product-of-sums (POS) can be realized by OR operation of literals followed 
by AND operation of output of OR. Here, OR operation of literals are the sums and AND operation of 
output of OR is the product of sum terms. The realizations in SOP and POS forms are called two-level 
realization of standard forms. 

The two-level realization of SOP form can be obtained by using AND gates to implement product 
terms followed by OR gate to get sum of product terms. The two-level realization of POS form can be 
obtained by using OR gates to implement sum terms followed by AND gate to get product of sum terms. 

Since NAND and NOR gates are universal gates, the two-level realization of SOP form of a Boolean 
function can be obtained using only NAND gates. Similarly, two-level realization of POS form of a Boolean 
function can be obtained using only NOR gates.  

x      y     Maxterm   Notation

0      0        x  +  y            M0

0      1        x  +  y'            M1

1      0        x' +  y             M2

1      1        x' +  y'            M3

Table 1.34: Three-Variable Maxterms

x    y     z     Maxterm    Notation
0    0      0     x + y + z             M0

0    0      1     x + y + z'             M1

0    1      0     x + y' + z             M2

0    1      1     x + y' + z'            M3

1    0      0     x' + y + z             M4

1    0      1     x' + y + z'            M5

1    1      0     x' + y' + z            M6

1    1      1     x' + y'+ z'            M7

a    b     c     d      Maxterm          Notation

0    0      0     0     a + b + c  + d             M0

0    0      0     1     a + b + c  + d'              M1

0    0      1     0     a + b + c' + d               M2

0    0      1     1     a + b + c' + d'             M3

0    1      0     0     a + b' + c + d              M4

0    1      0     1     a + b' + c + d'             M5

0    1      1     0     a + b' + c' + d             M6

0    1      1     1     a + b' + c' + d'            M7

1    0      0     0     a' + b  + c + d             M8     
1    0      0     1     a' + b  + c + d'            M9

1    0      1     0     a' + b  + c' + d            M10

1    0      1     1     a' + b  + c' + d'           M11

1    1      0     0     a' + b' + c + d             M12

1    1      0     1     a' + b' + c + d'            M13

1    1      1     0     a' + b' + c' + d              M14

1    1      1     1     a' + b' + c' + d'             M15

Table 1.35: Four-Variable Maxterms
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Example 1.9
           Draw the two-level realization of the following functions.

	a)  F1 = y' + x y + x' y z'      b)  F2 = x (y' + z) (x' + y + z' )      

Solution

a)  F1 = y' + x y + x'  y z'  - Sum-of-products 		           b)  F2 = x (y' + z) (x' + y + z' ) - Product-of-sums

                                                

Example 1.10
Determine the complement of the following functions and show that SOP becomes POS and vice-versa.

a)  F1 = y' + x y + x' y z          b)  F2 = x (y' + z) (x' + y + z' )

Solution   

a)  F1 = y' + x y + x' y z - Sum-of-products

          ⇓

1F'  = (y' + x y + x' y z)' 

     = (y' )' (x y)' (x' y z)'

     = y (x' + y' ) (x + y' + z' ) - Product-of-sums  

b)  F2 = x (y' + z) (x' + y + z' ) - Product-of-sums

           ⇓
F2'  = (x (y' + z) (x' + y + z' ))' 

     = x' + (y' + z)' + (x' + y + z' )'

     = x' + (y z' ) + (x y' z) - Sum-of-products

1.5.6  Canonical Form
A Boolean function can be expressed algebraically from its truth table by forming a minterm for each 

combination of the variables that produces a 1 in the output and then taking the OR of all the minterms.

Similarly, a Boolean function can be expressed algebraically from its truth table by forming a 
maxterm for each combination of the variable that produces a 0 in the output and then taking the AND of 
all the maxterm. A Boolean function expressed as a sum of minterms or product of maxterms are said to 
be in canonical form.

The given function can be expressed in canonical form without using truth table. For sum of minterms 
insert sum of missing literal and its complement with "." operation and expand. Similarly for product of 
maxterms insert product of missing literal and its complement with "+" operation and expand.

Using DeMorgan's theorem
     (x + y)' = x' y'
     (x . y)' = x' + y'

Complement

Complement

Using DeMorgan's theorem
     (x + y)' = x' y'
     (x . y)' = x' + y'

F1xyx

y

y

Fig. 1.

x yz’ ’

y’

x’
z’

F2

x

y

z

Fig. 2.

y’

x’

z’ x’+y+z’

y +z’
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1.5.7  Complement of a Function

If, F is a function then F' is complement of F. The complement of a function can be directly evaluated 
using Boolean theorems and postulates. Alternatively, the complement can also be obtained by using duality. 
In duality replace "+" by "." and "." by "+" and variables by its complement.

It can be observed that complement of sum-of-products will be product-of-sums and vice-versa

i.e, Product-of-sums 
Complement

 Sum-of-products

Note: This concept holds good for complement of canonical forms also.

Example 1.11
Determine the complement of the following Boolean functions.

a)  F1  = x y + x' z      b)  F2 = w x + y z     c)  F3 = x y' + x' y    

Solution
a)  F1  = x y + x'  z

Case i: Direct Evaluation of Complement

F1  = x y + x' z

       ⇓
1F'  = (x y + x' z)'

     = (x y)' . (x' z)'   

     = (x' + y' ) . ((x' )' + z' )

     = (x' + y' ) . (x + z' )

Case ii: Complement using Duality
x  .  y   +  x' .  z
↓  ↓ ↓   ↓  ↓  ↓  ↓

(x' + y' ) .  (x + z' )
           ⇓

(x' + y' ) . (x + z' )  = 1F'

b)  F2 = w x + y z

Case i: Direct Evaluation of Complement
           F2 = w x + y z

         ⇓
F2'  = (w x + y z)'

     = (w x)' . (y z)' 

     = (w' + x' ) . (y' + z' )

Case ii: Complement using Duality
           w  .  x   +  y  .  z

↓   ↓ ↓   ↓  ↓  ↓  ↓

(w' + x' ) . (y' + z' )

                        ⇓ 
            (w' + x' ) . (y' + z' ) = F2'

Complement

Using DeMorgan's theorem
     (x + y)' = x' y'
     (x . y)' = x' + y'

Replace by dual elements

Complement

Using DeMorgan's theorem
     (x + y)' = x' y'
     (x . y)' = x' + y'

Replace by dual elements
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c)  F3 = x y' + x'  y

Case i: Direct Evaluation of Complement

           F3 = x y' + x' y

         ⇓

3F'
 = (x y' + x' y)'

     = (x y' )' . (x' y)'  

     = (x' + y) . (x + y' )

Case ii: Complement using Duality

           x  .  y'  +  x' .  y
↓  ↓ ↓  ↓  ↓  ↓  ↓

(x' + y) .  (x + y' )

                      ⇓ 
            (x' + y) . (x + y' ) = 3F'

1.5.8  Implementation of Boolean Functions using Universal Gates

The NAND and NOR gates are called universal gates. When a Boolean function is expressed in 
SOP form, it can be realized using only NAND gates. When a Boolean function is expressed in POS form, 
it can be realized using only NOR gates. 

Example 1.12
Express the function F = x + y' z, in sum of minterms and product of maxterms and verify the result by simplification 

using Boolean theorems and postulates.

Solution

Table 1: Truth Table

A function can be expressed as a sum of minterms for which the function output is 1. Here, F is 1, when m1, 
m4, m5, m6 and m7 are inputs.

∴  F  =  m1 + m4 + m5 + m6 + m7

              =  ∑ m(1, 4, 5, 6, 7)  =  x' y' z + x y' z' + x y' z + x y z' + x y z 

Complement

Replace by dual elements

Using DeMorgan's theorem
     (x + y)' = x' y'
     (x . y)' = x' + y'

    Input             Minterm            Maxterm          Complement   Product   Function
Variables                                                                   of y              Term       Output                                   

x      y      z                                                                 y'                  y' z             F        

0       0       0        m0      x' y' z'       M0       x + y + z                1                       0                 0    

0       0       1        m1      x' y' z        M1       x + y + z'               1                       1                 1   

0       1       0        m2      x' y z'        M2       x + y' + z               0                       0                 0       

0       1       1        m3      x' y z         M3       x + y' + z'              0                       0                 0      

1       0       0        m4      x y' z'        M4       x' + y + z               1                       0                 1         

1       0       1        m5      x y' z         M5       x' + y + z'              1                       1                 1     

1       1       0        m6      x y z'         M6       x' + y' + z              0                       0                 1    

1       1       1        m7      x y z          M7       x' + y' + z'             0                       0                 1   
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A function can be expressed as a product of maxterms for which the function output is 0. Here, F is 0, when M0,
M2 and M3 are inputs

 F  =  M0 M2 M3

        = ∏ M(0, 2, 3) 

     = (x + y + z) (x + y' + z) (x + y' + z' )
Proof:
Case i:

F = m1 + m4 + m5 + m6 + m7 

    = x' y' z + x y' z' + x y' z + x y z' + x y z

    = x' y' z + x y' (z' + z) + x y(z' + z) 

    = x' y' z + x y' .1 + x y . 1

    = x' y' z' + x y' + x y

    = x' y' z + x (y' + y)

    = x' y' z + x . 1

    = x' y' z + x

    = (x' + x) (y' z + x)

    = 1 . y' z + x

    = x + y' z

Case ii:
F  = M0 M2 M3

    = (x + y + z) (x + y' + z) (x + y' + z' )

    = (x + z +y) (x + z + y' ) (x + y' + z' )

    = (x + z + (y y' )) (x + y' + z' )

    = (x + z + 0) (x + y' + z' )

    = x + (z (y' + z' ))

    = x + z y' + z z'

    = x + y' z + 0

    = x + y' z

Example 1.13

 	      Express the Boolean function F(p, q, r) = (p q + r) (q + p r) as sum of minterms and product of maxterms.

Solution:
i) Sum of Minterms

	     F(p, q, r) = (p q + r) (q + p r) 

	                    = p q q + p q p r + r q + r p r

	                    = p q + p q r + r q + r p

	                    = p q (r + r' ) + p q r + r q (p + p' ) + r p (q + q' ) 

x + x' = 1

x . 1 = x

x . x' = 0

x + 0 = x
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	                    = p q r + p q r'  + p q r + p q r + p' q r + p q r + p q' r

	                    = p q r + p q r' + p' q r + p q' r

				     = p' q r + p q' r + p qr'  + p q r

			          = m3 + m5 + m6 + m7 = ∑m (3, 5, 6, 7)

ii) Product of Maxterms

         F(p, q, r) = (pq + r) (q + pr) 

                    = (p + r) (q + r) (q + p) (q + r) 

				     = (p + r) (q + r) (q + p)

				     = (p + r + (q q' )) ((p p' ) + q + r) (p + q + (r r' ))

				     = (p + r + q) (p + r + q' ) (p + q + r) (p' + q + r) (p + q + r) (p + q + r' )

                         = (p + q + r) (p + r + q' ) (p' + q + r) (p + q + r' )

                         = (p + q + r) (p + q + r' ) (p + q'  + r) (p' + q + r) 

                         = M0 M1 M2 M4 = ∏M (0, 1, 2, 4)

Example 1.14

	 Convert the following in the proper canonical form and write the decimal notation. 

	 a) 	 R = F(x, y, z) = (x + y) (x' + z) into maxterm canonical form. 

	 b)	  Z = F(a, b, c) = a b + b' c + ac into minterm canonical form. 

Solution
	a) Maxterm canonical form (POS)

R = F (x, y, z) = (x + y) (x' + z)

                             = (x + y + (z z' )) (x'  + z + (y y' ))

                             = ((x + y + z) (x + y + z' )) ((x' + y + z) (x' + y'  + z)

                                    (M0)             (M1)            (M4)             (M6)          

                             = M0 M1 M4 M6 =  ∏M (0, 1, 4, 6)      

	b) Minterm canonical form (SOP)

Z = F (a, b, c) = (a b + b' c + a c)

                             = a b (c + c' ) + b' c (a + a' ) + a c (b+ b' )

                             = a b c + a b c'  + a b' c + a' b' c + a b c + a b' c 

                              = a b c + a b c' + a b' c + a' b' c

                                (m7)    (m6)     (m5)     (m1)        

                             = a' b' c + a b' c + a b c' + a b c

                             = m1 + m5 + m6 + m7 = ∑m (1, 5, 6, 7)

Missing literal in first term is q, second 
term is p and third term is r.

Repeated terms are considered once.

Missing literal in first term is z and 
second term is y.

Missing literal in first term is c, second 
term is a and third term is b.

Repeated terms are considered once.
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Example 1.15

Express the following Boolean functions in canonical form and implement the Boolean functions using either 
only NAND or NOR gates.

a)  F1 = x y + y' z         b)  F2 = (x + y) (y + z)        c)  F3 = x + y' z 

Solution
a)  F1 = x y + y' z

Case i: SOP  

F1 = x y + y' z

    = x y (z + z' ) + (x + x' ) y' z

    = x y z + x y z' + x y' z + x' y' z

        (m7)    (m6)    (m5)     (m1)

    = x' y' z + x y' z + x y z' + x y z

    = m1 + m5 + m6 + m7

The SOP form of F1 is realized using only NAND gates as shown in Fig. 1.

Case ii: POS  

F1 = x y + y' z

    = (x + y' z) (y + y' z)

    = (x + y' ) (x + z) (y + y' ) (y + z)

    = (x + y' + (z z' )) (x + z + (y y' )) ((x x' ) + y + z)

    = (x + y' + z) (x + y' + z' ) (x + z + y) (x + z + y' ) (x + y + z) (x' + y + z)

    = (x + y' + z) (x + y' + z' ) (x + y + z) (x + y' + z) (x + y + z) (x' + y + z) 

           (M2)             (M3)           (M0)           (M2)           (M0)          (M4) 

    = (x + y + z) (x + y' + z) (x + y' + z' ) (x' + y + z)      

    = M0 M2 M3 M4        

The POS form of F1 is realized using only NOR gates as shown in Fig. 2.

Missing literal in first term is z and 
second term is x.

x + x' = 1

x . 1 = x

Repeated maxterms are 
considered only one time

Missing literal in first term is z, second 
term is y and third term is x.

 x x' = 0
x + 0 = x

Fig. 1: Logic circuit of F using only NAND gates.1

x’

x

y’

y

z’

z

(x y z) = m1’ ’ ’

= m + m + m + m1 5 6 7

’

(xy z) = m5’ ’ ’

(xyz ) = m6’ ’ ’

(xyz) = m7’ ’

(m1 m m m )5 6 7 ’’ ’ ’ ’

= F1
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b)   F2 = (x + y) (y + z)

Case i: SOP  

F2 = (x + y) (y + z)  =  x (y + z) + y (y + z)

    = x y + x z + y y + y z  =  x y + x z + y + y z

    = x y (z + z' ) + x z (y + y' ) + (x + x' ) y (z + z' )  + (x + x' ) y z 

    = x y z + x y z' + x z y + x z y' + (x y + x' y) (z + z' ) + x y z + x' y z 

    = x y z + x y z' + x y z + x y' z + x y z + x y z' + x' y z + x' y z' + x y z + x' y z     

       (m7)    (m6)    (m7)     (m5)     (m7)    (m6)     (m3)     (m2)     (m7)     (m3) 

    = x' y z' + x' y z + x y' z + x y z' + x y z    

    = m2 + m3 + m5 + m6 + m7      

The SOP form of F2 is realized using only NAND gates as shown in Fig. 3.

Repeated minterms are 
considered only one time

y y = y

Insert missing literals

x + x' = 1
x . 1 = x

Fig. 2: Logic circuit of F using only NOR gates.1

x’

x

y’

y

z’

z

(x + y + z) = M0’

= M0 2 3 4M M M

’

(M0 + M + M + M )2 3 4 ’’

= F1

(x + y + z) = M2’ ’ ’

(x + y + z ) = M3’ ’ ’ ’

(x + y + z) = M4’ ’ ’

’ ’ ’

Fig. 3: Logic circuit of F using only NAND gates.2

x’

x

y’

y

z’

z

(x yz ) = m2’ ’ ’

= m + m + m + m + m2 3 5 6 7

’

(x yz) = m3’ ’ ’

(xy z) = m5’ ’ ’

(xyz ) = m6’ ’ ’
(m2 m m m m )3 5 6 7 ’’ ’ ’ ’

= F2(xyz) = m7’ ’

’
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Case ii: POS

F2 = (x + y) (y + z)

     = ((x + y) + (z z' )) ((x x' ) + (y + z))

     = (x + y + z) (x + y + z' ) (x + y + z) (x' + y + z)

           (M0)            (M1)           (M0)           (M4)       

    = (x + y + z) (x + y + z' ) (x' + y + z) 

    =  M0 M1 M4

The POS form of F2 is realized using only NOR gates as shown in Fig. 4.

c)  F3 = x + y' z

Case i: SOP

F3 = x + y' z

     = x (y + y' ) + (x + x' ) y' z

     = x y + x y' + x y' z + x' y' z

    = x y (z + z' ) + x y' (z + z' ) + x y' z + x' y' z

    = x y z + x y z' + x y' z + x y' z' + x y' z + x' y' z
        (m7)    (m6)      (m5)      (m4)       (m5)     (m1)                

    = x' y' z + x y' z' + x y' z + x y z' + x y z  

      = m1 + m4 + m5 + m6 + m7        

The SOP form of F3 is realized using only NAND gates as shown in Fig. 5.

x x' = 0

x + 0 = x

Missing literal in first term is z and 
second term is x.

Repeated maxterms are 
considered only one time

Missing literal in first term is y and 
second term is x.

Missing literal in first term and 
second term is z.

Repeated minterms are 
considered only one time

x . 1 = x
x + x' = 1

Fig. 4: Logic circuit of F using only NOR gates.2

x’

x

y’

y

z’

z

(x + y + z) = M0’

= M0 1 4M M

’

(M0 + M + M )1 4 ’’

= F2

(x + y + z ) = M1’ ’ ’

(x + y + z) = M4’ ’ ’
’ ’
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Case ii: POS

F3 = x + y' z

     = (x + y' ) (x + z)

     = ((x + y' ) + (z z' )) ((x + z) + (y y' ))

    = (x + y' + z) (x + y' + z' ) (x + y + z) (x + y' + z)

           (M2)            (M3)            (M0)          (M2)             

    = (x + y + z) (x + y' + z) (x + y' + z' ) 

    =  M0 M2 M3             

The POS form of F3 is realized using only NOR gates as shown in Fig. 6.

                                                        

Missing literal in first term is z and 
second term is y.

Repeated maxterms are 
considered only one time

x . 1 = x
x + x' = 1

Fig. 5: Logic circuit of F using only NAND gates.3

x’

x

y’

y

z’

z

(x y z) = m1’ ’ ’

= m + m + m + m + m1 4 5 6 7

’

(xy z ) = m4’ ’ ’ ’

(xy z) = m5’ ’ ’

(xyz ) = m6’ ’ ’
(m1 m m m m )4 5 6 7 ’’ ’ ’ ’

= F3(xyz) = m7’ ’

’

Fig. 6: Logic circuit of F using only NOR gates.3
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z
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= M0 2 3M M

’

(M0 + M + M )2 3 ’’
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(x + y + z) = M2’ ’ ’
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’ ’
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Example 1.16
	Express the following function in sum of minterms and product of maxterms 

            F(A, B, C, D) = A' B + B D + A C'

Solution

Table 1: Truth Table of F

A function can be expressed as a sum of minterms for which the function output is 1. Here, F is 1, when m4, m5, 
m6, m7, m8, m9, m12, m13 and m15 are inputs.

∴  F  =  m4 + m5 + m6 + m7 + m8 + m9 + m12 + m13 + m15

               =  A' B C' D' + A' B C' D + A' B C D' + A' B C D + A B' C' D' + A B' C' D + A B C' D' + A B C' D + ABCD 

A function can be expressed as a product of maxterms for which the function output is 0. Here, F is 0, when M0,
M1, M2 ,M3, M10, M11 and M14 are inputs.

F =  M0 M1 M2 M3 M10 M11 M14

     = (A + B + C + D) (A + B + C + D' ) (A + B + C' + D) (A + B + C' + D' ) (A' + B + C' + D) (A' + B + C' + D' ) 
                        (A' + B' + C' + D)

      Input                    Minterm                  Maxterm              Complement         Product             Function
   Variables                                                                              of A and C             Terms               Output                                   

A      B      C    D                                                                     A'          C'        A' B    BD    AC'           F        

0       0       0       0       m0     A' B' C' D'     M0       A + B + C + D           1             1             0           0        0                0       

0       0       0       1       m1     A' B' C' D      M1       A + B + C + D'          1             1             0           0        0                0

0       0       1       0       m2     A' B' C D'      M2       A + B + C' + D          1             0             0           0        0                0

0       0       1       1       m3     A' B' C D       M3       A + B + C' + D'         1             0             0           0        0                0

0       1       0       0       m4     A' B C' D'      M4       A + B' + C + D          1             1             1           0         0                1

0       1       0       1       m5     A' B C' D       M5       A + B' + C + D'         1             1             1          1        0                1

0       1       1       0       m6     A' B C D'       M6       A + B' + C' + D         1             0             1          0        0                1

0       1       1       1       m7     A' B C D        M7       A + B' + C' + D'         1             0             1          1        0                1

1       0       0       0       m8     A B' C' D'      M8       A' + B + C + D          0             1             0          0        1               1

1       0       0       1       m9     A B' C' D       M9       A' + B + C + D'           0             1             0          0        1                1

1       0       1       0       m10    A B' C D'       M10      A' + B + C' + D            0             0             0          0        0                0

1       0       1       1       m11    A B' C D        M11      A' + B + C' + D'           0             0             0          0        0                0

1       1       0       0       m12    A B C' D'       M12      A' + B' + C + D         0             1             0          0        1                1

1       1       0       1       m13    A B C' D        M13      A' + B' + C + D'           0             1              0          1        1                1

1       1       1       0       m14    A B C D'        M14      A' + B' + C' + D            0             0             0           0        0                0

1       1       1       1       m15    A B C D         M15      A' + B' + C' + D'          0             0             0          1        0                1
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1.5.9  Simplification of Boolean Expressions or Functions

Each variable with in a term of a Boolean expression is called a literal. Example of 7 literals and 
10 literals Boolean expression are shown below:

a'   b  +   c   d  +  a   b   d
↓   ↓       ↓   ↓      ↓   ↓   ↓
1      2           3      4          5     6      7   →  7 literals

a    b    c   +  b'  c +  a  c'  +  a   b'  c
 1      2       3          4      5        6     7          8      9    10    →  10 literals

Reducing the number of literals in a Boolean expression or function will simplify the implementation 
of function by logic gates with minimum number of gates. The implementation of Boolean function using 
logic gates is also called MSI (Medium Scale Integration) Circuit.

The Boolean expression can be reduced or simplified using postulates and theorems of Boolean 
algebra but there is no standard procedure for simplification using theorems.

Alternatively, Boolean functions can be simplified using following two methods.

●  Karnaugh map method                 

●  Quine-McCluskey method or Table method

These two methods have standard procedure for simplification of Boolean functions.

Example 1.17
Reduce the number of literals in following expressions.

a)  x y + x y'     b)  x y + x (w z + w z' )     c) (A + B)' (A' + B' )'   
Solution
a)  x y + x y'

          x y + x y' = x (y + y' )

                          = x.1

                          = x

The given expression x y + x y'  is 4 literal expression which is reduced to single literal.

b)  x y + x (w z + w z' )

   x y + x (w z + w z' ) = x y + x (w (z + z' ))

                                  = x y + x (w . 1)

                                  = x y + x w 

                                  = x . (y + w)

The given expression x y + x (w z + w z' ) is 7 literals expression which is reduced to three literals.

     

y + y' = 1

x .1 = x

z + z' = 1

w .1 = w
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c) (A + B)' (A' + B' )' 

         (A + B)' (A' + B' )' = (A + B)' . ((A' )' . (B' )' )   

                                      =  (A' . B' ) . (A . B)

                                      =  A' . B' . A . B

                                      =  A' . A . B . B' = 0 . 0 = 0

The given expression is a 4 literal expression which is reduced to null expression.  

1.6  Karnaugh Map (or K-map) Minimization
K-map is a pictorial form of truth table and used to simplify Boolean functions. Simplification of 

Boolean function using K-map is simple and straight forward. A K-map is a diagram made up of squares 
with each square representing one minterm. Alternatively, maxterm can be used to construct K-map in 
which each square represent a maxterm.

When minterms are considered for simplification the resultant Boolean function will be in sum-of-
products form. When maxterms are considered for simplification the resultant Boolean function will be 
in product-of-sums form.

Note: The simplified Boolean function using K-map is not unique. Sometimes there may be multiple 
solutions.

For n variable Boolean function the K-map will have 2n squares. Each square represent a minterm 
or maxterm. The literals of minterm are split and arranged as rows and columns. While arranging the 
literal/minterms only one change is allowed if we move from one row to next row or from one column to 
next column.

1.6.1  Analysis and Design Procedures of Combinational Circuits using K-map    

1.    Construct the truth table of Boolean function.
2.    Draw K-map with 2n  squares where n is number of variables in Boolean function.
3.    Enter the value of function or output in the squares as either 1 or 0.
4.    The squares with entry 1 are the minterms that represent the function.
5.    Each square with 1 is an implicant.
6.    Combine adjacent 1's to form prime implicants.
7.    A prime implicant with single 1 represent n literal product term.
8.    A prime implicant with two 1's represent n - 1 literal product term.
9.    A prime implicant with four 1's represent n - 2 literal product term and so on.
10.  The literals represented by a prime implicant are the literals that present in all the squares of 

	                   the prime implicant. (or the literals common to all the squares of the prime implicant).
11.  While forming prime implicants any number of over lapping is allowed in horizontal and 

	                   vertical directions. But the diagonal elements cannot be combined to form prime implicants.
12.  While forming prime implicants the K-map can be folded in any direction to get adjacent 1's.
13.  The simplified Boolean function is sum of all the product terms of prime implicant.

Using DeMorgan's law

(x + y)' = x'.y'

x . x' = 0

(AU, Nov/Dec'22, 3 Marks)
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14.  If all minterms are 1's then all squares of K-map will be filled by 1 and function value is 1.
15.  The logic or MSI (Medium Scale Integration) circuit of the simplified Boolean function can 

                  be drawn using logic gates.

Table 1.36: Relationship between Number of Adjacent Squares and Literals in the Product Term

1.6.2  Two-Variable K-map

Let,   n      =  Number of variables in Boolean function
         x, y  =  Two variables of Boolean function
Therefore,  n = 2, for two-variable K-map

Here, 2n = 22 = 4
Therefore, two-variable, K-map will have 4 squares. The two-variable K-map and arrangements of 

literals and minterms are shown in Fig. 1.10.

Some examples of two-variable K-map with single prime implicant formed using single 1's is shown 
in Figs. 1.11 and 1.12. Since the prime implicants shown in Figs. 1.11 and 1.12 are formed using single 1's 
in two-variable K-map, each prime implicant represents a product term of two literals. 

The K-maps in Fig. 1.11 have only one prime implicant and so the Boolean function, F is given 
by prime implicant of the K-map. The K-maps in Fig. 1.12 has two prime implicants and so the Boolean 
function, F is given by sum of the two prime implicants of the K-map.

          Number of 
           Adjacent         Number of Literals in a Product
         Squares in              Term in an n-variable Map
   Prime Implicants    n = 2      n = 3      n = 4       n = 5

                1                        2             3             4               5

                2                        1             2             3               4

                4                        0             1             2               3

                8                                       0             1               2

              16                                                      0               1

              32                                                                       0
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Fig. a: Arrangement of literals

and minterms in 2-variable K-map.
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Fig. 1.10: Two-variable K-map.
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Some examples of two-variable K-map with single prime implicant formed using two adjacent 1's 
is shown in Fig. 1.13. Since the prime implicants shown in Fig. 1.13 are formed using two adjacent 1's 
in two-variable K-map, each prime implicant represents a single literal. Since the K-map have only one 
prime implicant the Boolean function, F is given by prime implicant of the K-map.

Some examples of two-variable K-map with two overlapping prime implicants formed using two 
adjacent 1's is shown in Fig. 1.14. Since the prime implicants shown in Fig. 1.14 are formed using two 
adjacent 1's in two-variable K-map, each prime implicant represents a single literal. Since the K-map has 
two prime implicant the Boolean function, F is given by sum of two prime implicants of the K-map.

Fig. 1.11: Two-variable K-map with single prime implicant formed using single 1's.

                Fig. 1.12: Two-variable K-map with two prime implicants formed using single 1's.
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When all the entries of K-map (or all minterms) are 1's then the Boolean function value is 1 (F =1) 
as shown in Fig. 1.15.                                                  

1.6.3  Three-Variable K-map

Let,  n          =  Number of variables in Boolean function

         x, y, z  =  Three variables of Boolean function

Therefore,  n = 3, for three-variable K-map

Here, 2n = 23 = 8

Therefore, three-variable,  K-map will have 8 squares. The three-variable K-map and arrangements 
of literals and minterms are shown in Fig. 1.16.

Some examples of three-variable K-map with prime implicant formed using single 1's are shown in 
Figs. 1.17 and 1.18. Since the prime implicants shown in Figs. 1.17 and 1.18 are formed using single 1's 
in three-variable K-map, each prime implicant represents a product term of three literals. 

Fig. 1.14: Two-variable K-map with two overlapping prime implicants formed using two adjacent 1's.
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The K-maps in Fig. 1.17 have only one prime implicant and so the Boolean function, F is given 
by prime implicant of the K-map. The K-maps in Fig. 1.18 has two prime implicant and so the Boolean 
function, F is given by sum of the two prime implicants of the K-map.

Some examples of three-variable K-map with two prime implicants formed using two adjacent 1's 
are shown in Fig. 1.19. Since the prime implicants shown in Fig. 1.19 are formed using two adjacent 1's in 
three -variable K-map, each prime implicant represents a product term of two literals. Since the K-map has 
two prime implicants the Boolean function, F is given by sum of the two prime implicants of the K-map.

 Fig. 1.17: Three-variable K-map with prime implicant formed using single 1's.

Fig. 1.18: Three-variable K-map with two prime implicants formed using single 1's.
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   Fig. 1.19: Three-variable K-map with two prime implicants formed using two adjacent 1's.
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Some examples of three-variable K-map with two overlapping prime implicants formed using two 
adjacent 1's and a prime implicant with single 1 are shown in Fig. 1.20. The prime implicants formed using 
two adjacent 1's in three-variable K-map, represents a product term of two literals and the prime implicant 
with single 1 represents a product term of three literal. Since the K-map has three prime implicant the 
Boolean function, F is given by sum of three prime implicants of the K-map.

Some examples of three-variable K-map with prime implicant formed using four adjacent 1's are 
shown in Fig. 1.21. Since the prime implicants shown in Fig. 1.21 are formed using four adjacent 1's in 
three-variable K-map, each prime implicant represents a single literal. Since the K-map have only one 
prime implicant the Boolean function, F is given by prime implicant of the K-map.

Some examples of three-variable K-map with two overlapping prime implicants formed using four 
adjacent 1's and two adjacent 1's are shown in Figs. 1.22 and 1.23. The prime implicants formed using 
two adjacent 1's in three-variable K-map, represents a product term of two literals and the prime implicant 
with four adjacent 1's represents a single literal. Since the K-map has two prime implicant the Boolean 
function, F is given by sum of two prime implicants of the K-map.
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When all the entries of K-map (or all minterms) are 1's then the Boolean function value is 1 (F = 1)  
as shown in Fig. 1.24.

1.6.4  Four-Variable K-map

Let,  n               =  Number of variables in Boolean function 

         w, x, y, z  =  Four variables of Boolean function

Therefore,  n  = 4, for four-variable K-map

Here,  2n = 24  = 16

Therefore, four-variable K-map will have 16 squares. The four-variable K-map and arrangements 
of literals and minterms are shown in Fig. 1.25.

Fig. 1.23: Three-variable K-map with overlapping prime implicants formed                           
                         using two adjacent 1's and four adjacent 1's. 
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	Some examples of  four-variable K-map with prime implicants formed using four adjacent 1's, two 
adjacent 1's and single 1's are shown in Fig. 1.26. In four-variable K-map, the prime implicants formed 
using four adjacent 1's represents a product term of two literals, the prime implicants with two adjacent 
1's represents a product term of three literals and the prime implicant with single 1 represents a product 
term of four literals. Boolean function, F is given by sum of prime implicants of the K-map.

Fig. 1.25: Four-variable K-map.
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Some examples of four-variable K-map with two overlapping prime implicants formed using eight 
adjacent 1’s are shown in Fig. 1.27. Since the prime implicants shown in Fig. 1.27 are formed using eight 
adjacent 1’s in four-variable K-map, each prime implicant represents a single literal. Since the K-map 
has two prime implicant the Boolean function, F is given by sum of two prime implicants of the K-map.

Fig. 1.26: Four-variable K-maps.
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When all the entries of K-map (or all minterms) are 1's then the Boolean function value is 1 (F = 1) 
as shown in Fig. 1.28.

1.6.5  Five-Variable K-map

Let  A, B, C, D and E be the five-variables. 

Now, n = 5  and  25 = 32

Therefore, 32 minterms are possible as shown in Table 1.37.

Table 1.37: Truth Table

The 32 minterms can be arranged in 2 numbers of 4 variable K-map, one for A = 0 and other for  
A = 1 as shown in Figs. 1.29 and 1.30. These two K-maps can be placed one over the other as shown in  
Fig. 1.31. While forming prime implicants any two square that lie one over the other are considered adjacent. 
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1

1 1

1

A   B   C    D   E      Minterm         A   B   C    D   E        Minterm 

0    0    0     0    0             m0                1    0    0     0    0               m16

0    0    0     0    1             m1                        1    0    0     0    1               m17

0    0    0     1    0             m2                            1    0    0     1    0               m18 

0    0    0     1    1             m3                       1    0    0     1    1               m19   

0    0    1     0    0             m4                1    0    1     0    0               m20

0    0    1     0    1             m5                            1    0    1     0    1               m21

0    0    1     1    0             m6                            1    0    1     1    0               m22

0    0    1     1    1             m7                            1    0    1     1    1               m23

0    1    0     0    0             m8                1    1    0     0    0               m24

0    1    0     0    1             m9                            1    1    0     0    1               m25

0    1    0     1    0             m10               1    1    0     1    0               m26

0    1    0     1    1             m11                          1    1    0     1    1               m27

0    1    1     0    0             m12                          1    1    1     0    0               m28

0    1    1     0    1             m13                          1    1    1     0    1               m29

0    1    1     1    0             m14                          1    1    1     1    0               m30

0    1    1     1    1             m15                          1    1    1     1    1               m31
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Apart from this, the guidelines for forming prime implicants of 4-variable K-map can be applied 
individually to Figs. 1.29 and 1.30 for the adjacent squares that do not lie one over the other in Fig. 1.31. 
Some examples of formation of prime implicants in 5-variable K-map are shown in Figs. 1.32 and 1.33.

Fig. 1.29: 4-variable K-map for A = 0.
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Example 1.18
 Design a combinational circuit for the following specification.

 The output is 1 when the binary value of the inputs for a 3 variables function is less than 3. The output is 0 

otherwise.

Solution

       The output is 1, when the input is 0, 1 or 2. The output will be 0 if the input 
is greater than or equal to 3. Let us consider 3-bit binary inputs which can take 
values from 0 to 7. Let x, y and z be input variables and F be function output. The 
truth table is shown in Table 1 and the three-variable K-map is shown in Fig. 1.  
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Fig. 2: Logic circuit of F.
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x z’ ’

 Inputs      Minterm     Output

x   y    z                            F

0    0    0            m0                           1  

0    0    1            m1                           1  

0    1    0            m2                1 

0    1    1            m3                           0   

1    0    0            m4                0 

1    0    1            m5                0  

1    1    0            m6                0   

1    1    1            m7                0  

Table 1: Truth Table
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In the K-map of Fig. 1, two overlapping prime implicants are formed using two adjacent 1's and the corresponding 
product terms are x' y' and x' z'. Therefore, the Boolean function, F is sum of these two prime implicants as shown 
below. The combinational logic circuit is drawn using logic gates as shown in Fig. 2.

F = x' y' + x' z'

Example 1.19
Design a combinational circuit with three inputs x, y and z and the 3 outputs, A, B and C. When the binary input  

is 0, 1, 2 or 3 the binary output is one greater than the input. When the binary input is 4, 5, 6 or 7, the binary output is 

one less than the input.                     

Solution

The truth table of the given problem is developed as shown in Table 1. 

Using the truth table the K-maps are constructed as shown in Figs. 1 to 3.

 

From the K-map for A, B and C the following Boolean equations 
are obtained and using these equations the logic circuit  is drawn in Fig. 4.

A = xz + xy + yz

B = xy' z' + xyz + x' y' z + x' yz'

C = z'

  Inputs                              Outputs

x    y    z       Minterm      A     B      C     

0     0     0           m0               0       0       1                                

0     0     1           m1               0       1       0       

0     1     0           m2               0       1       1           

0     1     1           m3               1       0       0       

1     0     0           m4               0       1       1              

1     0     1           m5                         1        0       0        

1     1     0           m6               1       0       1                    

1     1     1           m7               1       1       0           

Table 1: Truth Table
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Example 1.20
 Design a 3-input majority circuit, in which the output is equal to 1 if the input variables have more 1's than 0's,  

otherwise, output is 0.

Solution
The truth table of majority circuit described in the problem is shown in Table 

1 and the three variable K-map constructed using Table 1 is shown in Fig. 1. 

                                                  

                                                                                     

In the K-map of Fig. 1, three overlapping prime implicants are 
formed using two adjacent 1's and the corresponding product terms are 
xy, yz and xz. Therefore, the Boolean function, F is sum of these three 
prime implicants as shown below. The combinational logic circuit is drawn 
using logic gates as shown in Fig. 2.

F = x y + y z + x z

Example 1.21
Assume a 3-input AND gate with output F and a 3-input OR gate with output G. Show the signals of the outputs 

F and G as functions of the three inputs A, B and C. Use all 8 possible combinations of inputs ABC.

Solution

It's given that, 

F = ABC   ;    G = A + B + C

The truth table for F and G for all possible combinations of A, B and C is developed as shown in Table 1.

Using the truth table the K-map for F and G are constructed as shown in Figs. 1 and 2.

Table 1: Truth Table for 3-input AND and OR gate                            
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Fig. 2: Logic circuit of F.

xy

yz

xz

  Inputs       Minterm    Output

x    y    z                             F

0     0     0             m0               0  

0     0     1             m1               0  

0     1     0             m2               0  

0     1     1             m3               1 

1     0     0             m4               0  

1     0     1             m5                          1

1     1     0             m6                          1

1     1     1             m7                          1

Table 1: Truth Table

  Inputs                          Outputs

A    B    C      Minterm     F     G            

0     0     0              m0           0       0                                   

0     0     1              m1           0       1     

0     1     0              m2           0       1         

0     1     1              m3           0       1  

1     0     0              m4           0       1     

1     0     1              m5                   0       1

1     1     0              m6           0       1        

1     1     1              m7           1       1
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From the K-map we get the following Boolean equations.

F = ABC

G = (A' B' C' )' = A + B + C

Using the above Boolean equations, the logic circuit for F and G is drawn 

as shown in Fig. 3.  

Example 1.22
          Simplify and implement the logic function F(A, B, C) = ∑ m(0, 1, 4, 5, 7) using logic gates.

Solution
The truth table of logic function is shown in Table 1 and the three variable K-map is constructed using Table 1 

as shown in Fig. 1. The function output, F is 1 for minterms m0, m1, m4, m5 and m7.

Table 1: Truth Table

From the K-map we get the Boolean equation of the function as,

F = A C + B'

The logic circuit is drawn using the above Boolean function as shown in Fig. 2.

Using DeMorgan's law

A

Fig. 1: K-map for F.
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  Inputs       Minterm    Output

A    B   C                             F

0     0     0             m0                1  

0     0     1             m1                1  

0     1     0             m2                0  

0     1     1             m3                0 

1     0     0             m4                1  

1     0     1             m5                           1

1     1     0             m6                           0

1     1     1             m7                           1
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Fig. 1: K-map for F.
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Example 1.23

Simplify the following Boolean functions, using three variable K-maps:

a) F (x, y, z) = ∑ m(0, 2, 4, 5)          b) F (x, y, z) = ∑ m(0, 2, 4, 5, 6)          c) F (x, y, z) = ∑ m(0, 1, 2, 3, 5) 

Solution

a) F (x, y, z) = ∑ m(0, 2, 4, 5)

The given function has three variables and so a 3-variable 
K-map with 8 squares (23 = 8) is drawn as shown in Fig. 1. The 
function is defined as sum of minterms m0, m2, m4 and m5 and so a 
''1'' is filled in the corresponding squares in K-map and the remaining 
squares are filled with ''0''. 

In the K-map of Fig. 1, two prime implicants each with two 
adjacent 1's can be formed and the corresponding product terms 
are xy' and x' z'. The simplified Boolean function is given by sum of 
these two product terms.

∴ F =  x y' + x' z'

b) F (x, y, z) = ∑ m(0, 2, 4, 5, 6) 

The given function has three variables and so a 3-variable 
K-map with 8 squares (23 = 8) is drawn as shown in Fig. 2. The function 
is defined as sum of minterms m0, m2, m4, m5 and m6 and so a ''1'' is 
filled in the corresponding squares in K-map and the remaining squares 
are filled with ''0''. 

In the K-map of Fig. 2, two prime implicants one with four 
adjacent 1’s and another with two adjacent 1's can be formed and the 
corresponding product terms are z' and xy'. The simplified Boolean 
function is given by sum of these two product terms. 

∴ F =  z' + x y'

c) F (x, y, z) = ∑ m(0, 1, 2, 3, 5)

The given function has three variables and so a 3-variable 
K-map with 8 squares (23 = 8) is drawn as shown in Fig. 3. The function 
is defined as sum of minterms m0, m1, m2, m3 and m5 and so a ''1'' is 
filled in the corresponding squares in K-map and the remaining squares 
are filled with ''0''. 

In the K-map of Fig. 3, two prime implicants one with four 
adjacent 1’s and another with two adjacent 1's can be formed and the 
corresponding product terms are x' and y' z. The simplified Boolean 
function is given by sum of these two product terms. 

∴ F =  x' + y' z  
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Example 1.24
Simplify the following Boolean function, using three-variable K-maps:

F= x y + x' y' z' + x' y z'      
Solution

The truth table of the given function is formed as shown in Table 1 and the minterms for which function output 
is ''1'' are determined and using these minterms the function F1 can be expressed as,

	F1 = Σ (m0, m2, m6, m7)

Table 1: Truth Table for Functions F1

The given function has three variables and so a 3-variable K-map with 8 squares (23 = 8) is drawn as shown in 
Fig. 1. The function is defined as sum of minterms m0, m2, m6 and m7 and so a ''1'' is filled in the corresponding squares 
in K-map and the remaining squares are filled with ''0''. 

In the K-map of Fig. 1, two prime implicants each with two adjacent 1's can be formed and the corresponding 
product terms are xy and x' z'. The simplified Boolean function is given by sum of these two product terms. 

∴ F1 =  x y + x' z'  

Example 1.25

Simplify the following Boolean functions, using Karnaugh maps.

a)   F1 (A, B, C, D) = ∑ m(3, 7, 11, 13, 14, 15)               b)   F2(w, x, y, z) = ∑ m(2, 3, 12, 13, 14, 15)

Solution

a) F1 (A, B, C, D) = ∑ m(3, 7, 11, 13, 14, 15)

The given function has four variables and so a 4-variable K-map with 16 squares (24 = 16) is drawn as shown in 
Fig. 1. The function is defined as sum of minterms m3, m7, m11, m13, m14 and m15 and so a ''1'' is filled in the corresponding 
squares in K-map and the remaining squares are filled with ''0''. 

    Input Variables            Minterm           Product Terms           Function Output

x     y    z     x'    y'   z'                          x y       x' y' z'     x' y z'                 F1        
0      0    0      1     1     1             m0                0             1                0                        1     

0      0    1      1     1     0             m1                  0              0               0                        0   

0      1    0      1     0     1             m2                  0              0               1                        1   

0      1    1      1     0     0             m3                0              0               0                        0   

1      0    0      0     1     1             m4                  0              0               0                         0   

1      0    1      0     1     0             m5                0              0               0                         0  

1      1    0      0     0     1             m6                 1               0               0                        1   

1      1    1      0     0     0             m7                 1              0               0                        1   
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In the K-map of Fig. 1, three prime implicants one with four 
adjacent 1's and the other two with two adjacent 1's can be formed 
and the corresponding product terms are CD, ABC and ABD. The 
simplified Boolean function is given by sum of these three product 
terms. 

∴  F1 = C D + A B C + A B D

b) F2 (w, x, y, z) = ∑ m(2, 3, 12, 13, 14, 15)

The given function has four variables and so a 4-variable K-map 
with 16 squares (24 = 16) is drawn as shown in Fig. 2. The function 
is defined as sum of minterms m2, m3, m12, m13, m14 and m15 and so a 
"1" is filled in the corresponding squares in K-map and the remaining 
squares are filled with "0". 

In the K-map of Fig. 2, two prime implicants one with four 
adjacent 1's and the other with two adjacent 1's can be formed and the 
corresponding product terms are wx and w' x' y. The simplified Boolean 
function is given by sum of these two product terms. 

∴  F2 = w x + w' x' y

Example 1.26

Minimize F (A, B, C, D) = ∑ m(1, 3, 4, 6, 8, 11, 15) + d(0, 5, 7) using K-map and draw MSI circuit for the output.         

Solution
The given function has four variables and so a 4-variable 

K-map with 16 squares (24 = 16) is drawn as shown in Fig. 1. The 
function is defined as sum of minterms m1, m3, m4, m6, m8, m11 and 
m15 and so a ''1'' is filled in the corresponding squares in K-map the 
minterms m0,m5,m7 and so a "×" is filled in corresponding squares 
in K-map and the remaining squares are filled with ''0''. 

In the K-map of Fig. 1, three prime implicants one with four 
adjacent 1's and the other two with two adjacent 1's can be formed 
and the corresponding product terms are CD, A' B and A' D and 
B' C' D'. The simplified Boolean function is given by sum of these 
four product terms. 

∴  F = C D + A' B + B' C' D' + A' D

The MSI circuit is drawn using the above Boolean function as shown in Fig. 2.

Fig. 1: K-map for F .1
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Example 1.27
Simplify the following Boolean functions using K-maps and draw MSI circuits.

F = w' z + x z + x' y + w x' z 

Solution
a) F1 = w' z + x z + x' y + w x' z

The truth table of the given function is formed as shown in Table 1 and the minterms for which function output 
is "1" are determined and using these minterms the function F1 can be expressed as,

	F1 = ∑ (m1, m2, m3, m5, m7, m9, m10, m11, m13, m15)

Table 1: Truth Table for Function F1

          Input Variables     Minterm     Complement of           Product Terms             Function            
                                                           Inputs                                                         Output                              
  w     x     y     z                              w'             x'          w' z     x z      x' y    w x' z             F1        
  0       0      0      0             m0                  1                1               0           0          0           0                   0      

  0       0      0      1             m1                   1                 1                1           0           0           0                   1  

  0       0      1      0             m2                              1                1               0           0           1           0                   1   

  0       0      1      1             m3                               1                1               1           0           1           0                    1   

  0       1      0      0             m4                  1                0               0             0           0           0                    0   

  0       1      0      1             m5                               1                0               1            1           0           0                   1   

  0       1      1      0             m6                               1                0               0           0           0           0                    0  

  0       1      1      1             m7                  1                0               1           1            0           0                   1   

  1       0      0      0             m8                           0                1               0           0           0           0                    0     

  1       0      0      1             m9                   0                1               0           0           0           1                   1   

  1       0      1      0             m10                             0                1               0           0           1           0                   1    

  1       0      1      1             m11                 0                 1               0           0           1           1                   1   

  1       1      0      0             m12                  0                0               0           0           0           0                    0   

  1       1      0      1             m13                  0                0               0          1           0           0                   1    

  1       1      1      0             m14                  0                0                0           0            0           0                    0   

  1       1      1      1             m15                  0                0               0           1          0           0                   1   

 

B C D

’B C’ D’

A

’A

Fig. 2: MSI circuit of F.

A B’

B C D’ ’ ’ F = CD+A B+B C D’ ’ ’ ’ ’+A D

CD

A D’
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The given function has four variables and so a 4-variable K-map 
with 16 squares (24 = 16) is drawn as shown in Fig. 1. The function is 
defined as sum of minterms m1, m2, m3, m5, m7, m9, m10, m11, m13 and 
m15 and so a "1" is filled in the corresponding squares in K-map and the 
remaining squares are filled with "0". 

In the K-map of Fig. 1, two prime implicants one with eight 
adjacent 1's and the other with four adjacent 1's can be formed and 
the corresponding product terms are z and x' y. The simplified Boolean 
function is given by sum of these two product terms. 

∴ F1 =  z + x' y

The MSI circuit is drawn using the above Boolean function as 
shown in Fig. 2.

1.6.6  Realization of Product-of-Sums Form using K-map

In truth table the function output value with ''0'' represent maxterms. Therefore in K-map if squares 
with 0's are considered for forming prime implicants and the complement of the resultant sum-of-products 
form will give product-of-sums form.

Two-Variable K-map

An example of two-variable K-map with two prime implicants formed 
using single 0's are shown in Fig. 1.34. Here, each prime implicant represents 
a product term of two literals. Now, the POS form of Boolean function is given 
by complement of sum of these two product terms as shown below: 

F = (x' y + x y' )' = (x' y)' (x y' )'

   = (x + y' ) (x' + y)

Three-Variable K-map

An example of three-variable K-map with two prime 
implicants formed using single 0's are shown in Fig. 1.35. 
Here, each prime implicant represents a product term of three 
literals. Now, the POS form of Boolean function is given by 
complement of sum of these two product terms as shown 
below: 

F = (x' y z + x y' z' )'

              = (x' y z)' (x y' z' )'   = (x + y' + z' ) (x' + y + z) 

Fig. 1: K-map for function F .1
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An example of three-variable K-map with two prime 
implicants formed using two adjacent 0's are shown in  
Fig. 1.36. Here, each prime implicant represents a product term of 
two literals. Now, the POS form of Boolean function is given by 
complement of sum of these two product terms as shown below:

F = (y z' + y' z)'
   = (y z' )' (y' z)'  
   = (y' + z) (y + z' )

Four-Variable K-map
An example of four-variable K-map with three 

prime implicants one formed using four adjacent 0's and 
the other two formed using two adjacent 0's are shown in 
Fig. 1.37. Here, the prime implicant with four adjacent 0's 
represent a product term of two literals and each prime 
implicant with two adjacent 0's represent a product term 
of three literals. Now, the POS form of Boolean function is 
given by complement of sum of these three product terms 
as shown below:

F = (w z + x' y' z' + x y z' )'

   = (w z)' (x' y' z' )' (x y z' )'

   = (w' + z' ) (x + y + z) (x' + y' + z)

1.6.7  Completely and Incompletely Specified Functions
(K-map with Don't-Care Conditions)

In n-variable Boolean function there are 2n possible combinations of inputs and so there will be 2n 
outputs. But in certain functions all the 2n possible outputs are not defined (or not used).

When the outputs are defined for all the possible 
2n combinations of inputs then the function is called 
completely specified function. When the outputs are 
not defined for some of the possible combinations of 
inputs then the function is called incompletely specified 
function.

Consider the truth table shown in Table 1.38 and 
the corresponding K-map shown in Fig. 1.38. In Table 
1.38 the undefined function outputs are called don't-care 
conditions and denoted by ×.

Using DeMorgan's Theorem

Using DeMorgan's Theorem
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Table 1.38: Truth Table with Don't-cares

Inputs      Minterm       Output
x y z                                   F

0 0 0                m0                 0

0 0 1                m1                 1

0 1 0                m2                 ×

0 1 1                m3                 ×

1 0 0                m4                 0

1 0 1                m5                 1

1 1 0                m6                 1

1 1 1                m7                 0
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In simplification of Boolean functions using K-maps, don't-care conditions can be considered as 
either 0 or 1. It is not necessary that don't-care conditions to be included in prime implicants, but if inclusion 
of a don't-care condition leads to minimization of a literal then, don't-care can be included in the prime 
implicants as shown in Fig. 1.38.

Another example of truth table with don't-cares is shown in Table 1.39 which is truth table of binary 
to 5421 BCD code conversion. K-maps for each output a1, a2, a4 and a5 are shown in Figs. 1.39 to 1.42. For 
each output two K-maps are drawn in order to show that the literals are reduced in Boolean expression of 
the outputs when don't-cares are included in formation of prime implicants.

Table 1.39: Truth Table of BCD
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F = y z + xz’
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F = z

Fig. 1.38: K-map with don't-care conditions.

   Decimal    Minterm    Input Binary    Output 5421 BCD
                                             w x y z              a5 a4 a2 a1	                     
        0                   m0             0 0 0 0                0   0  0  0               

            1                    m1                     0 0 0 1                0   0  0  1               

            2                    m2                  0 0 1 0                0   0  1  0               

            3                    m3             0 0 1 1                0   0  1  1               

            4                    m4             0 1 0 0                0   1  0  0               

            5                    m5                  0 1 0 1                1   0  0  0                

            6                    m6             0 1 1 0                1   0  0  1               

            7                    m7             0 1 1 1                1   0  1  0               

            8                    m8             1 0 0 0                1   0  1  1               

            9                    m9             1 0 0 1                1   1  0  0               

             -                    m10                1 0 1 0                ×  ×  ×  ×                 

           -                    m11            1 0 1 1                ×  ×  ×  ×            

         -                    m12            1 1 0 0                ×  ×  ×  × 

         -                    m13            1 1 0 1                ×  ×  ×  ×      

             -                    m14            1 1 1 0                ×  ×  ×  ×

             -                    m15            1 1 1 1                ×  ×  ×  ×   1
2

3

6 don't-care
conditions
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a = wx y z + w xyz + w x z1 ’ ’ ’ ’ ’ ’ ’
Fig. a: Prime implicants formed without

including don’t-cares.
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a = wx y z + w yz + w x y2 ’ ’ ’ ’ ’ ’
Fig. a: Prime implicants formed without

including don’t-cares.
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Fig. 1.41: K-map for a4 .
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Boolean function for a1, a2, a4 and a5 		  Boolean function for a1, a2, a4 and a5
when don't-cares are not considered			  when don't-cares are included for 
for formation of prime implicants			   formation of prime implicants
	    a1 = w x'  y'  z' + w' x y z' + w'  x'  z    		         a1 = w z' + x y z' + w' x' z
	    a2 = w x'  y'  z' + w'  y z + w'  x'  y			         a2 = y z + x' y + w z' 
	    a4 = w'  x y'  z' + w x'  y'  z			          a4 = x y' z' + w z
	    a5 = w x'  y' + w'  x z + w'  x y			          a5 = w + x z + x y

Example 1.28

Simplify the following Boolean functions.

a) F1 (A, B, C, D) = ∏ M(1, 3, 5, 7, 13, 15)        b) F2 (A, B, C, D) = ∏ M(1, 3, 6, 9, 11, 12, 14) 

Solution

a) F1 (A, B, C, D) = ∏ M(1, 3, 5, 7, 13, 15)

The given function has four variables and so a 4-variable K-map 
with 16 squares (24 = 16) is drawn as shown in Fig. 1. The function is 
defined as product of maxterms M1, M3, M5, M7, M13 and M15 and so a 
"0" is filled in the corresponding squares in K-map and the remaining 
squares are filled with "1". 

In the K-map of Fig. 1, two prime implicants each with four 
adjacent 0's can be formed and the corresponding product terms are 
A' D and BD. The simplified Boolean function in POS form is given by 
complement of sum of these two product terms. 

F1 = (A' D + B D)'

     = (A' D)' (B D)'

     = (A + D' ) (B' + D' )

a = wx y + w xz + w xy5 ’ ’ ’ ’
Fig. a: Prime implicants formed without

including don’t-cares.
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Fig. 1: K-map for F .1
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b) F2 (A, B, C, D) = ∏ M(1, 3, 6, 9, 11, 12, 14) 

The given function has four variables and so a 4-variable 
K-map with 16 squares (24 = 16) is drawn as shown in Fig. 2. The 
function is defined as product of maxterms M1, M3, M6, M9, M11, M12 
and M14 and so a "0" is filled in the corresponding squares in K-map 
and the remaining squares are filled with "1". 

In the K-map of Fig. 2, three prime implicants one with four 
adjacent 0's and the other two each with two adjacent 0's can be 
formed and the corresponding product terms are B' D, BCD' and ABD'. 
The simplified Boolean function in POS form is given by complement 
of sum of these three product terms. 

F2 = (B' D + B C D' + A B D' )'

     = (B' D)' (B C D' )' (A B D' )' 

     = (B + D' ) (B' + C' + D) (A' + B' + D)  

Example 1.29
Simplify the following function to sum-of-products and product-of-sums. 

F = x' z' + y' z' + y z' + x y
Solution

The truth table of the given function is formed as shown in Table 1 and the minterms for which function output 
is "1" are determined and using these minterms the function F can be expressed as,

	F = ∑ (m0, m2, m4, m6, m7)

Table 1: Truth Table

The given function has three variables and so a 3-variable K-map with 8 squares (23 = 8) is drawn as shown 
in Fig. 1. The function is defined as sum of minterms m0, m2, m4, m6 and m7 and so a "1" is filled in the corresponding 
squares in K-map and the remaining squares are filled with "0". 

For SOP form of Boolean function, the prime implicants are formed by considering the squares filled with 1's. In 
the K-map of Fig. 1, two prime implicants one with four adjacent 1's and the other with two adjacent 1's can be formed 
and the corresponding product terms are z' and xy. The simplified Boolean function in SOP form is given by sum of 
these two product terms. 

Fig. 2: K-map for F .2
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Using DeMorgan's Theorem

     Input          Minterm      Complement of            Product Terms              Function
 Variables                                   Inputs                                                           Output                        

 x     y     z                                          x'        y'       z'       x' z'    y' z'      y z'      x y            F        

 0       0        0              m0                 1           1          1            1           1            0            0                 1     

 0       0      1              m1                 1           1          0            0           0            0            0                  0   

 0       1      0              m2                           1            0          1             1           0            1            0                 1   

 0       1      1              m3                           1            0           0             0           0            0            0                  0   

 1       0      0              m4                           0           1          1             0             1            0            0                 1   

 1       0      1              m5                 0            1           0             0           0             0            0                 0     

 1       1      0              m6                    0            0          1             0           0            1            1                  1   

 1       1       1                 m7                 0            0          0            0            0            0            1                 1   

(AU, Nov/Dec'23, 15 Marks)
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For POS form of Boolean function, the prime implicants are formed by considering the squares filled with 0's. In 
the K-map of Fig. 2, two prime implicants each with two adjacent 0's can be formed and the corresponding product terms 
are x' z and y' z. The simplified Boolean function in POS form is given by complement of sum of these two product terms.

F = z' + x y                                                          F = (x' z + y' z)'

                                                                                   = (x' z)' (y' z)'                                     

                                                                                               = (x + z' ) (y + z' ) 

Example 1.30

Simplify the following Boolean functions, together with the don't-care conditions and then express the simplified 
function in sum-of-products.

a)    F1 (A, B, C, D) = ∑ m(0, 6, 8, 13, 14) 		  b)   F2 (A, B, C, D) = ∑ m(5, 6, 7, 12, 14, 15)             

       d1 (A, B, C, D) = ∑ d(2, 4, 10)		        d2 (A, B, C, D) = ∑ d(1, 3, 9, 11)

Solution

a)   F1 (A, B, C, D) = ∑ m(0, 6, 8, 13, 14)

      d2 (A, B, C, D) = ∑ d(2, 4, 10)

The given function has four variables and so a 4-variable 
K-map with 16 squares (24 = 16) is drawn as shown in Fig. 1. The 
function is defined as sum of minterms m0, m6, m8, m13 and m14 
and so a "1" is filled in the corresponding squares in K-map. The 
function also has don’t-care outputs for the minterms m2, m4 and 
m10 and so a "x" is filled in the corresponding squares in K-map and 
the remaining squares are filled with "0". 

In the K-map of Fig. 1, by considering the don’t-care 
condition in m2 and m10 as "1", three prime implicants can be 
formed in which two has four adjacent 1's and one have single 
1 and the corresponding product terms are B' D', CD' and ABC' 
D. The simplified Boolean function is given by sum of these three 
product terms. 

∴      F1 = B' D' + C D' + A B C' D

Note: Don't-care in m2 and m10 are considered as 1.
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b)   F2 (A, B, C, D) = ∑ m(5, 6, 7, 12, 14, 15)

      d2 (A, B, C, D) = ∑ d(1, 3, 9, 11)

The given function has four variables and so a 4-variable K-map 
with 16 squares (24 = 16) is drawn as shown in Fig. 2. The function is 
defined as sum of minterms m5, m6, m7, m12, m14 and m15 and so a "1" 
is filled in the corresponding squares in K-map. The function also has 
don’t-care outputs for the minterms m1, m3 , m9 and m11 and so a "x" is 
filled in the corresponding squares in K-map and the remaining squares 
are filled with "0". 

In the K-map of Fig. 2, by considering the don’t-care condition in 
m1 and m3 as "1", three prime implicants can be formed in which each of 
the two prime implicants has four adjacent 1's and one prime implicant 
have two adjacent 1's and the corresponding product terms are A' D, 
BC and ABD'. The simplified Boolean function is given by sum of these 
three product terms. 

∴   F2 = A' D + B C + A B D'

Note: Don't-care in m1 and m3 are considered as 1.

Example 1.31
Simplify the following Boolean function with don't-care in POS form. 

F (A, B, C, D) = ∑ m(0, 2, 6, 12, 13, 14)

d (A, B, C, D) = ∑ d(1, 4, 10)

Solution

The given function has four variables and so a 4-variable 
K-map with 16 squares (24 = 16) is drawn as shown in Fig. 1. The 
function is defined as sum of minterms m0, m2, m6, m12, m13 and m14 
and so a "1" is filled in the corresponding squares in K-map. The 
function also has don’t-care outputs for the minterms m1, m4 and m10 
and so a "x" is filled in the corresponding squares in K-map and the 
remaining squares are filled with "0". 

For POS form of Boolean function, the prime implicants are 
formed by considering 0's. In the K-map of Fig. 1, by considering the 
don’t-care condition in m1 and m10 as "0", three prime implicants can be 
formed in which all three has four adjacent 0's and the corresponding 
product terms are A' D, AB' and CD. The simplified Boolean function in 
POS form is given by complement of sum of these three product terms. 

 F = (A' D + A B' + C D)'

    = (A' D)'  (A B' )' (C D)'

    = (A + D' ) (A' + B) (C' + D' )

Fig. 2: K-map for F .2
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Example 1.32
A combinational circuit has 3 inputs A, B, C and output F. F is true for the following input combinations. 

A is false, B is true.

A is false, C is true.

A and B and C are false.

	A and B and C are true.

a)  Write the truth table for F. Use the convention True = 1 and false = 0.

b)  Write the simplified expression for F in SOP form.

c)  Write the simplified expression for F in POS form.

Solution

a) Truth Table for F  

A is false, B is true                       A' B

A is false, C is true                       A' C

A and B and C are false               A' B' C'

	A and B and C are true                ABC

The Boolean equation for F is given by sum of all the above product terms.

F = 	A' B + A' C + A' B' C' + A B C 

    = A' B (C + C' ) + A' C (B + B' ) + A' B' C' + A B C 

                = A' BC + A' B C' + A' BC + A' B' C + A' B' C' + A B C

                = 	A' BC + A' B C' + A' B' C + A' B' C' + A B C

                    (m3)      (m2)        (m1)        (m0)      (m7)

                = ∑ (m0, m1, m2, m3, m7)  

The truth table for the above function is shown in Table 1. The function 
output is 1 for the minterms m0, m1, m2, m3 and m7 and 0 for minterms m4, 
m5 and m6.

The given function has three variables and so a 3-variable K-map 
with 8 squares (23 = 8) is drawn as shown in Figs. 1 and 2. The function is 
defined as sum of minterms m0, m1, m2, m3 and m7 and so a "1" is filled in the 
corresponding squares in K-map and the remaining squares are filled with "0". 

b) SOP form

For SOP form of Boolean function, the prime implicants are formed 
by considering the squares filled with 1's. In the K-map of Fig. 1, one prime implicant with four adjacent 1's and another 
with two adjacent 1's can be formed and the corresponding product terms are A' and BC. The simplified Boolean function 
in SOP form is given by sum of these two product terms. 

→

→
→

→  

     Input          Minterm      Function
 Variables                            Output                        

 A    B    C                                               F        

 0      0        0              m0                       1  

 0      0      1              m1                        1

 0      1      0              m2                                     1

 0      1      1              m3                                  1

 1      0      0              m4                                   0

 1      0      1              m5                         0 

 1      1      0              m6                              0

 1      1       1                 m7                           1

Table 1: Truth Table of Function F

x + x' = 1

x . 1 = x
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From the K-map the simplified Boolean equation for F in SOP form is given by,

	F =  A'  + B C   

C)  POS form

For POS form of Boolean function, the prime implicants are formed by considering the squares filled with 0's. In 
the K-map of Fig. 2, two prime implicants each with two adjacent 0's can be formed and the corresponding product terms 
are AC'  and AB'. The simplified Boolean function in POS form is given by complement of sum of these two product terms.

From the K-map the simplified Boolean equation for F in POS form is given by,

 	                               F  = (A C'  + A B' )'   

                                    = (A C' )' (A B' )'

                                = (A'  + C) ( A'  + B)   

Example 1.33
Use Karnaugh Map method to simplify the following Boolean function

F(A, B, C, D) = ∑ m(2, 4, 6, 10, 12) + ∑ d(0, 8, 9, 13)

a)  Implement the Boolean function, F using only NAND gates.

b)  Implement the Boolean function, F using only NOR gates.

Solution

a)  To Implement the Boolean function, F using only NAND gates
The given function has four variables and so a 4-variable 

K-map with 16 squares (24 = 16) is drawn as shown in Fig. 1. 
The function is defined as sum of minterms m2, m4, m6, m10 and 
m12 and so a "1" is filled in the corresponding squares in K-map. 
The function also has don’t-care outputs for the minterms m0, m8, 
m9 and m13 and so a "x" is filled in the corresponding squares in 
K-map and the remaining squares are filled with "0". 

For NAND implementation, the Boolean function should 
be formed in SOP form. In the K-map of Fig. 1, by considering the 
don’t-care condition in m0 and m8 as "1", three prime implicants 
can be formed with four adjacent 1's and the corresponding 
product terms are A' D', C' D' and B' D'. The simplified Boolean 
function is given by sum of these three product terms. 

∴  F = A' D' + C' D' + B' D'

Using the above Boolean function the logic circuit using only NAND gates is drawn as shown in Fig. 2.
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b)  To Implement the Boolean function, F using only NOR gates

For NOR implementation, the Boolean function should be formed 
in POS form. For POS form of Boolean function, the prime implicants are 
formed by considering 0's. In the K-map of Fig. 3, by considering the don’t-
care condition in m9 and m13 as "0" two prime implicants can be formed in 
which one prime implicant has eight adjacent 0's and one prime implicants 
has two adjacent 0's and the corresponding product terms are D and ABC. 
The simplified Boolean function in POS form is given by complement of 
sum of these two product terms. 

F = (D + A B C)'

   = D' (A B C)'

   = D' (A' + B' + C' )

Using the above POS form of Boolean function, the logic circuit using only NOR gates is drawn as shown in Fig. 4.

   

     

Fig. 2: Logic circuit of F using only NAND gates.
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Example 1.34
Find the minimum sum of products (MSOP) representation for,

F(A, B, C, D, E) = ∑ m(1, 4, 6, 10, 20, 22, 24, 26) + ∑ d(0, 11, 16, 27)

using K-map. Draw the logical circuit of the minimal expression using ony NAND gates.

Solution

The given function has five variables and so two 4-variable K-map each with 16 squares (24 = 16) are drawn 
as shown in Figs. 1 and 2. The K-map of Fig. 1 is drawn for minterms m0 to m15 in which A = 0. The K-map of Fig. 2 is 
drawn for minterms m16 to m31 in which A = 1. The function is defined as sum of minterms m1, m4, m6, m10 m20, m22, m24 
and m26 and so a "1" is filled in the corresponding squares in K-maps. The function also has don’t-care outputs for the 
minterms m0, m11, m16 and m27 and so a "x" is filled in the corresponding squares in K-maps and the remaining squares 
are filled with "0". 

For NAND realization the Boolean function should be formed in SOP form. In order to find adjacent squares the 
K-maps of Figs. 1 and 2 are placed one over the other as shown in Fig. 3. In the K-map of Fig. 3, by considering the 
don’t-care condition in m0, m11, m16 and m27 as "1", four prime implicants can be formed in which two has four adjacent 
1's and the other two has two adjacent 1's and the corresponding product terms are B' CE', BC' D, A' B' C' D' and 
ABC' E'. The simplified Boolean function is given by sum of these four product terms. 

∴      F = B' C E' + B C' D + A' B' C' D' + A B C' E' 

Using the above Boolean function the logic circuit using only NAND gate is drawn as shown in Fig. 4.
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Fig. 3: 5-variable K-map.
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Example 1.35
Find the minimum sum products of sum (MPOS) representation for,

F(A, B, C, D, E) = ∏ M(0, 5, 7, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27) + ∑d(23, 31)

using K-map. Draw the logical circuit of the minimal expression using ony NOR gates.

Solution

The given function has five variables and so two 4-variable K-map each with 16 squares (24 = 16) are drawn 
as shown in Figs. 1 and 2. The K-map of Fig. 1 is drawn for minterms m0 to m15 in which A = 0. The K-map of Fig. 2 is 
drawn for minterms m16 to m31 in which A = 1. The function is defined as sum of minterms m0, m5, m7, m8 m9, m10, m11 
m16, m20, m24, m25, m26 and m27 and so a "0" is filled in the corresponding squares in K-maps. The function also has 
don’t-care outputs for the minterms m23 and m31 and so a "x" is filled in the corresponding squares in K-maps and the 
remaining squares are filled with "0". 

For NOR realization the Boolean function should be formed in POS form. In order to find adjacent squares the 
K-maps of Figs. 1 and 2 are placed one over the other as shown in Fig. 3. In the K-map of Fig. 3, by considering the 
don’t-care condition in m23 and m31 as "1", four prime implicants can be formed in which two has four adjacent 1's and 
the other two has two adjacent 1's and the corresponding product terms are (B + C + D + E), (A + B + C' + E' ), (B'  + C) and 
(A'  + B + D + E). The simplified Boolean function is given by sum of these four product terms. 

∴  F = (B + C + D + E) (A + B + C' + E' ) (B' + C) (A' + B + D + E)

Using the above Boolean function the logic circuit using only NAND gate is drawn as shown in Fig. 4.
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Fig. 3: 5-variable K-map.
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1.7  Binary Arithmetic
Binary arithmetic is similar to decimal arithmetic of only two numbers 0 and 1. But in binary 

arithmetic, the result should be in binary. The rules for binary addition and subtraction are listed in  
Table 1.40.
Table 1.40: Rules of Binary Arithmetic

1.7.1  Binary Addition

Addition of two binary numbers is performed by bit-by-bit addition starting from LSB (Least 
Significant Bit). The carry generated in one bit addition is considered in next bit addition. If carry is 
generated in the addition of MSB (Most Significant Bit) then it is considered as MSB of sum. 

Example 1.36
Perform the following binary addition.

a) 101102 + 1112           b) 10102 + 110112      

Solution

Addend:        1   0   1   1   0                                  Addend:                  1   0   1   0
Augend:                   1   1   1                                  Augend:             1   1   0   1   1                 
                      1   1   1    0   1                                                        1   0   0   1    0   1              

                          

∴ 101102 + 1112  = 111012                                                       ∴ 10102 + 110112  = 1001012

1.7.2  Binary Subtraction
Subtraction of two binary numbers is performed by bit-by-bit subtraction starting from LSB (Least 

Significant Bit). When a subtraction of two bits need borrow then a 1 is borrowed from next available 
higher order bit and the borrowed bit is made 0.

When a larger magnitude number has to be subtracted from smaller magnitude number then the 
subtraction is performed by subtracting smaller magnitude number from larger magnitude number and a 
minus sign is added in the result.

Note: Binary number system and complement number system are presented in Appendices 6 and 7. 

Binary Addition     Binary Subtraction                                

    0 + 0 =       0              0 - 0 =        0                      
    0 + 1 =       1              0 - 1 = 1     1                 
    1 + 0 =       1              1 - 0 =        1               
    1 + 1 = 1    0              1 - 1 =        0              

Carry Sum Borrow Difference

↓↓ ↓ ↓

Carry
63

(+)

1

1 1← ←

1

-

(+)

1←

1

1←

1

a) 101102 + 1112  b) 10102 + 110112    

Carry

1

1←

- -

Carry← Carry←

(AU, Nov/Dec'22, 2 Marks)
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Example 1.37
Perform the following binary subtraction. 

a) 101102 - 1112         b) 110002 - 10102         c) 10112 - 110012

Solution
a) 101102 - 1112  
Minuend :            1   0   1   1   0                        Minuend :             1   0   1   0   10                                            

Subtrahend:                    1   1   1                        Subtrahend:                        1   1    1      
                                              1                                                                          1    1                                                                                                        

        ∴ 101102 - 1112  = 11112                                             Minuend:                1   0   0   10  10                                            

                                                                        Subtrahend:                     1    1    1
                                                                                                       0   1   1    1    1  

b) 110002 - 10102                           

Minuend:               1   1   0   0   0                            Minuend:              1   0   1  10   0                                            

Subtrahend:               1     0   1   0                            Subtrahend:          1      0   1    0   
                                        1   1   0                                                      0   1   1    1    0                                                                                                                    

∴ 110002 - 10102  = 11102

 c) 10112 - 110012

Here, the subtrahend is greater than the minuend. Hence, the minuend and subtrahend are interchanged and 
then the subtraction is performed and the result is considered as negative.

 Minuend:               1   1   0   0   1                             Minuend:              1   0   1   10  1                                           

Subtrahend:                1     0   1   1                                 Subtrahend:                1   0   1    1   
                                         1   1   0                                                               0   1   1   1    0                                                                                                                    

∴ 10112 - 110012  = - 11102

1.7.3  One's and Two's Complement Addition  

Addition involves addition of two positive or negative numbers or addition of a positive and negative 
number. Usually, the binary numbers in complement form will have a fixed bit size which leads to a fixed 
range of positive and negative number representation for a specified bit size.

The addition of two positive numbers is same as unsigned binary addition except the handling of 
final carry. In one’s complement addition the final carry is added to LSB (Least significant Bit) of sum but 
in two’s complement addition the final carry is discarded. When negative numbers has to be added they are 
converted to complement form and then added. The final carry is handled similar to addition of positive 
numbers. But the sum can be positive or negative. 

When addition involves negative numbers,

if MSB of sum is 0, then result is positive. 

if MSB of sum is 1, then result is negative, take respective complement of sum and put "-"sign. 

⇒(-)

10

0]

c 10

0
(-)

]

c

⇒

(-)

1
10

0]

Borrow←Borrow←

Borrow←
↓

0

1
10

⇒
(-)

]

0

1
10

⇒(-) ]

(-)

10

0]

c

(-)

10c

] 0

Borrow←

Borrow← Borrow←

Borrow←

↓

↓
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Example 1.38
Perform the following addition by one's and two's complement addition.  

a)  011012 + (- 010102)            b)  001102 + (- 011102)               c)  (- 010002) + (- 011002)       d)  001112 + 00102 

Solution
a) 011012 + (- 010102)                              

                        One's complement addition                     Two's complement addition

     Addend:       011012            ⇒                 01101                   Addend:         011012              ⇒                01101              

     Augend:    - 010102 &
's complement1

  (+)    10101       	 Augend:      - 010102  &
's complement2  (+)    10110 

                                         1  00010                                                                            1  00011      
                                                                       1                                                                             ↑   

                                                                00011                                                                  

                     

                                                 ∴ 011012 + (- 010102) = 000112  

b) 001102 + (- 011102)                              

           One's complement addition                                    Two's complement addition

     Addend:       001102            ⇒                00110           	              Addend:        001102               ⇒             00110              

     Augend:    - 011102 &
's complement1

   (+)   10001       	                         Augend:      - 011102  &
's complement2  (+) 10010 

                                             10111   (Sum)                                                                                11000   (Sum)     

                                       

                                            10111                 01000                                                               11000                 00111             

                                             ∴ Sum = - 010002                                                                                                  +1

                                                                                                                                                                        01000   

                                                                                                                                                ∴ Sum = - 010002             

                                                      ∴ 001102 + (- 011102) = - 010002                                              

c) (- 010002)  + (- 001002)                              

                            One's complement addition                                 Two's complement addition

     Addend:    - 010002                                     10111           	         Addend:    - 010002                                       11000              

     Augend:    - 001002                     (+)   11011       	         Augend:    - 001002    
&

's complement2

 (+)    11100 

                                           1 10010                                                                                  1  10100  (Sum)     
                                                                      1                                                                                    ↑   

                                                              10011   (Sum)                                                                 

                                 

►Add carry
Discard carry

'

Comp

s complement of1 01010

01010

10101

0

'

Comp

s complement of2 01010

01010

0
10101
      +1
10110

1   1  1   1 Carry← 1  1 1 Carry←

&
complement

&
complement

Since MSB of sum is 1, the result is negative. Hence 
take 2's complement of 11000 (sum) and put "-" sign 
for sum.

Since MSB of sum is 1, the result is negative. Hence 
take 1's complement of 10111 (sum) and put "-" sign 
for sum.

'

Comp

s complement of1 01110

01110

10001

0

'

Comp

s complement of2 01110

01110

0
10001
      +1
10010

Carry←1 1

►
Add carry Discard carry

&
's complement1

Carry←  1  1 1 1 1 Carry←1  1 
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10011                   01100 			   10100                    01011   

∴ Sum = - 011002	                                                                                                                                                            + 1			 

                                                                                                                    01100

                                                                                      ∴ Sum = - 011002  

                                          ∴ - 010002 + (- 001002) = - 011002

d) 001112 + 001012                              

                        One's and two's complement addition    

Addend :       00111                           

Augend :       00101                         

                     01100                                           

∴ 001112 + 001012  = 011002         

Errors in Complement Addition

In addition of two positive numbers the sum should not exceed maximum value of positive number 
representation for the bit size of the number and if it exceeds then the error is called overflow error. In 
addition of two negative numbers the sum should not go below the minimum value of negative number 
representation for the bit size of the number and if it goes below the minimum value then the error is called 
underflow error. In order to prevent overflow and underflow errors, the binary numbers should be sign 
extended to larger bit size before addition.

Example 1.39
Perform addition of two's complement numbers:

a)  0110 and 0010           b) 1011 and 1010

Solution 

a)  0110 and 0010

    Addend:       0110                         
     Augend:       0010       	         

       1000  (Sum)     

The most significant bit in the given numbers is 0 and hence they are positive numbers. But in sum the most 
significant bit is 1 which indicates a negative sum. In order to prevent the overflow error, the given numbers are sign 
extended to 5-bit numbers and addition is performed as shown ahead:

'

Comp

s complement of1 01000

01000

10111

0

'

Comp

s complement of1 00100

00100

11011

0

'

Comp

s complement of2 01000

01000

0
10111
      +1
11000

'

Comp

s complement of2 00100

00100

0
11011
      +1
11100

&
complement

Since MSB of sum is 1, the result is negative. Hence 
take 1's complement of 10011 (sum) and put "-" sign 
for sum.

Since MSB of sum is 1, the result is negative. Hence 
take 2's complement of 10100 (sum) and put "-" sign 
for sum.

&
complement

(+)

Carry1 1 1 ←

 (+)

Carry11 ←
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           0110                 00110                Addend:        00110            

           0010                 00010                 Augend:       00010

                                                                                   01000  (Sum)  
                          ∴ 01102 + 00102 = 10002      

b) 1011 and 1010

     Addend:          1011                         

     Augend:          1010       	         

                  1  0101  (Sum)   
                  ↑

The most significant bit in the given numbers is 1 and hence they are negative numbers. But in sum the most 
significant bit is 0 which indicates a positive sum. In order to prevent the underflow error, the given numbers are sign 
extended to 5-bit numbers and addition is performed as shown ahead:   

           1011                 11011                Addend:         11011            

           1010                 11010                Augend:         11010

                                                                                 1 10101  (Sum)   
                                                                                 ↑

                      ∴ 10112 + 10102 = 101012   

1.7.4  One's and Two's Complement Subtraction                            
In one's and two's complement subtraction, the subtrahend is represented in complement form and 

added to minuend. In one's complement subtraction if there is a final carry then it is added to LSB (Least 
Significant Bit) and in two's complement subtraction the final carry is discarded.  

The sum can be positive or negative. Therefore, in complement subtraction,     
if MSB of sum is 0, then result is positive.      
if MSB of sum is 1, then result is negative, take respective complement of sum and put ''-'' sign. 

Example 1.40
Perform the following subtraction by one's and two's complement subtraction.  

a)  111012 - 100012            b)   100012 - 111012

Solution
a) 111012 - 100012                              

                        One's complement subtraction                   Two's complement subtraction

   Minuend:          111012            ⇒               11101           	  Minuend:         111012               ⇒                 11101              

  Subtrahend:  - 100012 &
's complement1

 (+)   01110       	             Subtrahend:  -100012  &
's complement2  (+)    01111 

                                          1  01011                                                                                1  01100      
                                                                         1                                                                              ↑   

                                                                01100                                                                 

                     
                                                  ∴ 111012 - 100012 = 011002                                                            

Sign extend

to bits5

(  (+)

Carry11 ←

 (+)

Discard carry

Carry1 ←1

Sign extend

to bits5

( (+)

Discard carry

1 1   1 ← Carry

►
Add carry Discard carry

'

Comp

s complement of1 10001

10001

01110

0

'

Comp

s complement of2 10001

10001

0
01110
      +1
01111

1  1 1 ← Carry   1  1 1 1 1 ← Carry
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b) 100012 - 111012  
                    One's complement subtraction                                Two's complement subtraction

   Minuend:          100012            ⇒               10001                     Minuend:          100012              ⇒              10001                                    

   Subtrahend:  - 111012   &
's complement1   (+)  00010              	     Subtrahend:  - 111012    &

's complement2
   (+) 00011

                                                                  10011  (Sum)                                                                            10100 (Sum)

                                           ↑                                                                                           ↑
                                       No carry                                                                                    No carry

                                                                                                                             
                                                                                                                                                                                                         
                                                                                                                             

                                                                                                                                            
                                                                                                                                                                              

                                                ∴ 100012 - 111012 = - 011002                                                                                       

Example 1.41

Perform one's complement and two's complement subtraction of fractional numbers 1101.1012 and 1000.0012 
and compare the results with actual subtraction.

Solution

Case i: One's complement subtraction

  Minuend:          1101.1012              ⇒                  1101.101       Minuend:          1101.1012                ⇒                   1101.101              

  Subtrahend:  - 1000.0012   &
's complement1

  (+)    0111.110       Subtrahend:  - 1000.0012     &
's complement2   (+)      0111.111 

                                                 1  0101.011                                                                           1  0101.100      
                                                                                 +1                                                                                ↑   

                                                                         0101.100                                                                 

                                      ∴ 1101.1012 - 1000.0012 = 0101.1002

Case iii: Actual Subtraction   

   1101.101

- 1000.001

   0101.100

1 1   ← Carry

'

Comp

s complement of1 11101

11101

00010

0

'

Comp

s complement of2 11101

11101

0
00010
      +1
00011

'

Comp

s complement of1 10011

10011

01100

0
Comp

10100

0

's complement of2 10100

01011
      +1
01100

Since MSB of sum is 1, the result is negative. Hence 
take 1's complement of 10011 (sum) and put "-" sign 
for sum.

Since MSB of sum is 1, the result is negative. Hence 
take 2's complement of 10100 (sum) and put "-" sign 
for sum.∴ Sum = - 011002

∴ Sum = - 011002

Case ii: Two's complement subtraction

Discard carry

►Add carry

' .

.

.

Comp

s complement of1 1000 001

1000 001

0111 110

0

' .

.

Comp

s complement of2 1000 001

1000 001

0
0111.110
             +1
0111.111

Note: The results are same in direct 
subtraction, one's and two's complement 
subtraction.

1   1 1 1  1  1 1←Carry1  1 1 1 1←Carry
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1.7.5  Adders
Adders have been developed to perform arithmetic addition operation on binary numbers. Half adder 

can perform addition of two 1-bit binary number. The possible additions of two 1-bit binary numbers are 
shown below:

	0 + 0 =     0                                	     0 0 
0 + 1 =     1      2-bit standard representation     0 1
1 + 0 =     1                                	     0 1
1 + 1 =  1 0                               	 	     1 0

                                     Sum                                               Sum

                                                 Carry                                                           Carry   
	In the above additions, it can be observed that result is either 1-bit or 2-bit. The 1-bit result is called 

sum. In the 2-bit result, the first bit is called sum and the second bit is called carry. Hence, half adder is 
designed to generate 2-bit standard output. 

	In addition of n-bit binary numbers, the addition is performed bit-by-bit. In this the carry generated in 
an addition should be considered in next addition to get correct result and so full adder is developed which 
can add three binary input bits in which one of the bits is carry generated in previous addition. Therefore, 
n-bit addition can be performed by using n full adders in parallel. 

1.7.6  Half Adder

Half adder (HA) is a combinational circuit that performs 
arithmetic sum of two binary bits. The outputs are sum and carry. 
The truth table of half adder is shown in Table 1.41. The block 
diagram and symbolic representation of half adder are shown 
in Figs. 1.43 and 1.46 respectively.

Table 1.41: Truth Table of Half Adder 

→

→
→

→
→

Inputs  Minterm   Outputs
a     b                        s      co

0     0         m0             0      0   
0     1         m1             1      0    
1     0         m2             1      0    
1     1         m3             0      1    

Fig. 1.43: Block digaram of half adder.

Half
Adder
(HA)

a

b

s

co

2-bit
binary
input

Sum

Carry

0

m
0

0

1

m
1

m
2

m
3

0 1a
b

1

0

0 ab

Fig. b: K-map for .co

m
0 m

1

m
2

m
3

0 1a
b

1

0

0

10

Fig. a: K-map for s.

1

a b’

ab’

Fig. 1.44: K-map for design of half adder.

(AU, Apr/May'23, 2 Marks)
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Using truth table (Table 1.41) the K-maps for designing half adder are drawn as shown in Fig. 1.44. 
From the K-map we get the following Boolean equations and using these equations the logic circuit of 
half adder is drawn as shown in Fig. 1.45.   

            s  = a b' + a' b    ;       co = a b

Alternatively, the sum can be realized from XOR gate. If we compare the sum and output of XOR 
gate we observe that both are same. The logic circuit of half adder using XOR gate is shown in Fig. 1.47.

Table 1.42: Truth Table of XOR Gate

1.7.7  Full Adder

Full adder (FA) is a combinational circuit that perform 
arithmetic sum of three binary bits in which one of the bit is 
carry generated in previous addition. Hence, full adder will 
be useful in n-bit addition to add carry of an addition in the 
next bit addition.

The outputs are sum and carry. The truth table of full 
adder is shown in Table 1.43. The block diagram and symbolic 
representation of full adder are shown in Figs. 1.48 and 1.53 
respectively.

s  = ab' + a' b = a ⊕ b

a     b       a ⊕ b
0     0           0   
0     1           1   
1     0           1   
1     1           0 

Inputs       Minterm   Outputs
a    b     ci                       s       co

0     0     0         m0           0        0     

0     0     1         m1           1        0    

0     1     0         m2           1        0     

0     1     1         m3           0        1     

1     0     0         m4           1        0     

1     0     1         m5           0        1   

1     1     0         m6                   0        1     

1     1     1         m7                   1        1     

Table 1.43: Truth Table of Full Adder

s = ab + a b’ ’

a

b

a’

co = ab

Fig.1.45: Logic circuit of half adder.

b’ ab’

a b’

ab

Fig. 1.46: Symbolic representation of half adder.

HA
b a

co
s

a

b

s = a b+

co = ab

Fig. 1.47: Half adder using XOR gate.

Fig. 1.48: Block diagram of full adder.
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bci
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0

Fig. 1.49: K-map for s.
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abciab c’ ’i
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0
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1

m
4

m
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Fig. 1.50: K-map for c .o

1
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m
7

m
6

10

1 1

0 bci
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aci

(AU, Apr/May'23, 2 Marks)
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co

a b ci

s

Fig. 1.51: Logic circuit of full adder.

a’ b’ ci’
a b c’ ’ i

a bc’ i’

ab c’ i’

abci

ab

aci

bci

Using truth table (Table 1.43) the K-maps for designing full adder are drawn as shown in Figs. 1.49 
and 1.50. From the K-map we get the following Boolean equations and using these equations the logic 
circuit of full adder is drawn as shown in Fig. 1.51.

Alternatively, full adder can be realized using two half adders as shown in Fig. 1.52. The first half 
adder is used to add two binary input bits and the second half adder is used to add sum of first half adder 
and third binary input.

The carry is obtained by logical OR of the carry of both the half adders.
The combinational circuit of Fig. 1.52 can be verified using the truth table (Table 1.44).

Table 1.44: Truth Table to Verify Logic Circuit of Fig. 1.52

Note: With reference to Example 1.26, 
sum, s can be further simplified to XOR 
of a, b and ci.

∴ s = a ⊕ b ⊕ ci

aa
b
ci

s = a b c+ + i

Inputs           s1         s = s2         c1          c2            co

a   b   ci      a ⊕ b     s1⊕ ci        a b        s1ci        c1 + c2

0   0    0          0              0              0            0            0
0   0    1          0              1              0            0            0
0   1    0          1              1              0            0            0
0   1    1          1              0              0            1            1
1   0    0          1              1              0            0            0
1   0    1          1              0              0            1            1
1   1    0          0              0              1            0            1
1   1    1          0              1              1            0            1

co= +c c1 2

c2= s c1 i

s s2 == + cs1 i

Fig. 1.52: Full adder using two half adders.

a

b
HA

s1= +a b

c1 = ab

ci

HA
FA

b a

co
s

ci

Fig. 1.53: Symbolic representation
of full adder.

(AU, Apr/May'23, 7 Marks)

(AU, Apr/May'23, 2 Marks)



1.80	                                              Digital Principles and Computer Organization

The following equations are obtained from design of half adder in Section 1.7.6, for the sum and 
carry of the logic circuit of Fig. 1.52.

s1 = a ⊕ b	             s = s2 = s1 ⊕ ci

c1 = ab	                  c2 = s1 ci

Note: It can be observed that s and co of Table 1.44 is same as s and co of full adder. 

Example 1.42

Design a half adder using NOR gates only.   

Solution
The half adder has two inputs a, b and two outputs s, co (Refer 

Fig. 1.46). The truth table of half adder along with minterms is shown 
in Table 1.

Using truth table (Table 1) the K-maps for designing half adder 
are drawn as shown in Figs. 1 and 2. 

From the K-maps we get the following Boolean equations,

               s  = (a' b' + a b)' = (a' b' )' . (a b)' = (a + b) . (a' + b' )         

	        co = (a' + b' )'

Using the above Boolean equations the logic circuit of half adder is drawn using only NOR gates as shown in 
Fig. 3.

       

Inputs   Minterm    Outputs

 a    b                         s     c0

 0     0            m0            0      0   

 0     1            m1            1      0    

 1     0            m2            1      0    

 1     1            m3            0      1    

Table 1: Truth Table of Half Adder

m
0 m

1

m
2

m
3

0 1a
b

1

0

0

10

Fig. 1: K-map for s.

1 ab

a b’ ’ 0

m
0

0

1

m
1

m
2

m
3

0 1a
b

1

0

0

a’

Fig. 2: K-map for c .o

b’

Fig. 3: Logic circuit of half adder using NOR gates.

a b

b’

s

(a + b)’

a’

co

(a + b)’’

Half adder

’ s = ((a + b) + (a + b ) )’ ’ ’ ’ ’
= (a + b) . (a + b )’ ’

c = (a + b )o ’ ’ ’
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Example 1.43

Design a full adder using NAND gates only.   

Solution
The full adder has three inputs a, b, ci and two outputs s, co 

(Refer Fig. 1.53). The truth table of full adder along with minterms is 
shown in Table 1.

Using truth table (Table 1) the K-maps for designing full adder 
are drawn as shown in Figs. 1 and 2. 

From the K-maps we get the following Boolean equations,

Using the above Boolean equations the logic circuit of full adder 
using only NAND gates is drawn as shown in Fig. 3.

       

         Inputs                              Outputs

      a     b    ci     Minterm     Sum    Carry
                                                s           co

        0      0      0           m0              0              0          

       0      0      1           m1              1              0

       0      1      0           m2              1              0

       0      1      1           m3              0              1

       1      0      0           m4              1              0

       1      0      1           m5              0              1

       1      1      0           m6              0              1

       1      1      1           m7              1              1   

Table 1: Truth Table of Full Adder

m
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m
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m
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m
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7
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00 01 1011a
bci
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Fig. 1: K-map for s.
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1 1

0 bci
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aci

s = a' b' ci + a' b ci + a b' ci + a b ci               

co = a b + a ci + b ci    

' '

Fig. 3: Logic circuit of full adder using NAND gates.

a b ci

ci’b’

s

(a b c)’ ’ ’i

a’

(a bc)’ ’i

(ab c)’ ’i

(abc)i ’

(ab)’

(ac)i ’

(bc)i ’

c0

’

’

Full adder

s = ((a b c) . (a bc ) . (ab c ) . (abc)’ ’ ’ ’ ’ ’ ’ ’ ’i i i i )

= a b c + a bc + ab c + abc’ ’ ’ ’i i i i

c0 = ((ab) . (ac) . (bc) )’ ’ ’ ’i i

= ab ac bc+ +i i

’ ’
’ ’



1.82	                                              Digital Principles and Computer Organization

1.7.8  Binary Parallel Adder

A binary parallel adder performs arithmetic sum of two n-bit binary numbers. A full adder can add 
two 1-bit binary along with previous carry. Hence, in order to add two n-bit binary numbers, n full adders 
are required. Each full adder will add one bit of binary numbers.

Consider two, 4-bit binary numbers A and B shown below:
Binary number-1:   a3 a2  a1 a0 (A)

Binary number-2:   b3 b2 b1 b0 (B)

The bit-by-bit addition is performed as follows.

   c3                          c2                       c1                                             c0

+ a3                     + a2                    + a1                       + a0

+ b3                     + b2                    + b1                       + b0

                     c4      s3               c3        s2                c2      s1                  c1         s0

                     ↑      ↑                ↑       ↑                ↑      ↑                  ↑      ↑
                  Carry    Sum                Carry    Sum              Carry     Sum                  Carry   Sum

In the above addition the initial carry co = 0. The carry generated in an addition is considered in the 
next addition. A 4-bit binary adder to perform above addition is constructed using 4 full adders as shown 
in Fig. 1.54. The symbolic representations of 4-bit binary adders are shown in Fig. 1.55.

The 4-bit binary adder is available as a standard IC with number 7483. The pin configuration of 
7483 is shown in Fig. 1.56.

← ← ←

s0

b0 a0

c = 00
FA

b1 a1

c1FA

s1

b2 a2

c2FA

s2

b3 a3

c3FA

s3

c4

ab ab ab ab
c0 c0 c0 c0

cicicici

s s s s

Fig. 1.54: 4-bit binary adder using full adders.

4-bit Binary Adder

Fig. a.

b0b1b2b3

s3 s2 s1 s0co
ci

a3 a2 a1 a0

s3 s2 s1 s0

B A

S

4 4

4

4-bit Binary Adder

Fig. b.

co
ci

c0c4
c4

c0

Fig. 1.55: Symbolic representation of 4-bit binary adder.
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Fig. 1.56: Pin configuration of 4-bit binary adder IC 7483.
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Vcc(+5V)
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a4

b4

c4

b2
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a1

b1
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(0V) GND

7483
s1

s2

s3

s4

The 4-bit binary adders can be connected in parallel to perform addition of higher bit size binary. 
Two 4-bit adders can be connected as shown in Fig. 1.57 to add 8-bit binary numbers. Three 4-bit adders 
can be connected as shown in Fig. 1.58 to add 12-bit binary numbers and so on. 

Alternatively, 8-bit binary adder can be constructed by connecting 8 full adders in parallel as shown 
in Fig. 1.59. In general, n-bit binary adder can be constructed by connecting n full adders in parallel as 
shown in Fig. 1.60.

Note: n-bit binary adder is called parallel adder because it add all bits of data simultaneously.

      

 Pin                Description
a1 - a4             Operand a inputs
b1 - b4            Operand b inputs
co                   Carry input
s1 - s4             Sum outputs
c4                   Carry output 
Vcc                 Supply voltage (+5V)
GND             Ground (0V) 

4-bit Binary Adder

b4b5b6b7 a7 a6 a5 a4

s7 s6 s5 s4

c4c8

Fig. 1.57: 8-bit binary adder using 4-bit binary adders.

4-bit Binary Adder

b0b1b2b3 a3 a2 a1 a0

s3 s2 s1 s0

c0

4-bit Binary Adder

b4b5b6b7 a7 a6 a5 a4

s7 s6 s5 s4

c4c8

Fig. 1.58: 12-bit binary adder using 4-bit binary adders.

4-bit Binary Adder

b0b1b2b3 a3 a2 a1 a0

s3 s2 s1 s0

c04-bit Binary Adder

b8b9b10b11 a11a10a9 a8

s11 s10 s9 s8

c12
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1.7.9  BCD Adder (Decimal Adder)

In decimal addition we can use binary or BCD to represent decimal numbers. In both the 
representation when binary adders are used to perform addition the result or sum will be in binary. But 
in BCD addition we need result/sum in BCD. Hence we need additional logic circuit in binary adders to 
convert binary result to BCD.

The decimal digits represented in BCD are,

	0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Consider the following example of decimal addition. 

                            1  1     ←   Carry

                            4  2  9  8

                       +   5  3  9  7

                            9  6  9  5 

                                       Maximum possible sum = 1 + 9 + 9 = 19

From the above example it is evident that maximum possible sum of two BCD digits is, 
               1+ 9 + 9 = 19
               ↑
         Previous carry

Therefore in BCD addition the sum of any two digits will be in the range 0 to 1910. When sum is 
in the range 0 to 910 no correction is needed and it can be represented by 4 digit BCD. But for sum in 
the range 1010 to 1910 a correction 610 is added to sum to get the result in BCD. (Refer Section 1.8.1 for 
examples of BCD addition.)

The BCD adder is a binary adder with additional logic circuit to perform addition of correction 610 

when the sum of a BCD digit exceeds 910. 

A truth table (Table 1.45) is formed to show the range of binary sum and correction needed to convert 
binary sum to BCD sum. In Table 1.45, the binary sum is denoted as z8 z4 z2 z1 and BCD sum as s8 s4 s2 s1. 
Here, k is carry in binary sum and c is carry in BCD sum.

From the truth table (Table 1.45) we can observe that the correction by adding + 610 (01102) can be 
achieved using following three conditions.

1.   When binary sum is 1010 and 1110 correction 6 can be added if both z2 and z8 are 1.

2.   When binary sum is in the range 1210 to 1510 correction 6 can be added if both z4 and z8 are 1.

3.    When binary sum is in the range 1610 to 1910 correction 6 can be added if carry k in binary sum is 1.

Therefore, during BCD addition, first binary addition is performed using 4-bit binary adder then 
additional logic circuit is used to generate correction 6 for the conditions mentioned above and another 4-bit 
binary adder is used to add correction 6 to binary sum so that the binary sum is converted to BCD sum.

Note: BCD representation of decimal numbers are presented in Appendix 9.

→
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Table 1.45: Truth Table for Conversion of Binary to BCD Sum 

The logic circuit to perform 1-digit BCD addition using two 4-bit binary adders is shown in  
Fig. 1.61. The symbolic representation of BCD adder is shown in Fig. 1.62.

Decimal          Binary Addition                 Correction                  BCD Addition
   Sum         Carry    Binary Sum           Binary Sum              Carry      BCD Sum
                       k          z8    z4    z2  z1         + 610 (0110)                      c        s8    s4   s2    s1

  0                  0            0    0   0   0                  ↑                             0        0    0    0     0
  1                  0            0    0   0   1                                                   0        0    0    0     1
  2                  0            0    0   1   0                  No                            0        0    0    1     0
  3                  0            0    0   1   1             Correction                     0        0    0    1     1
  4                  0            0    1   0   0                                                   0        0    1    0     0    
  5                  0            0    1   0   1                                                   0        0    1    0     1        
  6                  0            0    1   1   0                                                   0        0    1    1     0
  7                  0            0    1   1   1                                                   0        0    1    1     1
  8                  0            1   0    0   0                                                   0        1    0    0     0
  9                  0            1   0    0   1                                                   0        1    0    0     1    
 10                 0            1   0    1   0        0 1 0 10   +  0 1 1 0            1        0    0    0     0
 11                 0            1   0    1   1        0 1 0 1 1  +  0 1 1 0            1        0    0    0     1
 12                 0            1   1    0   0        0 1 1 0 0  +  0 1 1 0            1        0    0    1     0
 13                 0            1   1    0   1        0 1 1 0 1  +  0 1 1 0           1         0    0    1     1
 14                 0            1   1    1   0        0 1 1 1 0  +  0 1 1 0           1         0    1    0     0
 15                 0            1   1    1   1        0 1 1 1 1  +  0 1 1 0           1         0    1    0     1
 16                 1            0   0    0   0        1 0 0 0 0  +  0 1 1 0           1         0    1    1     0 
 17                 1            0   0    0   1        1 0 0 0 1  +  0 1 1 0           1         0    1    1     1
 18                 1            0   0    1   0        1 0 0 1 0  +  0 1 1 0           1         1    0    0     0
 19                 1            0   0    1   1        1 0 0 1 1  +  0 1 1 0           1         1    0    0     1    

↓

Fig. 1.62: Symbolic representation 
                  of BCD adder.

Fig. 1.61: BCD adder using binary adders.
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Sum
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s3 s2

4-bit Binary Adder
co ci
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b8 b4 b2 b1 a8 a4 a2 a1

s8 s4 s2
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Fig. 1.64: Pin configuration of 4-bit BCD adder IC 74583.

8 9

Vcc(+5V)

a2
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b0

s0

s3
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b3
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ci

s2

(0V) GND

74583
a3

b1

a0

s1

4-digit BCD Adder

The BCD adder shown in Fig. 1.62 is used to perform BCD addition of 1-digit decimal numbers. 
In order to perform 4-digit BCD addition we need 4 BCD adders shown in Fig. 1.63. 

Consider two, 4-digit decimal numbers represented in BCD

Decimal number 1:  A3 A2 A1 A0

Decimal number 2:  B3 B2 B1 B0

Let,     BCD Sum  =  c S3 S2 S1 S0   
                            ↑
                        Final carry  

Let the format of two number and sum be as follows.

A3                           A2                               A1                           A0

a8 a4 a2 a1                a8 a4 a2 a1                    a8 a4 a2 a1                 a8 a4 a2 a1   
     B3                         B2                               B1                            B0

b8 b4 b2 b1                         b8 b4 b2 b1                                b8 b4 b2 b1                           b8 b4 b2 b1

    S3                           S2                               S1                            S0

s8 s4 s2 s1                            s8 s4 s2 s1                                   s8 s4 s2 s1                              s8 s4 s2 s1

Fig. 1.63 shows, 4 BCD adders connected in parallel to perform addition of 4-digit BCD.

In general, n BCD adders can be connected in parallel to perform addition of n-digit BCD.

The 4-bit BCD adder is available as a standard IC with number 74583. The pin configuration of 
74583 is shown in Fig. 1.64.

 Pin                Description
a0 - a3             Operand a inputs
b0 - b3            Operand b inputs
ci                   Carry input
s0 - s3             Sum outputs
cout                 Carry output 
Vcc                 Supply voltage (+5V)
GND             Ground (0V) 

co S

Fig. 1.63: 4-digit BCD adder.
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1.7.10  Subtractors

Subtractors have been developed to perform arithmetic subtraction operation on binary numbers. 
Half subtractor can perform subtraction of two 1-bit binary number. The possible subtractions of two 1-bit 
binary numbers are shown below:

0 - 0 =     0                                              0 0 
0 - 1 =  1 1     2-bit standard representation      1 1
1 - 0 =     1                                              0 1
1 - 1 =     0                                              0 0

                                      Difference                                                   Difference

                                                  Borrow                                                        Borrow   	
In the above subtractions, it can be observed that result is either 1-bit or 2-bit. The 1-bit result is 

called difference. In the 2-bit result, the first bit is called difference and the second bit is called borrow. 
Hence, half subtractor is designed to generate 2-bit standard output. 

	In subtraction of n-bit binary numbers, the subtraction is performed bit-by-bit. In this the borrow 
generated in a subtraction should be considered in next subtraction to get correct result and so full subtractor 
is developed which can subtract three binary input bits in which one of the bits is borrow generated in 
previous subtraction. Therefore, n-bit subtraction can be performed by using n full subtractors in parallel. 

In practice, subtraction is performed in two’s complement method in which the subtrahend is 
converted to two’s complement form and added with minuend. Therefore, adders are used to perform 
subtraction as an addition of positive and negative number. The addition of positive number and two’s 
complement of negative number will give the result of subtraction. 	

1.7.11  Half Subtractor

Half subtractor is a combination circuit that 
performs arithmetic subtraction of two binary bits.

The outputs are difference and borrow. The truth 
table of half subtractor is shown in Table 1.46. The block 
diagram of half subtractor is shown in Fig. 1.65. 

Table 1.46: Truth Table of Half Subtractor

→

→
→

→
→

Inputs   Minterm   Outputs
a     b                         d       co

0     0           m0            0        0    

0     1           m1            1        1  

1     0           m2                    1        0   

1     1           m3            0        0    

Fig. 1.65: Block diagram of half subtractor.
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Fig. 1.66: K-map for design of half subtractor.
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Using truth table (Table 1.46) the K-maps for designing half subtractor are drawn as shown in  
Fig. 1.66.

From the K-map we get the following Boolean equations,   
           d = ab'  + a' b
            co = a'  b
Using the above Boolean equations the logic circuit of half subtractor is drawn as shown in Fig. 1.67. 

Alternatively, the difference can be realized from XOR gate. If we compare the difference and 
output of XOR gate, we observe that both are same. The logic circuit of half subtractor using XOR gate 
is shown in Fig. 1.68.

Table 1.47: Truth Table of XOR Gate

1.7.12  Full Subtractor

Full subtractor is a combinational circuit that perform arithmetic subtraction of three binary bits 
in which one of the bit is borrow generated in previous subtraction.

Hence, full subtractor will be useful in n-bit subtraction to subtract borrow of a subtraction in 
next bit subtraction. The outputs are difference and borrow. The truth table of full subtractor is shown in  
Table 1.48. The block diagram of full subtractor is shown in Fig. 1.69. 

d  = ab' + a' b = a ⊕ b

a     b       a ⊕ b
0     0           0   

0     1           1   

1     0           1   

1     1           0 

Inputs        Minterm     Outputs
a    b    ci                         d       co

0     0    0            m0                   0        0     

0     0    1            m1           1        1   

0     1    0            m2           1        1     

0     1    1            m3           0        1     

1     0    0            m4           1        0     

1     0    1            m5           0        0     

1     1    0            m6                    0       0     

1     1    1            m7                    1       1     

Table 1.48: Truth Table of Full Subtractor

d = ab + a b’ ’

a

b

Fig. 1.67: Logic circuit of half subtractor.

b’

a’

ab’

a’b co = a b’

Fig. 1.68: Half subtractor using XOR gate.

a’

a

b
d = a b+

co= a b’

(AU, Nov/Dec'23, 7 Marks)

Fig. 1.69: Block diagram of full subtractor.
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Using truth table (Table 1.48) the K-maps for designing full subtractor are drawn as shown in  
Fig. 1.70. 

From the K-maps we get the following Boolean 
equations,

Using the above Boolean equations the logic 
circuit of full subtractor is drawn as shown in Fig. 1.71.

                         

                

Example 1.44
Design a half subtractor using NAND gates only.   

Solution
The half subtractor has two inputs a, b and two outputs d, co (Refer Fig. 1.67). The truth table of half subtractor 

along with minterms is shown in Table 1.

Table 1: Truth Table of Half Subtractor

	

Using truth table (Table 1) the K-maps for designing half subtractor are drawn as shown in Figs. 1 and 2. 

Note: With reference to Example 1.26, 
difference, d can be further simplified 
to XOR of a, b and ci.

∴ d = a ⊕ b ⊕ ci
aa
b
ci

d = a b c+ + i

Fig. 1.70: K-map for design of full subtractor.

     d = a'  b' ci + a' bci + ab' ci + abci 

co = a' b  + a' ci + bci    

' '

Inputs    Minterm    Outputs

a     b                         d       co

0     0             m0             0        0    

0     1             m1             1        1  

1     0             m2                       1        0   

1     1             m3             0        0    
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From the K-maps we get the following Boolean equations,

          d = ab'  + a' b        ;         co = a' b

Using the above Boolean equations the logic circuit of half subtractor using only NAND gates is drawn as 
shown in Fig. 3.

       

Example 1.45

Design a full subtractor using NAND gates.        
Solution

The full subtractor has three inputs a, b, ci and two outputs d, co (Refer Fig. 1.71). The truth table of full subtractor 
along with minterms is shown in Table 1.

Using truth table (Table 1) the K-maps for designing full subtractor are drawn as shown in Figs. 1 and 2. 

Fig. 3: Logic circuit of half subtractor using NAND gates.
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Fig. 2: K-map for c .o

Inputs    Minterm    Outputs

a  b  c                        d       co

0   0   0           m0            0        0    

0   0   1           m1            1        1  

0   1   0           m2                     1        1   

0   1   1           m3            0        1

1   0   0           m4            1        0

1   0   1           m5            0        0

1   1   0           m6            0        0

1   1   1           m7            1        1  

Table 1: Truth Table of Full Subtractor
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From the K-maps we get the following Boolean equations,

Using the above Boolean equations the logic circuit of full subtractor using only NAND gates is drawn as shown 
in Fig. 3.

1.7.13  Binary Parallel Adder/Subtractor
Practically subtraction is performed only in 2's complement form in which the subtraction is 

considered as addition of positive and negative numbers and the negative number is represented in 2's 
complement form. Therefore, subtractor circuit is not of much use and subtraction can be performed using 
adder itself.

Therefore, subtraction of two BCD digit A and B is considered as, 

A - B = A + (- B)
                              ↑ 2's complement of B

     d = a'  b' ci + a' b ci + a b' ci + a b ci         ;         co = a' b  + a' ci + b ci    ' '
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The complement of binary can be easily obtained 
using XOR gate. Consider the truth table of XOR gate 
(Table 1.49). 

With reference to Table 1.49 we can say that,

If  x = 0,  then   x ⊕ y  = y

If  x = 1,  then   x ⊕ y = y' 

Therefore in XOR gate, input x can be used as 
control or selection and input y can be data.

If  x = 0, the data will be output as such.

If  x = 1, the output will be complement of data.

The n-bit binary adder using full adder can be modified to perform both addition and subtraction 
as shown in Fig. 1.72.

One input can be given directly to full adders, another input can be given through XOR gate to full 
adders, so that second data can be sent to full adders with or without complement.

The control input M is used to perform complement operation. When M = 1, the output of XOR 
gate is complement of the input.

Consider addition and subtraction of two, 4-bit binary numbers.

Binary number-1:  a3 a2 a1 a0 (data-A)

Binary number-2:  b3 b2 b1 b0 (data-B)

Let us perform, A + B and A - B = A + (- B)

For addition, B is input to full adder without complement as shown in Fig. 1.73.

∴  For addition,     M = co = 0

For subtraction, B is input to full adder after complement and adding 1 for 2's complement can be 
performed by making c0 = 1 for subtraction as shown in Fig. 1.74.

∴  For subtraction, M = co = 1 

Fig. 1.72: 4-bit binary adder/subtractor.

x     y        x ⊕ y
0     0           0   

0     1           1   

1     0           1   

1     1           0 

x     y      x ⊕ y = y
0     0             0   

0     1             1   

 →

x     y    x ⊕ y = y'

1     0            1   

1     1            0 

→

1
2

3
1

2
3

Table 1.49: Truth Table of XOR Gate
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Note:  Sum is difference and carry is borrow.

1.8  Magnitude Comparator
Magnitude comparator is a combinational circuit used to compare two binary numbers and determine 

whether they are equal or unequal and if unequal then it can make a decision on larger or smaller magnitude.

1.8.1  4-bit Magnitude Comparator
Consider two 4-bit binary numbers A and B.

Let,   A = a3  a2  a1  a0    and      B = b3  b2  b1  b0

On comparing the two numbers using magnitude comparator it is possible to determine any one of 
the following condition.

1.    A = B			

2.    A < B	

3.    A > B

The 4-bit magnitude comparator is available as a standard IC with number 7485. The pin configuration 
of 7485 is shown in Fig. 1.75.
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Fig. 1.73: Binary addition using adder/subtractor.
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Fig. 1.74: Binary subtraction using adder/subtractor.
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Fig. 1.75: Pin configuration of 4-bit magnitude comparator IC 7485.
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Checking for A = B

For,  A = B, every digit of A and B should be equal.
i.e,   a3  = b3 		    a1  = b1

        a2  = b2	                                          a0 = b0

The equality can be ensured by the following Boolean function.

Let, x3  = '( )a b a b3 33 3+' '  ;   if x3 = 1 then a3 = b3

             x2  = '( )a b a b2 22 2+' '  ;  if x2 = 1 then a2 = b2

             x1  = '( )a b a b1 1 11 +' '   ;  if x1 = 1 then a1 = b1

             x0  = '( )a b a b0 00 0+' '  ;  if x0 = 1 then a0 = b0

Now the combined Boolean equation for A = B, is,
        x3 x2 x1 x0 = 1

Let,  F1 = x3 x2 x1 x0 

Now,  if  A = B,   then F1 = 1

and,    if  A ≠ B,   then F1 = 0

Every digit of the binary numbers can take two possible values 0 and 1. Therefore, the value of  
x3 = 1, when the digits a3 and b3 take either, both 0 or both 1. This can be verified in Table 1.50. Similarly 
the equality of other bits when they take either, both 0 or both 1 are verified in Tables 1.50 to 1.53.

Table 1.50: Verification of x3 for a3 = b3

 Pin                Description
a0 - a3             4-bit data-A

b0 - b3            4-bit data-B

Y1, Y2, Y3      Outputs

I1, I2, I3          Cascading inputs

Vcc                 Supply voltage (+5V)

GND             Ground (0V) 

Alternatively

x3 = (a3 ⊕ b3 )'
x2 = (a2 ⊕ b2 )'
x1 = (a1 ⊕ b1)'
x0 = (a0 ⊕ b0 )'

 a3  b3         a3  b3            a3 b3       a3 b3     a3 b3 + a3 b3   x3 = (a3 b3 + a3 b3)'

 0    0        1    1          0             0                  0                          1

 0    1        1    0          1             0                  1                          0       

 1    0        0    1          0             1                  1                          0

 1    1        0    0          0             0                  0                          1 

' ' ' ' ' ' ' '
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Table 1.51: Verification of x2 for a2 = b2

Table 1.52: Verification of x1 for a1 = b1

Table 1.53: Verification of x0 for a0 = b0

The logic circuit to check only equality of two 4-bit binary number is shown in Fig. 1.76.

 a2  b2         a2  b2            a2 b2       a2 b2     a2 b2 + a2 b2   x2 = (a2 b2 + a2 b2)'

 0    0        1    1          0             0                  0                          1

 0    1        1    0          1             0                  1                          0       

 1    0        0    1          0             1                  1                          0

 1    1        0    0          0             0                  0                          1 

' ' ' ' ' ' ' '

 a1  b1         a1  b1            a1 b1       a1 b1     a1 b1 + a1 b1   x1 = (a1 b1 + a1 b1)'

 0    0        1    1          0             0                  0                          1

 0    1        1    0          1             0                  1                          0       

 1    0        0    1          0             1                  1                          0

 1    1        0    0          0             0                  0                          1 

' ' ' ' ' ' ' '

 a0  b0         a0  b0            a0 b0       a0 b0     a0 b0 + a0 b0   x0 = (a0 b0 + a0 b0)'

 0    0        1    1          0             0                  0                          1

 0    1        1    0          1             0                  1                          0       

 1    0        0    1          0             1                  1                          0

 1    1        0    0          0             0                  0                          1 

' ' ' ' ' ' ' '

Fig. 1.76: Logic circuit to check equality of two 4-bit binary data.
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Checking for A > B

In order to determine A > B, check bit-by-bit starting from most significant bit. If most significant bits 
of A and B are not equal and if most significant bit of A is greater than most significant bit of B then A > B.

If  most significant bits are equal then proceed to next most significant bit and so on. For comparison 
of 4-digit binary numbers, 4 stages of comparison is required.

Stage-1: Comparing a3 and b3

First check for a3 > b3. From row-3 of Table 1.50, we can say that, if a3
'b3  = 1 and x3 = 0 then a3 > b3

and declare A > B and skip other stages of comparisons. Otherwise check for a3 = b3. From rows-1 and 4 
of Table 1.50 we can say that if a3

'b3  = 0 and x3 = 1 then a3 = b3 and so proceed to next stage.  

If       a3b3
'  = 1       		                                      If       a3b3

'  = 0

and   x3 = 0         		                                      and   x3 = 1 

then  a3 > b3             ;  Declare A > B		  then  a3 = b3           ;  Check next most significant bits                                                     

Stage-2: Comparing a2 and b2

Check for a2 > b2. From row-3 of Table 1.51, we can say that, if a2
'b2  = 1 and x2 = 0 then a2 > b2 and 

declare A > B and skip other stages of comparisons. Otherwise check for a2 = b2. From rows-1 and 4 of 
Table 1.51 we can say that if a2

'b2  = 0 and x2 = 1 then a2 = b2 and so proceed to next stage.

If       a2b2
'  = 1       		                                      If       a2b2

'  = 0

and   x2 = 0				    and   x2= 1 

then  a2 > b2            ;  Declare A > B		  then  a2 = b2         ;  Check next most significant bits 

Stage-3: Comparing a1 and b1

Check for a1 > b1. From row-3 of Table 1.52, we can say that, if a1
'b1  = 1 and x1 = 0 then a1 > b1 and 

declare A > B and skip other stages of comparisons. Otherwise check for a1 = b1. From rows-1 and 4 of 
Table 1.52 we can say that if a1

'b1  = 0 and x1 = 1 then a1 = b1 and so proceed to next stage.

If       a1b1
'  = 1       		                                      If       a1b1

' = 0

and   x1 = 0				    and   x1= 1 

then  a1 > b1                 ;  Declare  A > B		  then  a1 = b1         ;  Check next most significant bits  

Stage-4: Comparing a0 and b0

Check for a0 > b0. From row-3 of Table 1.53, we can say that, if a0
'b0  = 1 and x0 = 0 then a0 > b0 and 

declare A > B. Otherwise check for a0 = b0. From rows-1 and 4 of Table 1.53 we can say that if a0
'b0  = 0 

and x0 = 1 then a0 = b0 and so declare A = B.
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↓

↓
This ensures
a3 > b3

  This 
ensures
a3 = b3

↓
This ensures
a2 > b2

↓

↓

↓

↓

This 
ensures
a3 = b3
a2 = b2

This ensures
a3 = b3
a2 = b2
a1 = b1

This ensures
a1 > b1

This ensures
a0 > b0

If       a0b0
'  = 1       		                                      If       a0b0

'  = 0

and   x0 = 0				    and   x0= 1 

then  a0 > b0           ;  Declare A > B		  then  a0 = b0           ;  Declare A = B 

Conclusion                                                              

Now the combined Boolean equation for A > B is,

F2 = a3 
'b3  + x3 a2

'b2  + x3 x2 a1
'b1  + x3 x2 x1 a0 

'b0  

F2 = a3   
'b3    +   x3   a2   

'b2    +   x3   x2   a1  
'b1    +   x3   x2   x1   a0   

'b0  

                                                                                        

                                                        

 Note: In any stage of comparison if greater than or equality conditions are not satisfied then 
obviously A < B.

Check for A < B                                     

In order to determine A < B, check bit-by-bit starting from most significant bit. If most significant 
bits of A and B are not equal and if most significant bit of A is less than most significant bit of B then A < B.

If most significant bits are equal then proceed to next most significant bit and so on. For comparison 
of 4-digit binary numbers, 4 stages of comparison is required.

Stage-1: Comparing a3 and b3

First check for a3 < b3. From row-2 of Table 1.50, we can say that, if 'a3 b3 = 1 and x3 = 0 then 
a3 < b3 and declare A < B and skip other stages of comparisons. Otherwise check for a3 = b3. From rows-1 
and 4 of Table 1.50 we can say that if 'a3 b3 = 0 and x3 = 1 then a3 = b3 and so proceed to next stage.  

If       a3' b3 = 1       		                                      If       a3' b3 = 0

and   x3 = 0				    and   x3 = 1 

then  a3 < b3               ;  Declare A < B		  then  a3 = b3          ;  Check next most significant bits                                                     

Stage-2: Comparing a2 and b2

Check for a2 < b2. From row-2 of Table 1.51, we can say that, if 'a
2
b2 = 1 and x2 = 0 then a2 < b2 and 

declare A < B and skip other stages of comparisons. Otherwise check for a2 = b2. From rows-1 and 4 of 
Table 1.51 we can say that if 'a

2b2 = 0 and x2 = 1 then a2 = b2 and so proceed to next stage.
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↓

↓
This ensures
a3 < b3

This 
ensures
a3 = b3

↓
This ensures
a2 < b2

↓

↓

↓

↓

This 
ensures
a3 = b3
a2 = b2

This 
ensures
a3 = b3
a2 = b2
a1 = b1This ensures

a1 < b1

This ensures
a0 < b0

If       a2' b2 = 1       		                                      If       a2' b2= 0

and   x2 = 0				    and   x2= 1 

then  a2 < b2               ;  Declare  A < B		  then  a2 = b2         ;  Check next most significant bits 

Stage-3: Comparing a1 and b1

Check for a1 < b1. From row-2 of Table 1.52, we can say that, if 'a
1
b1 = 1 and x1 = 0 then a1 < b1 and 

declare A < B and skip other stages of comparisons. Otherwise check for a1 = b1. From rows-1 and 4 of 
Table 1.52 we can say that if 'a

1 b1 = 0 and x1 = 1 then a1 = b1 and so proceed to next stage.

If       a
1
' b1 = 1       	                                              If       a

1
' b1= 0          

and   x1 = 0				    and   x1 = 1 

then  a1 < b1                ;  Declare  A < B		  then  a1 = b1         ;  Check next most significant bits 

Stage-4: Comparing a0 and b0

Check for a0 < b0. From row-2 of Table 1.53, we can say that, if 'a
0
b0 = 1 and x0 = 0 then a0 < b0 and 

declare A < B. Otherwise check for a0 = b0. From rows-1 and 4 of Table 5.45 we can say that if 'a
0
b0 = 0 

and x0 = 1 then a0 = b0 and so declare A = B.

If       a
0
' b0 = 1       		                                      If       a0

' b0 = 0         

and   x0 = 0				    and   x0 = 1 

then  a0 < b0               ;  Declare   A < B		  then  a0 = b0         ;  Declare A = B 

Conclusion                                                              

Now the combined Boolean equation for A < B is,

F3 = 'a
3  b3 + x3 

'a
2  b2 + x3 x2 

'a
1
b1 + x3 x2 x1 

'a
0
b0 

F3 = 'a
3    b3   +   x3   

'a
2    b2   +   x3   x2   

'a
1   b1   +   x3   x2   x1   

'a
0   b0 

                                                                                        

                                                        

 

Note: In any stage of comparison if less than or equality conditions are not satisfied then obviously 
A > B.
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Logic Circuit to Check A = B or A > B or A < B

The following three Boolean equations are developed for the comparison of  two 4-bit binary numbers. 

F1 = x3 x2 x1 x0          ;          F2 = a3 
'b3  + x3 a2

'b2  + x3 x2 a1
'b1  + x3 x2 x1 a0 

'b0

F3 = 'a
3  b3 + x3 

'a
2  b2 + x3 x2 

'a
1
b1 + x3 x2 x1 

'a
0
b0

where, x3 = (a3 ⊕ b3)' = (a3 b3 + a3 b3)'   ;   x2 = (a2 ⊕ b2)' = (a2 b2 + a2 b2)'

            x1 = (a1 ⊕ b1)' = (a1 b1 + a1 b1)'   ;   x0 = (a0 ⊕ b0)' = (a0 b0 + a0 b0)'          

Using the above equations the logic circuit to compare two 4-bit binary numbers is drawn as shown 
in Fig. 1.77. The circuit has three outputs, which can be interpretted as follows:

If  F1 = 1,  then  A = B   ;    If  F2 = 1,  then  A > B   ;   If  F3 = 1,  then  A < B

1.8.2  3-bit Magnitude Comparator

Consider two 3-bit binary numbers A and B.

Let,   A = a2 a1 a0   and   B = b2 b1 b0

The 3-bit magnitude comparator is similar to 4-bit comparator if the MSB (Most Significant Bit) 
in the 4-bit comparator is neglected. Therefore, the comparition of a2 and b2, a1 and b1, and a0 and b0 are 
same as that discussed in 4-bit comparator. The reduced logic circuit for 3-bit comparator can be obtained 
from Fig. 1.77 as shown in Fig. 1.78.

F3

b3

a3

b2

a2

b1

a1

F1
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Fig.1.77: Logic circuit to compare two 4-bit binary data.
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1.8.3  2-bit Magnitude Comparator 

Consider two 2-bit binary numbers A and B.

Let,   A = a1 a0   and   B = b1 b0

The 2-bit magnitude comparator is similar to 4-bit comparator if upper two bits in the 4-bit comparator 
is neglected. Therefore, the comparition of a1 and b1, and a0 and b0 are same as that discussed in 4-bit 
comparator. The reduced logic circuit for 2-bit comparator can be obtained from Fig. 1.77 as shown in 
Fig. 1.79.
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b0
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Fig. 1.78: Logic circuit to compare two 3-bit binary data.
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Fig. 1.79: Logic circuit to compare two 2-bit binary data.
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1.9  Decoders
A decoder is a combinational logic device that decodes one of the 2n binary information depending 

on n-bit binary input. The n-bit binary information is decoded into 2n binary information.
In other words, for an n-bit binary input one of the 2n output is activated. The activated output may 

be logic high or logic low. In active high or logic high decoder, one of the output is high for an n-bit input 
and all other outputs are low. In active low or logic low decoder, one of the output is low for an n-bit input 
and all other outputs are high.

In general, a decoder is referred to as n-to-2n decoder and the decoder outputs may be logic high 
or low.

For example, consider a 3-to-23 (3-to-8) decoder. Let the 8 outputs of decoder be Y0, Y1, Y2, Y3, 
Y4, Y5, Y6 and Y7. In a 3-bit binary input, the possible minterms are m0, m1, m2, m3, m4, m5, m6 and m7.

In logic high 3-to-8 decoder, 

When input is m0 then output Y0 is active high,

When input is m1 then output Y1 is active high,

and so on.
Therefore, we can say that output decodes the input binary by asserting the output as high. 
Similarly, in a 3-bit binay input, the possible maxterms are M0, M1, M2, M3, M4, M5, M6 and M7. 
In logic low 3-to-8 decoder, 

When input is M0 then output Y0 is active low,

When input is M1 then output Y1 is active low,

and so on.     

Therefore, we can say that output decodes the input binary by asserting the output as low.      

 

Fig. a: Logic high decoder.
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Most of the decoders are provided with an enable signal. The input of decoder is recognized only 
when enable signal is active. The enable can be active high or low. In decoder with active high enable, 
the input is recognized only when enable is tied to high. In decoder with active low enable, the input is 
recognized only when enable is tied to low.

Therefore, six types of n-to-2n decoders are available as shown in Fig. 1.80. A bubble in the input/
output line indicates that the corresponding input/output is active low.

1.9.1  Logic High 2-to-4 Decoder

A  2-to-4 (2-to-22) decoder can generate 4 decoded outputs from the two bit input.

The logic high 2-to-4 decoder will generate 4 unique outputs in which only one will be high at any 
one time and all other output will be zero. The block diagram representation of logic high 2-to-4 decoder 
is shown in Fig. 1.81.

Table 1.54: Truth Table of Logic High 2-to-4 Decoder

The truth table of logic high 2-to-4 decoder is shown in Table 1.54 and using this truth table, the 
K-maps for the decoder design are drawn as shown in Fig. 1.82.

  

 

   

Inputs   Minterm          Outputs
I1     I0                      Y0    Y1      Y2      Y3  
0      0           m0          1       0       0       0   

0      1           m1          0      1        0       0   

1      0           m2          0      0        1       0  

1      1           m3          0      0        0       1 Fig. 1.81: Logic high 2-to-4 decoder.
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Fig. 1.82: K-map for logic high 2-to-4 decoder.
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From the K-map for Y0, Y1, Y2 and Y3 the 
following Boolean equations are obtained and 
using these equations the logic circuit for logic 
high 2-to-4 decoder is drawn as shown in Fig. 1.83.

Y0 = I I1 0
' '  

      Y1 = I I1 0
'

Y2 = I I1 0
'

      Y3 = I I1 0

Note: Alternatively, the output equations of logic high 2-to-4 decoder can be directly written from 
the truth table which are minterms for which output is high. 

1.9.2   Logic Low 2-to-4 Decoder

The logic low 2-to-4 decoder will generate 4 unique outputs in which only one of the output will 
be low at any one time. The output of logic low decoder will be complement to that of logic high decoder.

The block diagram representation of logic low 2-to-4 decoder is shown in Fig. 1.84. The bubble at 
the outputs indicate that the outputs are active low. The dual 2-to-4 decoder is available as a standard IC 
with number 74139. The pin configuration of 74139 is shown in Fig. 1.85.

The truth table of logic low 2-to-4 decoder is shown in Table 1.55 and using this truth table, the 
K-maps for the design of decoder are drawn as shown in Fig. 1.86.

 

Inputs   Minterm         Outputs
I1     I0                      Y0   Y1   Y2     Y3  
0      0         m0            0     1     1      1     

0      1         m1                    1      0     1      1     

1      0         m2                    1      1     0      1     

1      1         m3                    1      1     1      0     

Table 1.55: Truth Table of Logic Low 2-to-4 Decoder

Fig. 1.83: Logic circuit for logic high 2-to-4 decoder.
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Fig. 1.84: Logic low 2-to-4 decoder.
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Fig. 1.85: Pin configuration of dual 2-to-4 decoder IC 74139.
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From the K-map for Y0, Y1, Y2 and Y3 the 
following Boolean equations are obtained and 
using these equations the logic circuit for logic low 
2-to-4 decoder is drawn in Fig. 1.87.

 Y0 = I1 + I0                                                              

 Y1 = I1 + I0
'    

 Y2 = I1
'  + I0                                                            

 Y3 = I I1 0+' '

Note: Alternatively, the output equations of logic low 2-to-4 decoder can be directly written from 
the truth table which are maxterms for which output is low.

 Pin                Description
I0a, I1a              Inputs

I0b, I1b             Inputs

Y0a - Y3a            Active low outputs

Y0b - Y3b            Active low outputs

Ea, Eb             Enables

Vcc                 Supply voltage (+5V)

GND             Ground (0V) 

Fig. 1.86: K-map for logic low 2-to-4 decoder.
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1.9.3  Logic High 2-to-4 Decoder with Logic Low Enable

The block diagram representation of logic high 2-to-4 decoder 
with logic low enable is shown in Fig. 1.88. When enable input is made 
high then inputs are not recognized and so all outputs are zero.

When enable input is made low then inputs are recognized and 
any one of the outputs is set to 1 depending on input.

The truth table of decoder for both active and inactive enable is 
shown in Table 1.56. Using this truth table, 3-variable K-maps are drawn 
for 4 outputs of decoder as shown in Fig. 1.89.

Table 1.56: Truth Table of Logic High 2-to-4 Decoder with Logic Low Enable

       

Inputs              Outputs
E    I1    I0   Y0   Y1    Y2    Y3  
1     ×    ×      0     0      0     0    

0     0    0      1     0      0     0    

0     0    1      0     1      0     0     

0     1    0      0     0      1     0    

0     1    1      0     0      0     1      

  Inputs       Minterm       Outputs
E    I1    I0                        Y0   Y1    Y2    Y3  
0     0     0          m0            1       0       0     0

0     0     1          m1            0       1      0     0

0     1     0          m2            0       0      1     0

0     1     1          m3            0       0      0     1       

1     0     0          m4            0       0      0     0     

1     0     1          m5            0       0      0     0     

1     1     0          m6            0       0      0     0    

1     1     1          m7            0       0      0     0    

Comment

Output when 
enable is 
active

Output when 
enable is 
inactive

Fig. 1.88: Logic high 2-to-4
with logic low enable.decoder
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Fig. 1.89: K-map for logic high 2-to-4 decoder with logic low enable.
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From the K-map for Y0, Y1, Y2 and Y3 the following 
Boolean equations are obtained and using these equations the 
logic circuit of decoder is drawn in Fig. 1.91.

 Y0 = E I I1 0
' ' '                                                         

 Y1 = E I I1 0
' '   

 Y2 = E I I1 0
' '                                                              

 Y3 = E I I1 0
'

Using the above equations it is possible to realize the decoder using only NAND gates as shown 
in Fig. 1.91.

Note: Alternatively, the output equations of logic high 2-to-4 decoder can be directly written from 
the truth table which are minterms for which output is high.

The product terms in the Boolean equations of decoder can be converted to sum terms using 
DeMorgan's theorem as shown below:

	      Y0 = E I I1' ' '
0                    		  Y0 = (E I I+ +1 0

)' 

Y1 = E I I0' '
1      	               		  Y1 = (E I I+ +1 '

0)'

Y2 = E I I' '
1 0                   	  	 Y2 = (E I I+ + 0

'
1 )' 

	      Y3 = E I I'
1 0

                   		  Y3 = (E I I+ +' '
1 0)'  

Y0

Y1

Y2

Y3

E

Fig. 1.90: Logic circuit for 2-to-4 logic
high decoder with logic low enable.
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Fig. 1.91: NAND realization of logic high 2-to-4
decoder with logic low enable.

E
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(E I I )’ ’1 0’ ’

(E I I )’ ’1 0’
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Using the above equations, the NOR realization of decoder is obtained as shown in Fig. 1.92.

1.9.4  Logic High 3-to-8 Decoder

A 3-to-8 (3-to-23) decoder can generate 8 decoded 
outputs from the three bit inputs.

The logic high 3-to-8 decoder will generate 8 unique 
outputs in which only one will be high at any one time and 
all other outputs will be low.

The block diagram representation of logic high 3-to-8 
decoder is shown in Fig. 1.93. The truth table of logic high 
3-to-8 decoder is shown in Table 1.57.

Table 1.57: Truth Table of Logic High 3-to-8 Decoder

Fig. 1.92: NOR realization of logic high 2-to-4
decoder with logic low enable.

E I1 I0

I0’I1’

Y0

Y1

Y2

Y3

’

’

(E + I I1 0+ ) = E I I’ 1 0’

(E + I I1 0+ ) = E I I’ 1 0’’

(E + I I1 0+ )’ = E I I’ 1 0
’

(E + I I1 0+ ) = E I I’ 1 0’’ ’

’ ’

(AU, Nov/Dec'22, 15 Marks)

Fig. 1.93: Logic high 3-to-8 decoder.

Logic
High

3-to-8
Decoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-bit input 8 outputs

I0

I1

I2

   Inputs       Minterm                        Outputs
  I2   I1  I0                         Y0    Y1    Y2      Y3    Y4     Y5    Y6    Y7

  0    0    0           m0            1      0       0      0      0       0       0      0           

  0    0    1           m1                     0      1       0      0      0       0       0      0

  0    1    0           m2            0      0       1      0      0       0       0      0

  0    1    1           m3            0      0       0      1      0       0       0      0

  1    0    0           m4            0      0       0      0      1       0       0      0

  1    0    1           m5            0      0       0      0      0       1       0      0

  1    1    0           m6            0      0       0      0      0       0       1      0

  1    1    1           m7            0      0       0      0      0       0       0      1   
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From the truth table we can directly write Boolean equations for outputs of logic high 3-to-8 decoder 
which are the minterms for which output is high as shown below:

The logic high 3-to-8 decoder is available as a standard IC with number 74237. The pin configuration 
of 74237 is shown in Fig. 1.94.

The product terms in the Boolean equations of logic high 3-to-8 decoder can be converted to sum 
terms as shown below:

Y0 = I I I2 1 0
' ' '                                             Y0 = (I2 + I1 + I0)'

Y1 = I I I2 1 0
' '                                             Y1 = (I I I+ +2 1 0

' )'

Y2 = I I I2 1 0
' '                                             Y2 = (I I I+ +2 01

' )'

Y3 = I I I2 1 0
'                                             Y3  = (I I I+ +2 1 0

' ' )'

Y4 = I I I
2 1 0

' '                                             Y4 = (I I I+ + 012
' )'

Y5 = I I I
2 1 0

'                                             Y5 = (I I I+ +2 1 0
' ' )'

Y6 = I I I
2 1 0

'                                             Y6 = (I I I+ + 02 1
' ' )'

Y7 = I I I
2 1 0

                                            Y7 = (I I I+ +2 1 0
' ' ' )' 

(Used for AND                                                           (Used for NOR
Realization)                                                                  Realization)

Using the above Boolean equations the logic circuit of logic high 3-to-8 decoder using AND gates 
is drawn as shown in Fig. 1.95. It is possible to realize the logic high 3-to-8 decoder using only NOR 
gates as shown in Fig. 1.96. 

Y0  =  I I I2 1 0
' ' '      

Y1  =  I I I2 1 0
' '      

Y2  =  I I I2 1 0
' '             

Y3  =  I I I2 1 0
'        

Y4  =  I I I
2 1 0

' '    

Y5  =  I I I
2 1 0

'      

Y6 =  I I I
2 1 0

'       

Y7 =  I I I
2 1 0
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Fig. 1.94: Pin configuration of logic high 3-to-8 decoder IC 74237.
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 Pin                Description
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Fig. 1.95: AND realization of logic high of 3-to-8 decoder.
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Fig. 1.96: NOR realization of logic high 3-to-8 decoder.
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1.9.5  Logic Low 3-to-8 Decoder

The logic low 3-to-8 decoder will generate 8 unique 
outputs in which only one will be low at any one time and all 
other outputs will be high. 

The block diagram representation of logic low 3-to-8 
decoder is shown in Fig. 1.97. The truth table of logic low 
3-to-8 decoder is shown in Table 1.58.

From the truth table we can directly write Boolean 
equations for outputs of logic low 3-to-8 decoder which are 
the maxterms for which output is low as shown below. 

                                                                            Table 1.58: Truth Table of Logic Low 3-to-8 Decoder

The logic low 3-to-8 decoder is available as a standard IC with number 74138. The pin configuration 
of 74138 is shown in Fig. 1.98.

Fig. 1.97: Logic low 3-to-8 decoder.

Logic
Low

3-to-8
Decoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

3-bit input 8 outputs

I0

I1

I2

Inputs       Maxterm                    Outputs
I2   I1  I0                        Y0    Y1    Y2    Y3    Y4    Y5    Y6    Y7

0    0     0          M0          0      1      1      1      1      1       1      1           

0    0     1          M1          1      0      1      1      1      1       1      1

0    1     0          M2          1      1      0      1      1      1       1      1

0    1     1          M3          1      1      1      0      1      1       1      1

1    0     0          M4          1      1      1      1      0      1       1      1

1    0     1          M5          1      1      1      1      1      0       1      1

1    1     0          M6          1      1      1      1      1      1       0      1

1    1     1          M7          1      1      1      1      1      1       1      0   

Y0 = I2 + I1 + I0

Y1 = I I I+ +2 1 0
'         

Y2 = I I I+ +12 0
'               

Y3 = I I I+ +12 0
' '                 

Y4 = I I I+ +12 0
'                      

Y5 = I I I+ +12 0
' '                          

Y6 = I I I+ +12 0
' '                                         

Y7 = I I I+ +12 0
' ' '  
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Fig. 1.98: Pin configuration of logic low 3-to-8 decoder IC 74138.
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 Pin                Description
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The sum terms in the Boolean equations of 3-to-8 logic low decoder can be converted to product 
terms as shown below:

Y0  =  I2 + I1 + I0                                             	 Y0 = (I I I12 0
' ' ' )'

Y1  =  I I I+ +12 0
'                                              	Y1 = (I I I12 0

' ' )'

Y2  =  I I I+ +12 0
'                                              	Y2 = (I I I

12 0
' ' )'

Y3  =  I I I+ +12 0
' '                                              	Y3  = (I I I

12 0
' )'

Y4  =  I I I+ +12 0
'                                              	Y4 = (I I I12 0

' ' )'

Y5  =  I I I+ +12 0
' '                                           	 Y5 = (I I I12 0

' )'

Y6  =  I I I+ +12 0
' '                                              	Y6 = (I I I

12 0
' )'

Y7  =                                               	                  Y7 = (I I I
12 0

)' 
(Used for OR                                                                      (Used for NAND
Realization)                                                                         Realization)

Using the above Boolean equations the logic circuit of logic low 3-to-8 decoder using OR gates is 
drawn as shown in Fig. 1.99. It is possible to realize the logic low 3-to-8 decoder using only NAND gates 
as shown in Fig. 1.100.

'

sinU g
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Theorem

I I I+ +12 0
' ' '

Fig. 1.99: OR realization of logic low 3-to-8 decoder.
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Example 1.46

Design a half adder using logic high decoder.        

Solution
The half adder has two inputs a, b and two outputs s, co (Refer 

Fig. 1.46). The truth table of half adder along with minterms is shown 
in Table 1.

From the truth table of half adder we can write the following SOP 
form of Boolean equations for sum and carry of half adder.

Sum, s = m1 + m2    

Carry, co = m3 

Since the half adder has two inputs, a 2-to-4 decoder can be selected to implement the half adder. The truth 
table of logic high 2-to-4 decoder is shown in Table 2.

On taking into account the minterms for which sum and carry are 1, the following Boolean equations can be 
obtained for sum and carry using the logic high decoder output.

s = Y1 + Y2    

co = Y3 

Using the above Boolean equations the logic circuit of half adder using logic high 2-to-4 decoder and 2-input 
OR gate is drawn as shown in Fig. 1.

Fig. 1.100: NAND realization of logic low 3-to-8 decoder.

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

I2 I1 I0

’’ ’
( I2I I I ) = + I + I2 1 0 1 0’’ ’ ’

I2 I1
I0

( I2I I I ) = + I + I2 1 0 1 0’’ ’ ’

( I2I I I ) = + I + I2 1 0 1 0’’ ’’

( I2I I I ) = + I + I2 1 0 1 0’’ ’ ’

( I2I I I ) = + I + I2 1 0 1 0’ ’’ ’

( I2I I I ) = + I + I2 1 0 1 0’ ’’ ’

( I2I I I ) = + I + I2 1 0 1 0’ ’’

( I2I I I ) = + I + I2 1 0 1 0’ ’’’

’

Inputs   Minterm    Outputs

 a    b                         s     c0

 0     0            m0            0      0   

 0     1            m1            1      0    

 1     0            m2            1      0    

 1     1            m3            0      1    

Table 1: Truth Table of Half Adder
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Fig. 1: Half adder using logic high 2-to-4 decoder.
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Fig. 1: Half adder using logic low 2-to-4 decoder.

Logic
Low

2-to-4
Decoder

Y0

Y1

Y2

Y3

I0

I1b

co

a

Y0’
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s
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Table 2: Truth Table of Logic High 2-to-4 Decoder

Example 1.47

Design a half adder using a logic low decoder and NOR gates.

Solution
The half adder has two inputs a, b and two outputs s, co (Refer 

Fig. 1.46). The truth table of half adder along with maxterms is shown 
in Table 1.

From the truth table of half adder we can write the following POS 
form of Boolean equations for sum and carry of half adder.

Sum, s = M0 M3  

Carry, co = M0 M1 M2 

Since the half adder has two inputs, a 2-to-4 decoder can be 
selected to implement the half adder. The truth table of logic low 2-to-4 decoder is shown in Table 2.

On taking into account the maxterm for which sum and carry are 0, the following Boolean equations can be 
obtained for sum and carry using the logic low decoder output.

s = Y0 Y3 = (Y0 + Y3)'            	

co = Y0 Y1 Y2 = (Y0 + Y1 + Y2)' 

Using the above Boolean equations the logic circuit of half adder using logic low 2-to-4 decoder and NOR gates 
is drawn as shown in Fig. 1.

Table 2: Truth Table of Logic Low 2-to-4 Decoder

   Inputs   Minterm   Decoder Outputs

  a    b                        Y0    Y1    Y2     Y3      

  0     0            m0            1      0       0       0                

  0     1            m1             0      1       0       0          

  1     0            m2              0      0       1       0      

  1     1            m3             0      0       0       1      

Inputs   Maxterm    Outputs

 a    b                         s     c0

 0     0            M0            0      0   

 0     1            M1            1      0    

 1     0            M2            1      0    

 1     1            M3            0      1    

Table 1: Truth Table of Half Adder

   Inputs   Maxterm   Decoder Outputs

  a    b                        Y0    Y1    Y2     Y3      

  0     0            M0            0      1       1       1                

  0     1            M1             1      0       1       1          

  1     0            M2              1      1       0       1      

  1     1             M3             1      1       1       0      



Chapter 1 - Combinational Logic	 1.115

Example 1.48

Design a full adder using logic high decoder.        
Solution

The full adder has three inputs a, b, ci and two outputs s, co 
(Refer Fig. 1.53). The truth table of full adder along with minterms is 
shown in Table 1.

From the truth table of full adder we can write the following SOP 
form of Boolean equations for sum and carry of full adder.

Sum, s = m1 + m2 + m4 + m7   ;   Carry, co = m3 + m5 + m6 + m7

Since the full adder has three inputs, a 3-to-8 decoder can be 
selected to implement the full adder. The truth table of logic high 3-to-8 
decoder is shown in Table 2. On taking into account the minterms for 
which sum and carry are 1, the following Boolean equations can be 
obtained for sum and carry using the logic high decoder output.

s = Y1 + Y2 + Y4 + Y7           	;      co = Y3 + Y5 + Y6 + Y7

Using the above Boolean equations the logic circuit of full adder using logic high 3-to-8 decoder and 4-input 
OR gate is drawn as shown in Fig. 1.

Table 2: Truth Table of Logic High 3-to-8 Decoder

         Inputs                              Outputs

      a     b    ci     Minterm     Sum    Carry
                                                s           co

        0      0      0           m0              0              0          
       0      0      1           m1              1              0
       0      1      0           m2              1              0
       0      1      1           m3              0              1
       1      0      0           m4              1              0
       1      0      1           m5              0              1
       1      1      0           m6              0              1
       1      1      1           m7              1              1   

Table 1: Truth Table of Full Adder

Inputs         Minterm                  Decoder Outputs

a    b   ci                         Y0    Y1    Y2     Y3    Y4    Y5    Y6    Y7

0    0     0             m0            1       0       0      0       0      0       0      0           

0    0     1             m1            0       1       0      0       0      0       0      0

0    1     0             m2            0       0       1      0       0      0       0      0

0    1     1             m3            0       0       0      1       0      0       0      0

1    0     0             m4            0       0       0      0       1      0       0      0

1    0     1             m5            0       0       0      0       0      1       0      0

1    1     0             m6            0       0       0      0       0      0       1      0

1    1     1             m7            0       0       0      0       0      0       0      1   

Fig. 1: Full adder using logic high 3-to-8 decoder.
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Fig. 1: Half subtractor using logic high 2-to-4 decoder.
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Example 1.49

Design a half subtractor using logic high decoder.        
Solution

The half subtractor has two inputs a, b and two outputs s, co (Refer 
Fig. 1.67). The truth table of half subtractor adder along with minterms 
is shown in Table 1.

From the truth table of half subtractor we can write the following 
SOP form of Boolean equations for difference and borrow of half subtractor.

Difference, d = m1 + m2   ;    Borrow, co = m1 

Since the full subtractor has two inputs, a 2-to-4 decoder can be 
selected to implement the half subtractor. The truth table of logic high 2-to-4 decoder is shown in Table 2.

On taking into account the minterms for which difference and borrow are 1, the following Boolean equations 
can be obtained for difference and borrow using the logic high decoder output.

d = Y1 + Y2          ;     co = Y1 

Using the above Boolean equations the logic circuit of half subtractor using logic high 2-to-4 decoder and 2-input 
OR gate is drawn as shown in Fig. 1.

Table 2: Truth Table of Logic High 2-to-4 Decoder

Example 1.50

Design a half subtractor using a logic low decoder and NOR gates.

Solution
The half subtractor has two inputs a, b and two outputs d, 

co (Refer Fig. 1.67). The truth table of half subtractor along with 
maxterms is shown in Table 1.

From the truth table of half subtractor we can write the 
following POS form of Boolean equations for difference and borrow 
of half subtractor.

Difference, d = M0 M3   

Borrow, co = M0 M2 M3 

   Inputs   Minterm   Decoder Outputs

  a    b                        Y0    Y1    Y2     Y3      

  0     0            m0            1      0       0       0                

  0     1            m1             0      1       0       0          

  1     0            m2              0      0       1       0      

  1     1            m3             0      0       0       1      

Inputs    Minterm    Outputs

a     b                         d       co

0      0           m0              0         0    

0      1           m1              1         1  

1      0           m2                        1         0   

1      1           m3              0         0    

Table 1: Truth Table of Half Subtractor

Inputs    Maxterm    Outputs

a     b                         d       co

0     0             M0             0         0    

0     1             M1             1         1  

1     0             M2                      1         0   

1     1             M3             0         0    

Table 1: Truth Table of Half Subtractor
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Since the half subtractor has two inputs, a 2-to-4 decoder can be selected to implement the half subtractor. The 
truth table of logic low 2-to-4 decoder is shown in Table 2.

On taking into account the maxterm for which difference and borrow are 0, the following Boolean equations can 
be obtained for difference and borrow using the logic low decoder output.

s = Y0 Y3 = (Y0 + Y3)'            ;           co = Y0 Y2 Y3 = (Y0 + Y2 + Y3)' 

Using the above Boolean equations the logic circuit of half subtractor using logic low 2-to-4 decoder and NOR 
gates is drawn as shown in Fig. 1.

Table 2: Truth Table of Logic Low 2-to-4 Decoder

1.9.6  Combinational Circuit Design using Decoder

The logic high decoder generate output 1 for only one particular minterm as input. Therefore, a 
Boolean function expressed as a sum of minterms can be obtained by logical OR of the outputs of decoder 
for which the minterms of function generates logic high or 1.

The complement of logic low decoder output will be same as output of logic high decoder. Hence, 
the complement of output of logic low decoder can be used to realize SOP form of Boolean function.

Similarly, the logic low decoder generates output 0 for only one particular maxterm as input. 
Therefore, a Boolean function expressed as a product of maxterms can be obtained by logical AND of the 
outputs of decoder for which the maxterms of function generates logic low or 0.

The complement of logic high decoder output will be same as output of logic low decoder. Hence 
the complement of output of logic high decoder can be used to realize POS form of Boolean function. 

Example 1.51

Realize the following functions, 

F1 = ∑ m(0, 1, 3, 6) 		

F2 = ∏ M(0, 2, 4, 7)   

(a)  Using logic high 3-to-8 decoder and external OR gates only             

(b)  Using logic high 3-to-8 decoder and external NOR gates only.  

   Inputs   Maxterm   Decoder Outputs

  a    b                        Y0    Y1    Y2     Y3      

  0     0            M0            0      1       1       1                

  0     1             M1            1      0       1       1          

  1     0             M2            1      1       0        1      

  1     1             M3            1      1       1        0      

Fig. 1: Half subtractor using logic low 2-to-4 decoder.
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Solution

	Given that,   F1 = ∑ m(0, 1, 3, 6)    ;        F2 = ∏ M(0, 2, 4, 7) = ∑ m(1, 3, 5, 6)

Since the given functions has minterms m0 to m7, the given functions are 3-variable functions and so can be 
realized using a 3-to-8 decoder. The 3-to-8 decoder has three inputs and the minterms are formed from all possible 
combination of inputs as shown in Table 1. Here, x, y and z are input variables of the functions.

The truth table of F1 and F2 is shown in Table 2.

Table 1: Truth Table of Logic High 3-to-8 Decoder

(a)  Using Logic High 3-to-8 Decoder and External OR Gates Only

In function F1, the output is "1" for minterms 0, 1, 3 and 6. In logic high decoder the output Yn is "1" when the 
input corresponds to minterm mn and so the outputs Y0, Y1, Y3 and Y6 are logically ORed for OR implementation. 

Similarly, for function, F2 the decoder outputs Y1, Y3, Y5 and Y6 are logically ORed for OR implementation.

The Boolean equations of functions F1 and F2 in terms of decoder output are given below:

F1 = Y Y Y Y+ + +1 60 3                                                                                                             .....(1)

F2 = Y Y Y Y+ + +1 63 5                                                                                                                      .....(2)

The equations (1) and (2) are used to implement functions F1 and F2 using logic high 3-to-8 decoder and external 
OR gates as shown in Fig. 1.

 

 Inputs                                                       Outputs

x    y    z      Minterm      Y0      Y1      Y2     Y3      Y4     Y5     Y6     Y7 

0     0     0           m0              1         0         0        0        0        0        0       0                        

0     0     1           m1              0         1         0        0        0        0        0       0

0     1     0           m2              0         0         1        0        0        0        0       0       

0     1     1           m3              0         0         0        1        0        0        0       0                

1     0     0           m4              0         0         0        0        1        0        0       0                 

1     0     1           m5                        0         0         0        0        0        1        0       0                         

1     1     0           m6              0         0         0        0        0        0        1       0                            

1     1     1           m7              0         0         0        0        0        0        0       1                  

 Minterm      F1       F2

m0 = 0 0 0        1          0                        

m1 = 0 0 1        1          1

m2 = 0 1 0        0          0       

m3 = 0 1 1        1          1                

m4 = 1 0 0        0          0                 

m5 = 1 0 1              0           1                        

m6 = 1 1 0        1          1                            

m7 = 1 1 1        0          0                  

Table 2: Truth Table of F1 and F2

Fig. 1: OR implementation of F and1 F .2
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(b)  Using Logic High 3-to-8 Decoder and External NOR Gates Only

The equations (1) and (2) can be modified for NOR implementation as shown below:

∴ F1 = Y Y Y Y+ + +1 60 3      'Y Y Y Y F== + + +1 60 3
' '

1
'_d _i n i                                                                  .....(3)

     F2 = Y Y Y Y+ + +1 63 5  = 'Y Y Y Y F2=+ + +1 63
' '

5
'_d ai n k                                                                .....(4)

The equations (3) and (4) are used to implement functions F1 and F2 using logic high 3-to-8 decoder and external 
NOR gates as shown in Fig. 2.

In NOR implementation the inverters are constructed using NOR gates and the OR gate is constructed using 
NOR gate followed by an inverter as shown in Fig. 2.

 

Example 1.52
Using decoder and external gates, design the combination circuit defined by the following Boolean functions:

i)  F1 = (y + x' ) z     ii)  F2 = y z + x' y + y' z       iii)  F3 = (x + y' ) z

Solution
The truth table of Boolean functions F1, F2 and F3 are shown in Table 1. Here, x, y and z are input variables of 

the functions.  

Table 1: Truth Table for F1, F2 and F3 

Fig. 2: NOR implementation of F and1 F .2
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 x   y  z      Minterm     Maxterm    x'   y'   z'      y + x'    F1       yz    x' y    y' z    F2       x + y'     F3    

 0   0   0             m0                 M0            1    1    1          1           0       0       0        0       0            1            0  

 0   0   1             m1                   M1                     1    1    0          1           1       0       0        1       1            1            1

 0   1   0             m2                             M2            1    0    1          1           0       0       1        0       1             0            0

 0   1   1             m3                 M3             1    0    0           1           1       1       1         0       1             0            0

 1   0   0             m4                 M4             0    1    1          0           0         0       0        0       0             1            0

 1   0   1                      m5                 M5             0    1    0           0            0       0       0        1       1             1            1

 1   1   0             m6                 M6            0    0    1           1            0       0       0        0       0             1            0

 1   1   1             m7                             M7             0    0    0          1           1       1       0        0       1             1            1 
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From the truth table the following Boolean equations in SOP form are obtained. The function is given by sum 
of minterms for which output is 1.

F1 = m1 + m3 + m7                 ;      F2 = m1 + m2 + m3 + m5 + m7       ;                F3 = m1 + m5 + m7

On taking into account the minterms for which function outputs are 1 the following Boolean equations are 
obtained using the logic high decoder output.

F1 = Y1 + Y3 + Y7                  ;       F2 = Y1 + Y2 + Y3 + Y5 + Y7          ;         F3 = Y1 + Y5 + Y7

Using the above Boolean equations the logic circuit for the given functions using logic high 3-to-8 decoder and 
OR gate is drawn as shown in Fig. 1.

From the truth table the following Boolean equations in POS form are obtained. The function is given by product 
of maxterms for which function output is 0.

F1 = M0 M2 M4 M5 M6               ;       F2 = M0 M4 M6                              ;          F3 = M0 M2 M3 M4 M6

On taking into account the maxterms for which the functions outputs are 0, the following Boolean equations are 
obtained using logic low decoder output. 

F1 = Y0 Y2 Y4 Y5 Y6                   ;      F2 = Y0 Y4 Y6                                ;          F3 = Y0 Y2 Y3 Y4 Y6

Using the above Boolean equations the logic circuit for the given functions using logic low 3-to-8 decoder and 
AND gate is drawn as shown in Fig. 2.

Example 1.53

Realize the following functions, 

F1 = ∑ m(0, 1, 3, 6)      

F2 = Π M(0, 2, 4, 5)   

(a)  Using logic low 3-to-8 decoder and external AND gates only	

(b)  Using logic low 3-to-8 decoder and external NAND gates only.   

Fig. 1: Logic circuit of F , , using logic

high decoder and OR gate.
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Solution
Given that,   F1 = ∑ m(0, 1, 3, 6) = ∏ M(2, 4, 5, 7) 	       

                    F2 = Π M(0, 2, 4, 5) 

Since the given function has maxterms M0 to M7 the given functions are 3-variable functions and so can be 
realized using a 3-to-8 decoder. The 3-to-8 decoder has three inputs and the maxterms are formed from all possible 
combination of inputs as shown in Table 1. Here, x, y and z are input variables of the functions.

The truth table of F1 and F2 is shown in Table 2.

Table 1: Truth Table of Logic Low 3-to-8 Decoder

(a)  Using Logic Low 3-to-8 Decoder and External AND Gates Only

In function, F1 the output is "0" for maxterms 2, 4, 5 and 7. In logic low decoder the output Yn is "0" when the 
input corresponds to maxterm Mn and so the outputs Y2, Y4, Y5 and Y7 are logically ANDed in order to realize F1. 

Similarly, for function, F2 the decoder outputs Y0, Y2, Y4 and Y5 are logically ANDed in order to realize F2.

The Boolean equations of functions F1 and F2 in terms of logic low decoder output are given below:

F1 = ∏ M(2, 4, 5, 7) = Y2 Y4 Y5 Y7                                                                                                     .....(1)  

F2 = ∏ M(0, 2, 4, 5) = Y0 Y2 Y4 Y5                                                                                                      .....(2)

The equations (1) and (2) are used to implement functions F1 and F2 using logic low 3-to-8 decoder and external 
AND gate as shown in Fig. 1. 

        

    

  Inputs                                                      Outputs

x    y    z      Maxterm      Y0      Y1      Y2     Y3      Y4     Y5     Y6     Y7 

0     0     0           M0              0         1         1        1        1        1        1       1                        

0     0     1           M1              1         0         1        1        1        1        1       1

0     1     0           M2              1         1         0        1        1        1        1       1       

0     1     1           M3              1         1         1        0        1        1        1       1                

1     0     0           M4              1         1         1        1        0        1        1       1                 

1     0     1           M5                        1         1         1        1        1        0        1       1                         

1     1     0           M6              1         1         1        1        1        1        0       1                            

1     1     1           M7              1         1         1        1        1        1        1       0                  

 Maxterm            F1       F2

M0 = 0 + 0 + 0         1          0                        

M1 = 0 + 0 + 1'        1          1

M2 = 0 + 1' + 0        0          0       

M3 = 0 + 1' + 1'        1          1                

M4 = 1' + 0 + 0        0          0                 

M5 = 1' + 0 + 1'             0           0                        

M6 = 1' + 1' + 0        1          1                            

M7 = 1' + 1' + 1'       0          1                  

Table 2: Truth Table of F1 and F2

Fig. 1: AND implementation of F and .1 F2
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(b)  Using Logic Low 3-to-8 Decoder and External NAND Gates Only

 The equations (1) and (2) can be modified for NAND implementation as shown below:

F1 = ∏ M(2, 4, 5, 7) = Y2 Y4 Y5 Y7 = ((Y2 Y4 Y5 Y7)' )' = (F1)'                                                               .....(3)  

F2 = ∏ M(0, 2, 4, 5) = Y0 Y2 Y4 Y5 = ((Y0 Y2 Y4 Y5 )' )' = (F2)'                                                               .....(4)

The equations (3) and (4) are used to implement functions F1 and F2 using logic low 3-to-8 decoder and external 
NAND gate as shown in Fig. 2.   

In NAND implementation the inverters are constructed using NAND gates and AND gate is constructed using 
NAND gate followed by an inverter as shown in Fig. 2. 

 

1.10  Encoders
An encoder is a combinational circuit that performs the inverse 

operation of a decoder.
In general, an encoder has 2n input lines and n output lines. When 

one of 2n inputs is activated, it generates an unique n-bit output. The block 
diagram of 2n-to-n encoder is shown in Fig. 1.101.   

1.10.1  Logic High 4-to-2 Encoder

The 4-to-2 encoder has 4 inputs and 2 outputs. When any one of the 
inputs is asserted high then a corresponding 2-bit binary value is generated 
in the output.

Let,   I0, I1, I2, I3  =  Inputs 

          Y0, Y1        =  Outputs

The block diagram of 4-to-2 encoder is shown in Fig. 1.102 and the 
truth table is shown in Table 1.59. Three different types of encoder design is presented here.

Fig. 2: NAND implementation of F and .1 F2

Logic
Low

3-to-8
Decoder

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

I0

I1

I2

z

y

x

Y0Y1Y3
Y5 Y4 Y2Y6Y7

F1

F2

’

’ ( ) =F F2 2’

( ) =F F1 1’’

’

Fig. 1.101: 2 -to-n encoder.
n

-to-n
Encoder
2

n

y0

y1

y2

yn 1�

I0
I1
I2

Im

2 inputs
n

n-bit output

m = 2n - 1

Fig. 1.102: 4-to-2 encoder.

4-to-2
Encoder

I0

I1

I2

I3

Y0

Y1

4 inputs 2-bit output



Chapter 1 - Combinational Logic	 1.123

Table 1.59: Truth Table of 4-to-2 Logic High Encoder

Design 1: 4-to-2 Encoder Design using K-map

Since the 4-to-2 encoder has 4 inputs the possible minterms are m0, m1, m2, ......, m15. But only 4 
minterms are required for valid outputs as shown in truth table (Table 1.59). The outputs for remaining 
minterms are don't-care outputs.

Using Table 1.59, the K-maps for Y0 and Y1 are constructed as shown 
in Fig. 1.103. From the K-map we get the following Boolean equations for 
encoder outputs.

Y1 = I2 + I3           

Y0 = I1 + I3

Using the above Boolean equations the logic circuit of 4-to-2 encoder 
is drawn as shown in Fig. 1.104.

Note: Since we use minimum literals I0 is not used in generating output.

Design 2: 4-to-2 Encoder Design using Minterms without Minimization

In this design a SOP form of Boolean equation can be directly formed for each output by considering 
the minterms for which outputs are 1.

The truth table of 4-to-2 encoder is shown in Table 1.60. In this table the minterms for which outputs 
are 1 are identified and using these minterms the following SOP form of Boolean equations are obtained 
for outputs.

      Inputs         Minterm   Outputs
 I0    I1     I2     I3                      Y1    Y0

 1     0      0      0         m8                    0      0      

 0     1      0      0         m4            0      1     

 0     0      1      0         m2                    1       0    

 0     0      0      1         m1            1      1      

Fig. a: K-map for Y .1
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Fig. 1.105: 4-to-2 encoder design using minterms without minimization.
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Y0 = m4 + m1 =  I I I I I I I I0 1 2 3 0 1 2 3+' ' ' ' ' '  

Using the above Boolean equations the logic circuit 
of 4-to-2 encoder is drawn as shown in Fig. 1.105.

 

     
          

Design 3: 4-to-2 Encoder Design using OR Gate

From the truth table (Table 1.59) we can make following observations.

Y1 is 1,   when I2 = 1   or    I3 = 1   ;   ∴   Y0 =  I2 + I3

Y0 is 1,   when I1 = 1   or    I3 =1    ;   ∴   Y1 =  I1 + I3

Using the above Boolean equations the logic circuit of 4-to-2 encoder is drawn as shown in Fig. 1.106.

1.10.2  Logic High 8-to-3 Encoder

The 8-to-3 encoder has eight inputs and 3 outputs. When any one 
of the inputs is asserted high then a corresponding 3-bit binary value is 
generated in the output.

Let,   I0, I1, ......., I7  =  Inputs 

          Y0, Y1 Y2       =  Outputs

I0     I1     I2    I3      Minterm     Y1       Y0

1      0      0      0             m8           0          0   

0      1      0      0             m4           0          1

0      0      1      0             m2           1          0

0      0      0      1             m1           1         1

Table 1.60: Truth Table of 4-to-2 Encoder

Fig. 1.106: 4-to-2 encoder design
using OR gate.
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The block diagram of 8-to-3 encoder is shown in Fig. 1.107 and the truth table is shown in Table 
1.61. Two different types of 8-to-3 encoder design is presented here.

Since the 8-to-3 encoder has 8 inputs the possible minterms are m0, m1, m2, ......, m255. But only 8 
minterms are required for valid outputs as shown in Table 1.61. The outputs for remaining minterms are 
don't-care outputs.

Table 1.61: Truth Table of 8-to-3 Logic High Encoder

Design 1: 8-to-3 Encoder Design using OR gates 

From the truth table (Table 1.61) we can make following observations.

Y0 is  1 when I1 = 1, I3 = 1, I5 = 1, I7 = 1    ;     ∴  Y0 = I1 + I3 + I5 + I7

Y1 is 1 when I2 = 1, I3 =1 I6 = 1, I7 = 1        ;      ∴  Y1 = I2 + I3 + I6 + I7

Y2 is 1 when I4 = 1, I5 =1, I6 =1, I7 = 1        ;     ∴   Y2  = I4 + I5 + I6 + I7

Using the above Boolean equations the logic circuit of 8-to-3 encoder is drawn using OR gates as 
shown in Fig. 1.108.

1.11  Priority Encoders
A priority encoder is an encoder circuit that includes a priority function in order to recognize only 

one input when multiple inputs are asserted high.

The operation of the priority encoder is such that if two or more inputs are asserted high (or equal 
to 1) then the output corresponds to the input having highest priority.

                      Inputs                              Minterms   Outputs  
I0      I1      I2      I3     I4     I5      I6    I7                                           Y2  Y1   Y0

1       0       0      0      0      0       0      0           m128          0    0    0

0       1       0      0      0      0       0      0           m64           0    0    1
0       0       1      0      0      0       0      0           m32           0    1    0
0       0       0      1      0      0       0      0           m16           0    1    1
0       0       0      0      1      0       0      0           m8            1    0    0
0       0       0      0      0      1       0      0           m4            1    0    1  
0       0       0      0      0      0       1      0           m2            1    1    0
0       0       0      0      0      0       0      1           m1            1    1    1

Fig. 1.108: 8-to-3 encoder using OR gates.
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I4+I +I +I5 6 7

I4 I5 I6 I7

I2+I +I +I3 6 7

Y0

I1+I +I +I3 5 7

(AU, Apr/May'23, 6 Marks)
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1.11.1  Logic High 4-to-2 Priority Encoder

The 4-to-2 encoder has 4 inputs and 2 outputs. 

Let,  I0, I1, I2, I3  =  Inputs

        Y0, Y1         =  Outputs   

Let the order of priority from highest to lowest be,

I3 - Highest

I2

I1

I0  - Lowest

Now, the above priority works as follows:

If I3 and I2 are set high then output will correspond to only I3.

If I2 and I1 are set high then output will correspond to only I2.

If I1 and I0 are set high then output will correspond to only I1.

To implement the above priority we have to write a priority function.

The priority functions for the above example are,

H3  =   I3                 ;  I3 is recognized

H2  =   I2 I3
'             ;  I2 is recognized only if I3 = 0 

H1  =   I1 I I2 3
' '          ;  I1 is recognized only if I2 = I3 = 0

H0  =   I0 I I I1 2 3
' ' '      ;  I0 is recognized only if I1 = I2 = I3 = 0

The truth table of priority encoder with above priority functions is shown in Table 1.62.

Table 1.62: Truth Table of 4-to-2 Priority Encoder

From the truth table (Table 1.62) we can note that Y1 is 1 when I2 and I3 are 1.

∴  Y1 = H2 + H3 = I2 I3
'  + I3

From the truth table (Table 1.62) we can note that Y0 is 1 when I1 and I3 are 1.

∴  Y0 = H1 + H3 = I1 I I2 3
' '  + I3

.

.

.

.

.

      Inputs               Outputs
I0      I1     I2       I3      Y1    Y0     

1       0      0        0         0      0       

×       1      0        0         0      1       

×       ×      1        0         1      0     

×       ×      ×        1         1      1   
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Therefore, the Boolean equations of 4-to-2 priority encoder with priority order from I3 to I0 are,

Y1 = I2 I3
'  + I3

Y0 = I1 I I2 3
' '  + I3

The above equations are verified in Table 1.63 for same possible combinations of inputs.

Table 1.63: Verification of 4-to-2 Priority Encoder

Usually a priority encoder will have a valid bit v, to indicate that one or more input is set high. The 
valid bit is zero if all inputs are zero. The truth table of 4-to-2 priority encoder with valid bit v is shown 
in Table 1.64. Since, value of valid bit is 1 if any one input is 1, the equation of valid bit is given by sum 
of all inputs as shown below:

∴  v = I0 + I1 + I2 + I3

Table 1.64: Truth Table of 4-to-2 Priority Encoder with Valid Bit v

The logic circuit of 4-to-2 priority encoder with priority order I3 to I0 is drawn as shown in 
Fig. 1.109 using the Boolean equations of outputs and valid bit.

Alternatively, the priority encoder can be designed using K-maps. 

I0     I1     I2     I3       I2
'     I

3
'      I2   I3

'      I1 I2
'

 I3
'     Y1   Y0                           Comment

1      0      0      0         1      1         0             0           0      0        

0      1      0      0         1      1         0             1           0      1

0      0      1      0         0      1         1             0           1      0

0      0      0      1         1      0         0             0           1      1

0      0      1      1         0      0         0             0           1      1      2 and 3 asserted high ;  output corresponds to 3

0      1      1      0         0      1         1             0           1      0      1 and 2 asserted high ;  output corresponds to 2

1      1      0      0         1      1         0             1           0      1      0 and 1 asserted high ;  output corresponds to 1      

Only one input is asserted high and so the 
output corresponds to the input asserted high.

      Inputs                  Outputs
I0     I1       I2     I3       Y1   Y0    v

0       0       0       0         ×     ×     0   

1       0       0       0         0     0     1   

×       1       0       0         0     1     1

×       ×       1       0         1     0     1    

×       ×       ×       1         1     1     1

I0 I1 I2 I3

Fig. 1.109: 4-to-2 priority encoder with I having highest priority.3

’I2 I3’
Y1 = I I + I2 3 3

I2I3’

I I1 3I2’ ’

’

Y0 = I I I + I1 2 3 3’ ’

v = I + I + I + I0 1 2 3
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1.11.2  Logic High 4-to-2 Priority Encoder Design using K-maps

The don't-care inputs are expanded with all possible combination of inputs and listed in Table 1.65.

Table 1.65: Truth Table of Priority Encoder with all Possible Combination of Inputs 

The K-map for Y0, Y1 and v are constructed using the truth table (Table 1.65) as shown in Fig. 1.110.

      Inputs                                Outputs
I0    I1    I2    I3     Minterm     Y1    Y0     v

0     0     0     0        m0                           ×      ×       0   

1     0     0     0        m8                0      0      1   

×     1     0     0        m4, m12        0      1      1

×     ×     1     0        m2, m6         1      0      1
                               m10, m14    

×     ×     ×     1        m1, m3         1      1      1
                               m5, m7

                                                     m9, m11

                                                     m13, m15

      Inputs                               Outputs
I0    I1    I2    I3     Minterm     Y1    Y0    v

0     0     0     0            m0                    ×      ×      0   
1     0     0     0            m8            0      0      1   
0     1     0     0            m4            0      1      1
1     1     0     0            m12           0      1      1
0     0     1     0            m2            1      0      1
0     1     1     0            m6            1      0      1
1     0     1     0            m10           1      0      1
1     1     1     0            m14           1      0      1
0     0     0     1            m1            1      1      1
0     0     1     1            m3            1      1      1
0     1     0     1            m5            1      1      1
0     1     1     1            m7            1      1      1
1     0     0     1            m9            1      1      1
1     0     1     1            m11           1      1      1
1     1     0     1            m13           1      1      1
1     1     1     1            m15           1      1      1

Fig. a: K-map for Y1 .
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From the K-map we get the following Boolean equations.

Y1 = I2 + I3      ;          Y0 = I1I2
' + I3          ;          v = I0 + I1 + I2 + I3

Using the above Boolean equations the logic circuit for 4-to-2 priority encoder is drawn as shown 
in Fig. 1.111.

1.11.3  Logic High 8-to-3 Priority Encoder

The 8-to-3 priority encoder has 8 inputs and 3 outputs. 

Let,  I0, I1, ......, I7  =  Inputs

        Y0, Y1, Y2      =  Outputs
Let the order of priority be,

I7  -  highest
I6  -     
I5  -     
I4  -     
I3  -     
I2  -     
I1  -     
I0  -   lowest    

Fig. 1.110: K-map for design of 4-to-2 encoder.
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Fig. c: K-map for v .
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Fig. 1.111: Logic circuit for 4-to-2 priority encoder
with I having highest priority.3
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The priority functions for the above priority order are,

H7  =  I7                                     ;  I7 is recognized

H6  =  I6  I7
'                                 ;  I5 is recognized only if I7 is 0

H5  =  I5  I I6 7
' '                            ;  I5 is recognized only if I6 and I7 are 0

H4  =  I4  I I I5 6 7
' ' '                        ;  I4 is recognized only if I5, I6 and I7 are 0

H3   =  I3  I I I I4 5 6 7
' ' ' '                  ;  I3 is recognized only if I4, I5, I6 and I7 are 0

H2   =  I2   I I I I I3 4 5 6 7
' ' ' ' '              ;  I2 is recognized only if I3, I4, I5, I6 and I7 are 0

H1   =  I1  I I I I I I2 3 4 5 6 7
' ' ' ' ' '         ;  I1 is recognized only if I2, I3, I4, I5, I6 and I7 are 0

H0   =  I0  I I I I I I I1 2 3 4 5 6 7
' ' ' ' ' ' '    ;  I0 is recognized only if I1, I2, I3, I4, I5, I6 and I7 are 0

The truth table of priority encoder with above priority functions is shown in Table 1.66.

From the truth table we can note that Y2 is 1 when, I4, I5, I6 and I7 are 1.

∴  Y2  =  H4 + H5 + H6 + H7

          = I4  I I I5 6 7
' ' '  + I5 I I6 7

' '  + I6 I7
'  + I7

From the truth table we can note that Y1 is 1 when I2, I3, I6 and I7 are 1.

∴  Y1  =  H2 + H3 + H6 + H7

          = I2  I I I I I3 4 5 6 7
' ' ' ' '  + I3 I I I I4 5 6 7

' ' ' '  + I6 I7
'

 + I7

From the truth table we can note that Y0 is 1 when I1, I3, I5 and I7 are 1

∴  Y0  =  H1 + H3 + H5 + H7

          = I1  I I I I I I2 3 4 5 6 7
' ' ' ' ' '  + I3 I I I I4 5 6 7

' ' ' '  + I5 I I6 7
' '

 + I7

The valid bit v equation is,

 v = I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7

Using the above Boolean equations the logic circuit for 8-to-3 priority encoder is drawn as shown 
in Fig. 1.112. 

Table 1.66: Truth Table of 8-to-3 Priority Encoder

                Inputs                             Outputs
I0     I1    I2     I3   I4    I5    I6      I7     Y2  Y1   Y0   v
0      0      0     0     0     0     0     0      ×    ×     ×     0
1      0      0     0     0     0     0     0      0     0     0     1
×     1      0     0     0     0     0     0      0      0     1     1
×     ×      1     0     0     0     0     0      0     1     0     1
×     ×      ×     1    0     0      0     0      0     1     1     1
×     ×      ×     ×    1     0     0     0      1     0     0     1
×     ×      ×     ×    ×     1     0     0      1     0     1     1
×     ×      ×     ×    ×     ×     1     0      1     1     0     1
×     ×      ×     ×    ×     ×     ×     1      1    1      1     1        
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Fig. 1.113: Pin configuration of 8-to-3 priority encoder IC 74148.
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Y0

EO

EI

The 8-to-3 priority encoder is available as a standard IC with number 74148. The pin configuration 
of 74148 is shown in Fig. 1.113.

 Pin                Description
I0 - I7              Inputs
Y0 - Y2          Outputs
v                   Output
Vcc                Supply voltage (+5V)
GND            Ground (0V)
EI                 Input Enable
EO               Output Enable 

H4=I I I I4 5 6 7

I0
I1 I2 I3 I4 I5 I6 I7

Fig. 1.112: 8-to-3 priority encoder with I having highest priority.7

’ ’ ’ ’ ’ ’

Y0

I2 I3 I4 I5 I6 I7

’ ’’

H5=I I I5 6 7’ ’

H6=I I6 7’

H7=I7

H2=I I I I I I2 3 4 5 6 7’ ’ ’ ’ ’

H3=I I I I I3 4 5 6 7’ ’ ’ ’

Y2

Y1

v

H1=I I I I I I I1 2 3 4 5 6 7’ ’ ’ ’ ’ ’

H7=I7

H7=I7
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Example 1.54
Design a 4-to-2 priority encoder with input I0 having the highest priority and input I3 the lowest priority.

Solution

Let,  I0, I1, I2, I3  =  Inputs

        Y0, Y1, v    =  Outputs 

The truth table of priority encoder is shown in Table 1.

Table 1: Truth Table of 4-to-2 Priority Encoder with I0 as Highest Priority

Given that the order of  priority highest to lowest are,

I0 - highest

I1 -    

I2 -    

I3 - lowest

The priority functions are,

H0 = I0               ;   I0 is recognized

H1 = I1 I0'            ;   I1 is recognized only if I0 is 0

H2 = I2 I I1 0' '         ;   I2 is recognized only if I1 and I0 are 0

H3  = I3 I I I2 1 0
' ' '    ;   I3 is recognized only if I2, I1 and I0 are 0

From the truth table we can note that Y1 is 1 when, I2 and  I3 are 1.

∴  Y1  =  H2 + H3  = I2 I I1 0' '  + I3 I I I2 1 0
' ' '  

From the truth table we can note that Y0 is 1 when I1 and I3 are 1. 

∴  Y0  =  H1 + H3 

          = I1 I I I I I0 3 2 1 0+' ' ' '

The equation for valid bit, v is,

 v = I0 + I1 + I2 + I3

The logic circuit of 4-to-2 priority encoder with priority order I0 and I3 is drawn as shown in Fig. 1, using Boolean 
equations of output and valid bit, v. 

      Inputs                 Outputs

I0      I1     I2       I3       Y1    Y0    v

0       0      0        0         ×       ×      0   

1       ×      ×        ×         0       0      1   

0       1      ×        ×         0       1      1

0       0      1        ×         1       0      1    

0       0      0        1         1       1      1

.

.

.

.

.
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The output Boolean equation are verified for some possible combinations of inputs in Table 2.

Table 2: Verification of Output Equations

Example 1.55
 Explain binary to octal decoder and octal to binary encoder with the help of circuit diagram.

Solution

Binary to Octal Decoder 

A binary to octal decoder, accept a 3-bit binary input and activates one of the eight outputs corresponding to 
the octal digit.

The truth table of binary to octal decoder is shown in Table 1 and the Boolean equations for octal outputs are 
obtained from minterms for which the output is 1. 

      Inputs                                      Product Terms                   Outputs                           Comments

I0     I1      I2    I3      I0'    I1'    I2'      I2    I1'    I0'     I3   I2'    I1'     I0'     I1    I0'      Y1     Y0  

1      0      0      0       0     1    1             0                    0                  0          0       0

0      1      0      0       1     0    1             0                    0                  1          0       1

0      0      1      0       1     1    0             1                    0                  0          1       0

0      0      0      1       1     1    1             0                    1                  0          1       1

1      1      0      0        0     0    1            0                    0                  0          0       0    0 and 1 are asserted high ; output corresponds to 0

0      1      1      0       1     0    0             0                    0                  1          0       1    1 and 2 are asserted high ; output corresponds to 1

0      0      1      1       1     1    0              1                    0                  0          1       0   2 and 3 are asserted high ; output corresponds to 2         

 

Only one input is asserted high and so the output 
corresponds to the input asserted high

I0 I1 I2 I3

Y1

v

H = I I I2 2 1 0

Fig. 1: Logic circuit of 4-to-2 priority encoder with I having highest priority.0

’ ’

’ ’ ’

’ Y0

I0 I1 I2 I3’ ’ ’ ’

H = I I I3 3 2 0I1

H = I1 0I1

(AU, Nov/Dec'23, 13 Marks)

Fig. 1: 3-to-8 decoder.
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Table 1: Truth Table

o0 = b2 b1 b0			   o4 = b2 b1 b0

o1 = b2 b1 b0			   o5 = b2 b1 b0

o2 = b2 b1 b0			   o6 = b2 b1 b0

o3 = b2 b1 b0			   o7 = b2 b1 b0

The logic circuit of binary to octal decoder is shown in Fig. 2.

Octal to Binary Encoder

An octal to binary encoder is a digital circuit that converts one of 
8 inputs corresponding to 8 octal numbers to its corresponding binary 
output (3-bit binary number).

The truth table of octal to binary encoder is shown in Table 2 
and the Boolean equations for binary outputs are obtained by logical 
OR of the inputs for which the output is 1. 

   Inputs       Minterm                    Outputs

  b2  b1  b0                        o0   o1   o2     o3   o4   o5   o6   o7

  0    0    0             m0            1      0     0      0     0     0     0    0           

  0    0    1             m1                    0      1     0      0     0     0      0    0

  0    1    0             m2            0      0     1      0     0     0      0    0

  0    1    1             m3            0      0     0      1     0    0      0    0

  1    0    0             m4            0      0     0      0     1    0      0    0

  1    0    1             m5            0      0     0      0     0    1      0    0

  1    1    0             m6            0      0     0      0     0    0     1     0

  1    1    1             m7            0      0     0      0     0    0      0    1   

' ''

' '

' '

'

' '

'

'

Fig. 2: Logic circuit of binary to octal decoder.

’’
’

’
’ ’

b2 b1 b0

b2 b1 b0

o0
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o7

b b b2 1 0

’ ’b b b2 1 0

’ ’b b b2 1 0

’b b b2 1 0

’ ’b b b2 1 0

’b b b2 1 0

’b b b2 1 0

b b b2 1 0

Fig. 3: 8-to-3 encoder.
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Fig. a: Block diagram representation.
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Fig. b: Standard symbol.

2  : 1n

MUX Y
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n selection lines
or
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Table 2: Truth Table

b0 = o4 + o5 + o6 + o7

b1 = o2 + o3 + o6 + o7	

b2 = o1 + o3 + o5 + o7

The logic circuit of octal to binary encoder is shown in Fig. 4.

1.12  Multiplexer
A multiplexer is a combinational circuit that selects one binary information from many inputs. For 

this reason a multiplexer is otherwise called a data selector. In general, a multiplexer will have 2n inputs 
and one output and so it allows only one input to output at any one time. In order to select one of the 2n 
inputs the multiplexer will have n selection lines (or address). In short multiplexer is denoted as MUX.

The block diagram and symbolic representation of 2n : 1 multiplexer with n selection lines to select 
one of the 2n inputs are shown in Fig. 1.114.

m = 2n - 1

Fig. 1.114: Multiplexer.

                    Inputs                       Minterms   Outputs  

o0    o1    o2     o3   o4   o5   o6   o7                                          b2  b1   b0

1      0      0     0     0     0     0      0             m128          0    0    0

0      1      0     0     0     0     0      0             m64           0    0    1

0      0      1     0     0     0     0      0             m32           0    1    0

0      0      0     1     0     0     0      0             m16           0    1    1

0      0      0     0     1     0     0      0             m8            1    0    0

0      0      0     0     0     1     0      0             m4            1    0    1  

0      0      0     0     0     0     1      0             m2            1    1    0

0      0      0     0     0     0     0      1             m1            1    1    1

Fig. 4: Logic circuit of octal to binary encoder.

o0 o1 o2 o3

b2

b1

o +o +o +o4 5 6 7

o4 o5 o6 I7

o +o +o +o2 3 6 7

b0

o +o +o +o1 3 5 7

(AU, Nov/Dec'22, 2 Marks)
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2:1 Multiplexer

The 2:1 multiplexer is used to select one of the two inputs using 1-bit address or selection input.

Since  2 = 21, for 2:1 multiplexer one selection line is required to select one of the two inputs.

Let,   I0, I1 = Inputs

         S0     = Selection input/Address

         Y      = Output

In 2:1 multiplexer,

When,  S0 = 0,      I0 is passed to output,    ∴   Y = I0 

When,  S0 = 1,      I1 is passed to output,   ∴   Y = I1

The above selection logic are listed as truth table in Table 1.67.

The truth table of  2:1 multiplexer for all combination 
of inputs is shown in Table 1.68. The K-map for the design 
of 2:1 multiplexer is shown in Fig. 1.116 and from the K-map 
we get the following Boolean equation.

Y = I0S0
'  + I1S0

 The logic circuit for 2:1 multiplexer is drawn using 
the above equation as shown in Fig. 1.117.

Selection   
   Input      Output
      S0              Y
      0                I0

      1                I1

Table 1.67: Truth Table of 2:1  
                  Multiplexer

Fig. 1.115: 2:1 multiplexer.
Table 1.68: Truth Table of 2:1 Multiplexer for 

all Combination of Inputs

 Inputs    Selection
                   Input     Minterm    Output
 I0     I1           S0                                Y
 0      0             0               m0          Y = I0 = 0

 0      0             1               m1          Y = I1 = 0

 0      1             0               m2          Y = I0 = 0

 0      1             1               m3          Y = I1 = 1

 1      0             0               m4          Y = I0 = 1

 1      0             1               m5          Y = I1 = 0

 1      1             0               m6          Y = I0 = 1

 1      1             1               m7          Y = I1 = 1

Y
2 : 1
MUX

I0

I1
S0

Fig. a: Block diagram representation.

S0

Fig. b: Standard symbol.
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Fig. 1.116: K-map for design
of 2:1 multiplexer.
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Fig. 1.117: Logic circuit of 2:1 multiplexer.
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Fig. 1.119: Pin configuration of dual 4:1 multiplexer IC 7453.
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4:1 Multiplexer

The 4:1 multiplexer is used to select one of the four inputs using 2-bit address or selection input.

Since  4 = 22,  for 4:1 multiplexer two selection lines are required to select one of the four inputs.

Let,   I0, I1, I2, I3 = Inputs

         S0, S1         = Selection inputs/Address

         Y               = Output

In 4:1 multiplexer,

When, S1 = 0,    S0 = 0,    I0 is passed to output,   ∴  Y = I0

When, S1 = 0,    S0 = 1,    I1 is passed to output,   ∴  Y = I1

When, S1 = 1,    S0 = 0,    I2 is passed to output,   ∴  Y = I2

When, S1 = 1,    S0 = 1,    I3 is passed to output,   ∴  Y = I3

The above selection logic are listed as truth table in Table 1.69.

The block diagram and symbolic representation of 4:1 multiplexer with two selection lines to select 
one of the four inputs are shown in Fig. 1.118.

The dual 4:1 multiplexer is available as a standard IC with number 7453. The pin configuration of 
7453 is shown in Fig. 1.119.

Selection     
Input           Output
S1      S0            Y

 0       0               I0

 0       1               I1

 1       0               I2

 1       1               I3

Table 1.69: Truth Table of 
                  4:1 Multiplexer

Fig. 1.118: 4:1 multiplexer.

 Pin                Description
S0 , S1          Selection inputs
Ea, Eb           Enable (Active low) inputs
I0a - I3a         Multiplexer inputs
I0b - I3b         Multiplexer inputs
Ya, Yb           Multiplexer output
Vcc               Supply voltage (+5V)
GND           Ground (0V) 

Y
4 : 1
MUX

I0

I1

I2

I3
S1

S0

Fig. b: Standard symbol.Fig. a: Block diagram representation.

Y
4 : 1
MUX

I0

I1

I2

I3
S1 S0
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The logic circuit of 4:1 multiplexer can be 
realized using AND and OR gates as shown in 
Fig. 1.120. Table 1.70 can be used to check the 
logic circuit of 4:1 multiplexer.

Table 1.70: Verification of Output of 4:1 MUX shown in Fig. 1.120

8:1 Multiplexer

The 8:1 multiplexer is used to select one of the eight inputs using 3-bit address or selection input. 

Since 8 = 23, for 8:1 multiplexer 3 selection lines are required to select one of the eight inputs. 
The input selection logic are listed in truth table shown in Table 1.71. The block diagram and symbolic 
representation of 8:1 multiplexer with three selection lines to select one of the eight inputs are shown in 
Fig. 1.121.

Let,   I0, I1, I2, ....... I7 = Inputs

         S0, S1, S2           = Selection inputs/Address

         Y                       = Output

S1     S0    S1     S0      I0 S1 S0       I1 S1 S0       I2 S1 S0      I3 S1 S0       Y

0       0      1      1             I0                0                 0                0               I0

0       1      1      0             0                 I1                0                0               I1

1       0      0      1             0                 0                 I2               0               I2

1       1      0      0             0                 0                 0                I3              I3

' ' ' ' ' '

Table 1.71: Truth Table of  
                8:1 Multiplexer

Selection       Output
 Inputs               Y
S2    S1    S0

0      0      0           I0

0      0      1           I1

0      1      0           I2

0      1      1           I3

1      0      0           I4

1      0      1           I5

1      1      0           I6

1      1      1           I7

Fig. 1.121: 8:1 multiplexer.

Y

Fig. 1.120: Logic circuit of 4:1 multiplexer.
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8 : 1
MUX

S0
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Y
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Fig. b: Standard symbol.Fig. a: Block diagram representation.

Y
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The logic circuit of 8:1 multiplexer can be realized using AND and OR gates as shown in Fig. 1.122. 
Table 1.72 can be used to verify the logic circuit of 8:1 multiplexer.

Table 1.72: Verification of Output of 8:1 Multiplexer of Fig. 1.122

Selection Complement
  Inputs       of Selection                                                                Product Terms                                                    Output
                        Inputs
S2  S1  S0         S2  S1  S0       I0 S2 S1 S0  I1 S2 S1 S0      I2 S2 S1 S0    I3 S2 S1 S0     I4 S2 S1 S0   I5 S2 S1 S0     I6 S2 S1 S0      I7 S2 S1 S0               Y

0   0    0         1    1   1             I0              0               0                  0               0             0                0               0                I0

0   0    1         1    1   0             0              I1               0                  0               0             0                0               0                I1

0   1    0         1    0   1             0              0                I2                 0               0             0                0               0                I2

0   1    1         1    0   0             0              0                0                  I3              0             0                0               0                I3

1   0    0         0    1   1             0              0                0                  0              I4             0                0               0                I4

1   0    1         0    1   0             0              0                0                  0              0              I5               0               0                I5

1   1    0         0    0   1             0              0                0                  0              0              0                I6              0                I6

1   1    1         0    0   0             0              0                0                  0              0              0                0               I7               I7

' '' ' ' ' ' ' ' ' ' '' ' '

Y

I0

I1

I2

I3

I4

I5

I6

I7

S2

S1

S0

’

Fig. 1.122: Logic circuit of 8:1 multiplexer.

S2 S1 S0’’

I0S S S2 1 0’ ’ ’

I1S S S2 1 0’ ’

I2S S S2 1 0’ ’

I3S S S2 1 0’

I4S S S2 1 0’ ’

I5S S S2 1 0’

I6S S S2 1 0’

I7S S S2 1 0
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Fig. 1.123: Pin configuration of 8:1 multiplexer IC 74151.
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The 8:1 multiplexer is available as a standard IC with number 74151. The pin configuration of 
74151 is shown in Fig. 1.123.

Example 1.56

Design a full adder using multiplexer.     

a)  Use 4:1 MUX         b)  Use 8:1 MUX   
Solution

a)  Full Adder using 4:1 MUX

The full adder has three inputs a, b, ci and two outputs s, co (Refer Fig. 1.53). The truth table of full adder along 
with minterms is shown in Table 1.

The full adder has two outputs and hence two separate multiplexers are needed for outputs. Since the full 
adder has 3-bit input, let us select 22:1 (4:1) multiplexers. The full adder using 4:1 multiplexer is shown in Fig. 1. The 
inputs a and b of full adder are connected to selection inputs of both the multiplexers. The input ci of full adder and its 
complement are used as some of the inputs of multiplexer. The other inputs of multiplexers are permanently tied to 0 
or 1. The working of full adder using 4:1 multiplexer is verified in Table 2.  

 Pin                Description
S0 - S2            Selection inputs
E                   Enable (Active low) input
I0 - I7             Multiplexer inputs
Y                   Multiplexer output
Y                   Complement of output
Vcc                 Supply voltage (+5V)
GND             Ground (0V) 

         Inputs                              Outputs

      a     b    ci     Minterm     Sum    Carry
                                                s           co

        0      0      0           m0              0              0          
       0      0      1           m1              1              0
       0      1      0           m2              1              0
       0      1      1           m3              0              1
       1      0      0           m4              1              0
       1      0      1           m5              0              1
       1      1      0           m6              0              1
       1      1      1           m7              1              1   

Table 1: Truth Table of Full Adder
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Table 2: Verification of Logic Circuit of s, co in Fig. 1

b)  Full Adder using 8:1 MUX

In 8:1 MUX if selection input S2 is tied to 0 permanently then it will ignore the last four inputs and behave as 4:1 
MUX. Now adder design using 8:1 MUX is same as that of design using 4:1 MUX. The logic circuit of full adder using 
two 8:1 MUX is shown in Fig. 2.

Inputs      Selection    Full adder                 MUX 

                   Inputs        Outputs               Outputs

a   b    ci     S1     S0         s       co         Y1 = s        Y2 = co   

0    0     0      0         0           0          0       Y1 = I01 = ci    Y2 = I02 = 0

0    0     1      0         0           1          0                      

0    1     0      0         1           1          0       Y1 = I11 = ci    Y2 = I12 = ci

0    1     1      0         1           0          1                     

1    0     0      1         0           1          0       Y1 = I21 = ci    Y2 = I22 = ci 

1    0     1      1         0           0          1                       

1    1     0      1         1           0          1       Y1 = I31 = ci    Y3 = I32 = 1

1    1     1      1         1           1          1                    

'

'

Fig. 1: Full adder using two 4:1 MUX.
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Fig. 2: Full adder using two 8:1 MUX.
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1.12.1  Combinational Circuit Design using Multiplexer

In multiplexer, the possible binary values of selection inputs are same as minterms. Therefore, the 
logic circuit of Boolean functions in SOP form can be realized using multiplexer. Since a multiplexer has 
a single output, a separate multiplexer is required for every output of Boolean function.

There are different methods of implementing combinational circuits using multiplexer.

Method-1

The n-variable Boolean function can be implemented directly by 2n:1 multiplexer. The n inputs 
of Boolean function are connected to n selection inputs. The inputs I0, I1, I2, ....., I2n-1 are tied to either 0 
or 1 from the knowledge of output in the truth table of Boolean function. If a minterm mp generates 1 in 
output of Boolean function then input Ip of multiplexer is tied to 1. If a minterm mq generates 0 in output 
of Boolean function then input Iq of multiplexer is tied to 0.   

Method-2

The n-variable Boolean function can be implemented by 2n-1:1 multiplexer. A three variable Boolean 
function can be realized using 2:1 multiplexer, a four variable Boolean function can be realized using 8:1 
multiplexer and so on. 

In order to implement n-variable Boolean function the first n - 1 inputs/variables of the function 
are applied to selection lines.

Now the function output can be represented by the remaining one variable, complement of this one 
variable, 0 and 1. The function output in terms of all this four (remaining one variable and its complement,  
0 and 1) are applied as input I0 ........ I2n-1 of multiplexer.

Method-3

The n-variable Boolean function can be implemented using smaller size multiplexers than method-1 
and 2. For example, a four variable Boolean function can be implemented using a 4:1 multiplexer (Refer 
Example 1.58). In this method some of the inputs are connected to selection inputs of multiplexer and the 
remaining function inputs are applied to inputs of multiplexer through additional logic gates that can be 
designed by using K-maps.

Example 1.57
Implement the Boolean function F(A, B, C) = ∑m(1, 3, 5, 6). 

i)  using 4:1 multiplexer   ii)  using 8:1 multiplexer. 

Solution

Case i: Implementation using 4:1 Multiplexer

The truth table of the given function is formed as shown in Table 1. The 4:1 multiplexer will have two selection 
inputs S0 and S1. Let us connect the inputs A and B to selection inputs S1 and S0 as shown in Fig. 1. 

The selection inputs take four different values and so Table 1 is divided into 4 groups based on selection inputs 
and a separate table is drawn for each group as shown in Tables 2 to 5.    
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C

S1 S0

Y = F

Fig. 1: Implementation of Boolean function using 4:1 MUX.
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4 : 1
MUX
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A B C

C’

Y

S0 = B

Table 1: Truth Table of F

The input I0, I1, I2 and I3 of multiplexer are obtained from Tables 2 to 5. 

From Tables 2, 3 and 4 it can be observed that function output is C when selection inputs are 00, 01 and 10 
and so I0, I1 and I2 are tied to C as shown in Fig. 1. From Table 5 it can be observed that function output is complement 
of C when selection input is 11 and so C is inverted to get C' and connected to I3 as shown in Fig. 1. The working of 
4:1 MUX is verified in Table 6.

      Inputs       Minterm   Output                Comments 

  A    B    C                            F    

  0      0     0             m0               0           When, A = B = C = 0, F = 0                         

  0      0     1               m1                          1           When, A = B = 0, C = 1, F = 1           

  0      1     0               m2                          0           When, A = C = 0, B = 1, F = 0   

  0      1     1               m3                          1           When, A = 0, B = C = 1, F = 1

  1      0     0                m4                          0           When, A = 1, B = C = 0, F = 0      

  1      0     1                m5                          1           When, A = C = 1, B = 0, F = 1

  1      1     0                m6                         1            When, A = B = 1, C = 0, F = 1    

  1      1     1                m7                         0           When, A = B = C = 1, F = 0

 

Selection     
Input           Output

 S1     S0           Y

 0       0            I0

 0       1            I1

 1       0            I2

 1       1            I3

Truth Table of 4:1 
Multiplexer

                     Selection          
     Inputs         Inputs      F = C

   A  B    C      S1      S0          

   0   0      0        0         0           0                  

   0   0      1        0         0           1

Table 2:

                     Selection          
     Inputs         Inputs      F = C

   A  B    C      S1      S0          

   0   1      0        0         1            0                  

   0   1      1        0         1            1

Table 3:

                     Selection          
     Inputs         Inputs      F = C

   A  B    C      S1      S0          

   1   0      0        1         0           0                  

   1   0      1        1         0           1

Table 4:

                     Selection          
     Inputs         Inputs      F = C'

   A  B    C      S1      S0          

   1   1      0        1         1            1                  

   1   1      1        1         1            0

Table 5:

Table 6: Verification of Logic Circuit of F in Fig. 1

A   B   C      S1    S0       F           Y = F

0    0     0        0      0          0       Y = I0 = C = 0

0    0     1        0      0          1       Y = I0 = C = 1

0    1     0        0      1          0       Y = I1 = C = 0

0    1     1        0      1          1       Y = I1 = C = 1

1    0     0        1      0          0       Y = I2 = C = 0

1    0     1        1      0          1       Y = I2 = C = 1

1    1     0        1      1          1       Y = I3 = C' = 1

1    1     1        1      1          0       Y = I3 = C' = 0
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Case ii: Implementation using 8:1 Multiplexer

The function F is 3-variable function and so a 23:1 multiplexer (8:1 multiplexer) can be used to implement 
the function as shown in Fig. 2. The function inputs A, B and C are connected to selection inputs S2, S1 and S0. The 
function output F is 1 for minterms m1, m3, m5 and m6 and so the MUX inputs I1, I3, I5 and I6 are permanently tied to 1. 
The function output F is 0 for minterms m0, m2, m4 and m7 and so the MUX inputs I0, I2, I4 and I7 are permanently tied 
to 0. The working of 8:1 MUX is verified in Table 8. 

Table 7: Truth Table of F

Example 1.58

Design two input XOR gate using 4:1 MUX.

Solution

         

∴ x ⊕ y = x y' + x' y

      Inputs       Minterm   Output               Comments 

  A    B    C                           F                  

  0      0     0             m0              0           When, A = B = C = 0, F = 0      

  0      0     1             m1                        1           When, A = B = 0, C = 1, F = 1

  0      1     0             m2                        0           When, A = C = 0, B = 1, F = 0

  0      1     1             m3                       1           When, A = 0, B = C = 1, F = 1

  1      0     0             m4                        0           When, A = 1, B = C = 0, F = 0        

  1      0     1             m5                       1            When, A = C = 1, B = 0, F = 0

  1      1     0             m6                       1            When, A = B = 1, C = 0, F = 1

  1      1     1                m7                        0            When, A = B = C = 1, F = 0

 

Truth Table of 8:1 

Multiplexer

Selection       Output
 Inputs               Y

S2    S1    S0

0      0      0           I0

0      0      1           I1

0      1      0           I2

0      1      1           I3

1      0      0           I4

1      0      1           I5

1      1      0           I6

1      1      1           I7

Table 8: Verification of Logic Circuit of F in Fig. 2

A   B   C      S2    S1   S0      F        Y = F

0    0     0        0      0      0        0       Y = I0 = 0

0    0     1        0      0      1        1       Y = I1 = 1

0    1     0        0      1      0        0       Y = I2 = 0

0    1     1        0      1      1        1       Y = I3 = 1

1    0     0        1      0      0        0       Y = I4 = 0

1    0     1        1      0      1        1       Y = I5 = 1

1    1     0        1      1      0        1       Y = I6 = 1

1    1     1        1      1      1        0       Y = I7 = 0

x    y   x . y'  x' . y   F = x ⊕ y  
0    0       0         0             0        

0    1       0         1             1

1    0       1         0             1

1    1       0         0             0

Table 1: Truth Table of  2-input XOR gate

Y
8 : 1
MUX

I0

I1

I2

S2 S1 S0

I3

I4

I5

I6

I7

Fig. 2: Realization of F using 8:1 MUX.

F
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B

C

1

0

x
y

z x y= +

Fig. 1: Symbol of 2-input XOR gate.
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Y = F
4 : 1
MUX

I0

I1

I2

I3 S0S1

Y

x y

y’
y

y’

Fig. 2: Implementation of Boolean function using 4:1 MUX.

y

y’

S  = x1

S  = y2

Implementation using 4:1 Multiplexer

The truth table of the given function is formed as shown in Table 2. The 4:1 multiplexer will have two selection 
inputs S0 and S1. Let us connect the inputs x and y to selection inputs S1 and S0 as shown in Fig. 2. 

The selection inputs take two different values and so Table 2 is divided into 2 groups based on selection inputs 
and a separate table is drawn for each group as shown in Tables 3 and 4.    

Table 2: Truth Table of F

The input I0, I1, I2 and I3 of multiplexer are obtained from Tables 3 and 4. 

From Table 3, it can be observed that function output is y when selection inputs are 00 and 01 and so I0 and I1 
are tied to y as shown in Fig. 2. From Table 4, it can be observed that function output is complement of y when selection 
input is 10 and 11 and so y is inverted to get y' and connected to I2 and I3 as shown in Fig. 2. The working of 4:1 MUX 
is verified in Table 5.

   Inputs    Minterm   Output            Comments 

   x    y                             F       

   0     0              m0               0          When, x = y = 0, F = 0                         

   0     1                m1                         1          When, x = 0,  y = 1, F = 1           

   1     0                m2                         1          When, x = 1, y = 0, F = 1   

   1     1                  m3                          0          When, x = y = 1, F = 0

 

Table 3:

                     Selection          
     Inputs         Inputs      F = y

        x  y        S1      S0          

         0   0          0        0            0                     

         0   1          0        1            1  

Table 4:

                     Selection          
     Inputs         Inputs      F = y'

       x  y          S1      S0          

       1   0             1         0            1                 

       1   1             1         1            0

Selection     
Input           Output

 S1     S0           Y

 0       0            I0

 0       1            I1

 1       0            I2

 1       1            I3

Truth Table of 4:1 
Multiplexer

Table 5: Verification of Logic Circuit of F in Fig. 2

x   y       S1    S0       F              Y = F

0    0        0      0          0          Y = I0 = y = 0

0    1        0      1          1          Y = I1 = y = 1

1    0        1      0          1          Y = I2 = y' = 1

1    1        1      1          0          Y = I3 = y' = 0
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Example 1.59
Implement Boolean function F(a, b, c, d) = ∑m(4, 5, 7, 8, 10, 12, 15) using 4:1 MUX and external gates:

a)  a, b are connected to select lines S1 and S0 respectively.

b)  c, d are connected to select lines S1 and S0 respectively.  

Solution

a)  a, b are connected to select lines S1 and S0

Table 1: Truth Table

         Inputs         Minterm  Output 

  a     b    c    d                         F    

  0      0     0     0            m0                       0                        

  0      0     0     1             m1                       0           

  0      0     1     0             m2                       0    

  0      0     1     1             m3                       0

  0      1     0     0             m4                       1        

  0      1     0     1            m5                       1  

  0      1     1     0            m6                       0      

  0      1     1     1            m7                       1   

          Inputs         Minterm  Output 

  a     b    c    d                         F    

  1      0     0     0            m8                       1                        

  1      0     0     1             m9                       0           

  1      0     1     0             m10                     1    

  1      0     1     1             m11                     0

  1      1     0     0             m12                     1        

  1      1     0     1            m13                     0  

  1      1     1     0            m14                     0      

  1      1     1     1            m15                     1   

Note: The Boolean equations for F in 
Tables 3 and 5 are obtained by drawing 
2 variable K-map by taking c and d as 
inputs. 
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m
3

0 1c

1

0 1

d

10 cd

Fig: K-map for Table 3.

Fig: K-map for Table 5.

F = c + d’

F = cd+c d’ ’

                            Selection          
        Inputs            Inputs       F = 0

   a  b     c    d       S1      S0          

   0   0      0     0         0        0            0                  

   0   0      0     1         0        0            0

   0   0      1     0         0        0            0

   0   0      1     1         0        0            0

Table 2:

                            Selection          
        Inputs            Inputs       c'      c' + d   F = c' + d

   a  b     c    d      S1      S0          

   0   1      0     0         0        1          1         1             1                  

   0   1      0     1         0        1          1         1             1

   0   1      1     0         0        1          0         0             0

   0   1      1     1         0        1          0         1             1

Table 3:

                            Selection          
        Inputs            Inputs       d'      F = d'

   a  b     c    d       S1      S0          

   1   0      0     0         1        0          1           1                  

   1   0      0     1         1        0          0           0

   1   0      1     0         1        0          1           1

   1   0      1     1         1        0          0           0

Table 4:

                            Selection          
        Inputs            Inputs       cd    c' d'    F = cd + c' d' 

   a  b     c    d       S1      S0                     

   1   1      0     0         1        1          0        1               1                  

   1   1      0     1         1        1          0        0               0

   1   1      1     0         1        1          0        0               0 

   1   1      1     1         1        1          1        0               1

Table 5:
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b)  c, d are connected to select lines S1 and S0

In order to find Boolean equations for 4:1 MUX inputs I0, I1, I2 and I3 the Tables 11 to 14 are formed as shown 

ahead and K-maps are constructed to determine the Boolean equations for I0, I1, I2 and I3.

Table 6: Verification

a   b   c   d      S1   S0      F           Y = F

0    0    0    0       0      0        0       I0 = 0

0    0    0    1       0      0        0       I0 = 0

0    0    1    0       0      0        0       I0 = 0

0    0    1    1       0      0        0       I0 = 0

0    1    0    0       0      1        1       I1 = c' + d = 1

0    1    0    1       0      1        1       I1 = c' + d = 1

0    1    1    0       0      1        0       I1 = c' + d = 0

0    1    1    1       0      1        1       I1 = c' + d = 1

1    0    0    0       1      0        1       I2 = d' = 1

1    0    0    1       1      0        0       I2 = d' = 0

1    0    1    0       1      0        1       I2 = d' = 1

1    0    1    1       1      0        0       I2 = d' = 0

1    1    0    0       1      1        1       I3 = cd + c' d' = 1

1    1    0    1       1      1         0       I3 = cd + c' d' = 0

1    1    1    0       1      1         0       I3 = cd + c' d' = 0

1    1    1    1       1     1         1       I3 = cd + c' d' = 1

                            Selection          
        Inputs            Inputs         F

   a  b     c    d       S1      S0          

   0   0      0     0         0        0         I0 = 0                  

   0   0      0     1         0        1         I1 = 0

   0   0      1     0         1        0         I2 = 0

   0   0      1     1         1        1         I3 = 0

Table 7:

                            Selection          
        Inputs            Inputs           F

   a  b     c    d       S1      S0          

   0   1      0     0         0        0           I0 = 1                  

   0   1      0     1         0        1           I1 = 1

   0   1      1     0         1        0           I2 = 0

   0   1      1     1         1        1           I3 = 1

  
Table 8:

Table 9:

                            Selection          
        Inputs            Inputs          F 

   a  b     c    d       S1      S0          

   1   0      0     0         0        0          I0 = 1                  

   1   0      0     1         0        1          I1 = 0

   1   0      1     0         1        0          I2 = 1

   1   0      1     1         1        1          I3 = 0

                            Selection          
        Inputs            Inputs           F

   a  b     c    d       S1      S0          

   1   1      0     0         0        0          I0 = 1                 

   1   1      0     1         0        1          I1 = 0

   1   1      1     0         1        0          I2 = 0

   1   1      1     1         1        1          I3 = 1

Table 10:

cd

c d’ ’

Fig. 1: Implementation of Boolean function using
4:1 MUX by taking a and b as selection inputs..

Y

0

S1 S0

Y = F

b

a

d’
c’+d

cd+c d’ ’

4 : 1
MUX

I0

I1

I2

I3

a b c d

c’ d’



1.148	                                              Digital Principles and Computer Organization

       

Using the above Boolean equations the given Boolean function is implemented using 4:1 MUX by taking c and 

d as selection inputs as shown in Fig. 6.   

Example 1.60

Realize F(A, B, C, D) = ∑m(0, 1, 3, 4, 8, 9, 15) using 8:1 MUX by selecting A as an input.

Solution
It is given that function output F is 1 when the inputs are equal to minterms m0, m1, m3, m4, m8, m9 and m15.

For all other inputs the function output F is 0.

Table 11: Verification

a   b    c    d      S1    S0      F         Y = F

0    0     0     0       0       0        0      I0 = a + b = 0

0    0     0     1       0       1        0      I1 = a' b = 0

0    0     1     0       1       0        0      I2 = ab' = 0

0    0     1     1       1       1        0      I3 = b = 0

0    1     0     0       0       0        1       I0 = a + b = 1

0    1     0     1       0       1        1       I1 = a' b = 1

0    1     1     0       1       0        0       I2 = ab' = 0

0    1     1     1       1       1        1       I3 = b = 1

1    0     0     0       1         0        1       I0 = a + b = 1

1    0     0     1       1         0        0      I1 = a' b = 0

1    0     1     0       1        0        1       I2 = ab' = 1

1    0     1     1       1        0        0       I3 = b = 0

1    1     0     0       1       1        1       I3 = a + b = 1

1    1     0     1       1       1        0       I3 = a' b = 0

1    1     1     0       1       1        0       I3 = ab' = 0

1    1     1     1       1       1        1       I3 = b = 1

Table 11:

   a  b     F = I0          

   0   0          0                       

   0   1          1     

   1   0          1     

   1   1          1     

Table 12:

   a  b     F = I1          

   0   0          0                       

   0   1          1     

   1   0          0     

   1   1          0     

Table 13:

   a  b     F = I2          

   0   0          0                       

   0   1          0     

   1   0          1     

   1   1          0     

Table 14:

   a  b     F = I3          

   0   0          0                       

   0   1          1     

   1   0          0     

   1   1          1     
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The given function is analyzed using Table 1 and observed that the function output can be expressed in terms 
of A, A', 0 and 1. Therefore, the given 4-variable function can be realized using 24-1:1 multiplexer (8:1 multiplexer) by 
taking B, C and D as selection inputs as shown in Fig. 1.

Table 1: Truth Table of F

The implementation of function, F using 8:1 
MUX is shown in Fig. 1. The variables B, C and D 
are used as selection inputs S2, S1 and S0 of 8:1 
MUX. In 8:1 multiplexer of Fig. 1, the inputs I2, I5 
and I6 are permanentely tied to 0 and the inputs I0 
and I1 are tied to 1. The input I7 is tied to A and the 
inputs I3 and I4 are tied to A'. The working of 8:1 
multiplexer is verified in Table 2.

      Inputs                              Output        Output          

A    B    C     D         Minterm                   F           in terms of             Comments

                                                                   A, A', 0, 1

0     0     0       0            m0                               1                       F = 1              When, B = C = D = 0               

1     0     0       0            m8                      1                              F = 1              Output, F = 1

0     0     0       1            m1                  1                                F = 1              When, B = C = 0, D = 1

1     0     0       1            m9                  1                                F = 1              Output, F = 1

0     0     1       0            m2                  0                              F = 0              When, B = D = 0, C = 1 

1     0     1       0            m10                 0                            F = 0                Output, F = 0

0     0     1       1            m3                   1                             F = A'             When, B = 0, C = D = 1

1     0     1       1            m11                 0                            F = A'             Output, F = A'   

0     1     0       0            m4                  1                   F = A'             When B = 1, C = D = 0  

1     1     0       0            m12                    0                                F = A'             Output, F = A'  

0     1     0       1            m5                   0                               F = 0              When, B = D =1, C = 0

1     1     0       1            m13                 0                               F = 0              Output, F = 0

0     1     1       0            m6                   0                             F = 0              When, B = C = 1, D = 0

1     1     1       0            m14                 0                               F = 0              Output, F = 0

0     1     1       1            m7                  0                               F = A              When,  B = C = D = 1

1     1     1       1            m15                 1                             F = A              Output, F = A

                          Selection       Function         MUX
    Inputs              Inputs            Output          Output    

A   B    C    D    S2    S1    S0            F                  Y = F

0    0     0     0       0       0      0               1              Y = I0 = 1

1    0     0     0       0       0      0               1              Y = I0 = 1

0    0     0     1       0       0      1                1              Y = I1 = 1

1    0     0     1       0       0      1                  1              Y = I1 = 1

0    0     1     0       0       1      0               0              Y = I2 = 0

1    0     1     0       0       1      0               0              Y = I2 = 0

0    0     1     1       0       1      1               1               Y = I3 = A' = 1

1    0     1     1       0       1       1               0              Y = I3 = A' = 0

0    1     0     0       1        0       0                 1              Y = I4 = A' = 1 

1    1     0     0       1       0      0               0              Y = I4 = A' = 0

0    1     0     1       1       0      1                0              Y = I5 = 0

1    1     0     1       1       0      1                 0              Y = I5 = 0

0    1     1     0       1       1      0               0              Y = I6 = 0

1    1     1     0       1       1      0               0              Y = I6 = 0

0    1     1     1       1       1      1                0              Y = I7 = A = 0

1    1     1     1       1       1      1                1              Y = I7 = A = 1

Table 2: Verification of Logic Circuit of F in Fig. 1 

Y
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Fig. 1: Realization of F using 8:1 MUX.
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Example 1.61
Implement the following Boolean function

F(w, x, y, z) = ∑m(2, 3, 5, 6, 11, 14, 15)

i)  using mulitplexer,  ii)  using decoder,  iii) using multiplexer and decoder

Solution

Case i: Implementation using Multiplexer

It is given that function output F is 1 when the inputs are equal to minterms m2, m3, m5, m6, m11, m14 and m15. 
For all other inputs the function output  F is 0.

The given function is analyzed using Table 1 and observed that the function output can be expressed in terms 
of z, z', 0 and 1. Therefore, the given 4-variable function can be realized using 24-1:1 multiplexer (8:1 multiplexer).

Table 1: Truth Table of F

The implementation of function, F using 8:1 MUX is shown 
in Fig. 1. The variables w, x and y are used as selection inputs 
S2, S1 and S0 of 8:1 MUX. In 8:1 MUX of Fig. 1, the inputs I0, I4 
and I5 are permanently tied to 0 and the inputs I1 and I7 are tied 
to 1. The inputs I2 and I5 are tied to z and the input I3 is tied to z'. 
The working of 8:1 MUX is verified in Table 2.  

      Inputs                       Output     Output          

w   x   y    z       Minterm             F        in terms of          Comments

                                                         z, z', 0, 1

0    0    0     0          m0                          0                  F = 0          When, w = x = y = 0               

0    0    0     1          m1                 0                         F = 0          Output, F = 0

0    0    1     0          m2               1                           F = 1          When, w = x = 0, y = 1

0    0    1     1          m3               1                           F = 1          Output, F = 1

0    1    0     0          m4               0                          F = z          When, w = y = 0, x = 1 

0    1    0     1          m5               1                         F = z          Output, F = z 

0    1    1     0          m6                1                         F = z'          When, w = 0, x = y = 1

0    1    1     1          m7               0                        F = z'          Output, F = z' 

1    0    0     0          m8               0                F = 0          When w = 1, x = y = 0  

1    0    0     1          m9                0                           F = 0          Output, F = 0 

1    0    1     0          m10              0                          F = z          When, w = y =1, x = 0

1    0    1     1          m11              1                          F = z          Output, F = z

1    1    0     0          m12               0                        F = 0          When, w = x = 1, y = 0

1    1    0     1          m13              0                          F = 0          Output, F = 0

1    1    1     0          m14              1                           F = 1          When,  w = x = y = 1

1    1    1     1          m15              1                         F = 1          Output, F = 1

w  x  y  z        S2  S1  S0   F        Y = F           

0   0   0   0     0     0    0     0     Y = I0 = 0                 

0   0   0   1     0     0    0     0     Y = I0 = 0 

0   0   1   0     0     0    1     1     Y = I1 = 1

0   0   1   1     0     0    1     1     Y = I1 = 1

0   1   0   0     0     1    0     0     Y = I2 = z = 0

0   1   0   1     0     1    0     1     Y = I2 = z = 1   

0   1   1   0     0     1    1     1     Y = I3 = z' = 1

0   1   1   1     0     1    1     0     Y = I3 = z' = 0

1   0   0   0     1     0    0     0     Y = I4 = 0

1   0   0   1     1     0    0     0     Y = I4 = 0

1   0   1   0     1     0    1     0     Y = I5 = z = 0

1   0   1   1     1     0    1     1     Y = I5 = z =  1

1   1   0   0     1     1    0     0     Y = I6 = 0

1   1   0   1     1     1    0     0     Y = I6 = 0

1   1   1   0     1     1    1     1     Y = I7 = 1

1   1   1   1     1     1    1     1     Y = I7 = 1

Table 2: Verification of Logic Circuit 
of F in Fig. 1
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Fig. 1: Implementation of F using multiplexer.
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Case ii: Implementation using Decoder

From Table 1 it can be observed that when w = 0, the inputs x, y and z can take 8 combinaitons of binary. 
Similarly, when w = 1, the inputs x, y and z can take 8 combinations of binary. Hence, two 3-to-8 decoders can be used 
to implement the given function. One decoder is enabled by w' and other by w. 

The inputs of both the decoders are connected to x, y and z. The output of decoder enabled by w' will be same as 
function output when inputs are minterms m0 to m7. The output of decoder enabled by w will be same as function output 
when inputs are minterms m8 to m15. The required outputs are logically ORed to get function output as shown in Fig. 2. 

On taking into account the minterms for which function outputs are 1, the following Boolean equations are 
obtained using the logic high decoder output.

F1 = Y21 + Y31 + Y51 + Y61     ;     F2 = Y32 + Y62 + Y72

F = F1 + F2

Case iii: Implementation using Multiplexer and Decoder

In order to implement the given 4-variable Boolean function, one 1-to-2 decoder, two 4:1 MUX and one 2:1 MUX 
are used as shown in Fig. 3. A 4:1 MUX has 4 inputs, 2 selection inputs,1 enable input and 1 output. The enable inputs 
are generated using 1-to-2 decoder. The outputs of decoder are used as enable inputs for 4:1 MUX.

The inputs x and y are used as selection inputs S1 and S0 of 4:1 MUX.

The output of 4:1 MUX are again connected as inputs of 2:1 MUX. The input w is used as selection input S02 
of 2:1 MUX.

In the first 4:1 MUX of Fig. 3, the input I01 is tied to 0 and I11 is tied to 1. The input I21 is tied to z and I31 is tied to z'. 
In the second 4:1 MUX of Fig. 3, the inputs I02 and I22 are tied to 0, the input I32 is tied to 1 and the input I12 is tied to 1. 
The working of the circuit of Fig. 3, is verified in Table 3.
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Fig. 2: Implementation of F using decoder.
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Table 3: Verification of Logic Circuit of F in Fig. 3

1.13  Demultiplexer
A demultiplexer is a combinational circuit that send one binary information to many outputs. For 

this reason a demultiplexer is otherwise called a data distributor.

A demultiplexer will perform the reverse operation of multiplexer. Therefore, a demultiplexer is 
a combinational circuit which can transmit a binary input to any one of 2n output lines using n selection 
lines or n-bit address. The demultiplexer is shortly called demux. 

                                Selection Inputs    Selection   Function                
    Inputs                      of 4:1 MUX          Input of      Output          2:1 MUX Output               

w   x    y    z      z'     S1 = x     S0 = y       2:1 MUX           F                       Y = F
                                                                 S02 = w

0    0     0     0       1            0               0                  0                    0              

0    0     0     1       0            0               0                  0                    0                

0    0     1     0       1            0               1                   0                    1               

0    0     1     1       0            0               1                   0                    1               

0    1     0     0       1            1                0                  0                    0               

0    1     0     1       0            1                0                  0                    1               

0    1     1     0       1            1                1                  0                    1               

0    1     1     1       0            1                1                  0                     0               

1    0     0     0       1            0                0                  1                                 0              

1    0     0     1       0            0                0                  1                     0               

1    0     1     0       1            0               1                  1                             0               

1    0     1     1       0            0               1                  1                    1               

1    1     0     0       1            1                0                  1                    0               

1    1     0     1       0            1                0                  1                    0               

1    1     1     0       1            1               1                  1                     1               

1    1     1     1       0            1                1                  1                    1               

   

Y = I0 = Y0

Y = I1 = Y1

Y0 = I01 = 0

Y0 = I11 = 1

Y0 = I21 = z

Y0 = I31 = z'

Y1 = I02 =0

Y1 = I12 = z

Y1 = I22 = 0

Y1 = I23 = 1

Y0
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1

0

S1 S0

I01

I11

I21

I31

z

z’

4 : 1
MUX

I02

I12

I22

S1 S0

I32

1-to-2
Decoder

I0
2 : 1
MUX

I0

I1
S02

Fig. 3: Implementation of F using decoder and multiplexer.
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The block diagram and symbolic representation of 1:2n demultiplexer with n selection inputs is 
shown in Fig. 1.124.

1:2 Demux

The 1:2 demux will transmit one binary input to any one of the two outputs depending on the value 
of selection input.

Let,   Ii        =  Input

         S0       =  Selection input/Address

         Y0, Y1 =  Outputs

In 1:2 demultiplexer,

When,  S0 = 0,      Ii is passed to Y0,    ∴   Y0 = Ii 

When,  S0 = 1,      Ii is  passed to Y1,   ∴   Y1 = Ii 

The above selection logic is listed as truth table in Table 1.73. The block diagram and symbolic 
representation of 1:2 demux with selection input S0 are shown in Fig. 1.125. 

The truth table of 1:2 demux for all possible combination of inputs is shown in Table 1.74. The 
K-maps for design of 1:2 demux are shown in Fig. 1.126 and from the K-map we get the following Boolean 
equations, 

Y0 = Ii S0
'

Y1 = Ii S0

The logic circuit of 1:2 demux is drawn using the above Boolean equations as shown in Fig. 1.127.

Fig. 1.124: 1:2n demultiplexer.

     S0       Y0      Y1

     0         Ii         0

     1         0         Ii

Table 1.73: Truth Table of 1:2  
                  Demultiplexer

Fig. 1.125: 1:2 demultiplexer.

Fig. a: Block diagram representation.
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1:4 Demux

The 1:4 demultiplexer will transmit one binary input to any one of the four outputs depending on 
the value of selection input.

Let,   Ii                     =  Input

         S0, S1               =  Selection inputs

         Y0, Y1, Y2, Y3  =  Outputs

In 1:4 demultiplexer,

When,  S1 = 0 and S0 = 0,     Ii is passed to Y0,    ∴   Y0 = Ii 

When,  S1 = 0 and S0 = 1,     Ii is passed to Y1,    ∴   Y1 = Ii

When,  S1 = 1 and S0 = 0,     Ii is passed to Y2,    ∴   Y2 = Ii

When,  S1 = 1 and S0 = 1,     Ii is passed to Y3,    ∴   Y3 = Ii

The above selection logic is listed as truth table in Table 1.75. The block diagram and symbolic 
representation of 1:4 demux with selection inputs S0 and S1 are shown in Fig. 1.128.

Table 1.74: Truth Table of 1:2 Demux for all Combination of Inputs

     S0       Ii       Minterm        Y0                 Y1

     0         0                 m0            Ii = 0         0

     0         1              m1            Ii = 1         0

     1         0              m2                        0          Ii = 0

     1         1              m3                        0          Ii = 1

Table 1.75: Truth Table of 1:4 Demux

 S1   S0     Y0       Y1         Y2        Y3

 0     0       Ii         0        0        0           

 0     1       0         Ii              0        0

 1     0       0         0        Ii        0

 1     1       0         0        0         Ii
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Fig. a: K-map for Y .0
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The truth table of 1:4 demultiplexer for all possible combination of inputs is shown in Table 1.76. 

Table 1.76: Truth Table of 1:8 Demux for all Combination of Inputs

Fig. 1.128: 1:4 demultiplexer.

     S1   S0   Ii       Minterm      Y0                  Y1               Y2             Y3   

     0    0    0              m0           Ii = 0         0            0         0    

     0    0    1              m1           Ii = 1         0            0         0

     0    1    0              m2                        0          Ii = 0        0         0

     0    1    1              m3                        0          Ii = 1        0         0

     1    0    0              m4                        0            0         Ii = 0      0

     1    0    1              m5                        0            0         Ii = 1      0

     1    1    0              m6                        0            0            0       Ii = 0

     1    1    1              m7                        0            0            0       Ii = 1

Fig. 1.129: K-map for design of 1:4 demux. 

Fig. a: Block diagram representation.
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Fig. 1.131: Pin configuration of dual 1:4 demultiplexer IC 74155.
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The K-maps for design of 1:4 demultiplexer are drawn in Fig. 1.129 and from the K-map we get 
the following Boolean equations, 

Y0 = Ii S S1 0
' '

		                Y2 = Ii S S1 0
'

Y1 = Ii S S1 0
'

		                Y3 = Ii S1 S0

The logic circuit of 1:4 demux is drawn using the above Boolean equations as shown in Fig. 1.130.

 

The dual 1:4 demux is available as a standard IC with number 74155. The pin configuration of 
74155 is shown in Fig. 1.131.

1:8 Demux

The 1:8 demultiplexer will transmit one binary input to any one of the eight outputs depending on 
the value of selection inputs. 

Let,   Ii                            = Input

         S0, S1, S2                = Selection inputs

         Y0, Y1, Y2, ....., Y7  = Outputs

 Pin                Description
Ii1, Ii2              Inputs
E1, E2            Enables
S0, S1             Selection inputs
Y01 - Y31        Inverted outputs
Y02 - Y32        Outputs
Vcc                 Supply voltage (+5V)
GND             Ground (0V) 

S1 S0

Fig. 1.130: Logic circuit of 1:4 demux.
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The logic to pass the input to output in 1:8 demux is listed in Table 1.77.

Table 1.77: Truth Table of 1:8 Demux

The block diagram and symbolic representation of 1:8 demux is shown in Fig. 1.132. 

Table 1.78: Verification of Output of 1:8 Demux of Fig. 1.132

S2    S1       S0      Y0       Y1         Y2       Y3      Y4      Y5       Y6       Y7

0     0      0         Ii        0        0        0       0      0      0       0       

0     0      1         0        Ii             0         0       0       0      0       0 

0     1      0         0        0        Ii         0       0      0      0        0

0     1      1         0        0        0        Ii            0         0      0       0

1     0      0         0        0        0        0       Ii      0      0       0

1     0      1         0        0        0        0       0      Ii      0       0   

1     1      0         0        0        0        0       0      0      Ii        0

1     1      1         0        0        0        0       0      0      0        Ii 

Selection Complement
  Inputs       of Selection
                        Inputs
S2  S1  S0         S2  S1  S0        Y0 = Ii S2 S1 S0   Y1 = Ii S2 S1 S0     Y2 = Ii S2 S1 S0  Y3 = Ii S2 S1 S0    Y4 = Ii S2 S1 S0   Y5 = Ii S2 S1 S0     Y6 = Ii S2 S1 S0         Y7 = Ii S2 S1 S0 

0   0    0         1    1   1               Ii                0                 0                0                0                0                 0                 0

0   0    1         1    1   0               0                Ii                 0                0                0                0                 0                 0   

0   1    0         1    0   1               0                0                 Ii                0                0                0                 0                 0

0   1    1         1    0   0               0                0                 0                Ii                0                0                 0                 0

1   0    0         0    1   1               0                0                 0                0                Ii                0                 0                 0  

1   0    1         0    1   0               0                0                 0                0                0                Ii                 0                 0 

1   1    0         0    0   1               0                0                 0                0                0                0                 Ii                 0  

1   1    1         0    0   0               0                0                 0                0                0                0                 0                 Ii 

' '' ' ' ' ' ' ' ' ' '' ' '

Fig. a: Block diagram representation.
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Fig. b: Standard symbol.

Ii
1 : 8

Demux

Fig. 1.132: 1:8 demultiplexer.
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The logic circuit of 1:8 demux can be realized using AND gate as shown in Fig. 1.133 and Table 
1.78 can be used to verify the logic circuit of Fig. 1.133.

1.13.1  Demultiplexers and Decoders

The demultiplexer can be made to work as logic high decoder if the select inputs of demultiplexer 
are made inputs of decoder and data of input of demultiplexer is permanently tied to 1.

On the other hand, the decoder can be made to work as demultiplexer if the input of logic high 
decoder is made as select inputs of demultiplexer and enable input of decoder is made as data input of 
demultiplexer.

The above concepts can be directly verified or observed from truth tables of decoder and demultiplexer. 
Many of the IC manufactures name the decoder and demultiplexer ICs as decoder/demultiplexer. 

1.14  Summary of Important Concepts
1.	 Electronic circuits constructed using digital logic gates and devices and designed to operate on digital 
	 inputs and outputs are called digital logic circuits.

2.	 The digital logic circuits can be broadly classified into combinational circuits and sequential circuits.

3.	 The combinational circuits are digital logic circuits without feedbacks from output to input.

4.	 The sequential circuits are digital logic circuits with feedback from output to input.

5.	 George Boole developed Boolean algebra in 1854. 

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Fig. 1.133: Logic circuit of 1:8 demux.
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6.	 Boolean algebra is an algebraic structure that includes a set of elements consisting of binary operators  
	 " + " and " . ", binary variables x, y, z, ..... , binary elements 0 and 1 and Boolean postulates and theorems.

7.	 A statement written with Boolean variables, constants and operators is called Boolean expression. 

8.	 Postulates of Boolean algebra are developed by E.V.Huntington in 1904.

9.	 In positive logic, the logical AND of two or more variables will be 1 if and only if the value of all the  
	 variables are 1. 

10.	 In positive logic, the logical OR of two or more variables will be 1 if the value of one of the variables is 1. 

11.	 NOT operation is same as complement operation.

12.	 Logic gates are electronic devices or circuits that perform logical operations on one or more input logical  
	 variables and produce a binary output.

13.	 NAND and NOR gates are called universal gates, because any Boolean function can be realized only  
	 using NAND gates or only using NOR gates.

14.	 A Boolean function is described by a Boolean expression which consists of binary variables, binary  
	 constants 0 and 1 and logical operators AND, OR and NOT.

15.	 Minterms are 2n possible combinations of AND terms with n variables such that the logical AND of all 
	 the variables is 1.

16.	 Maxterms are 2n possible combinations of OR terms with n variables such that the logical OR of all the 
	 variables is 0.

17.	 The three types of standard forms of expressing a Boolean function are Sum-of-Products (SOP) form, 
	 Product-of-Sums (POS) form and Canonical form.

18.	 The SOP or POS form is said to be canonical only if all the variables are present in every term of the  
	 SOP or POS form. 

19.	 The realizations in SOP and POS forms are called two level realization of standard forms.

20.	 Each variable within a term of a Boolean expression is called a literal.

21.	 The complement of a function can be obtained by using duality by replacing "+" by "." and "." by "+"  
	 and variables by its complement.

22.	 K-map is a pictorial form of truth table and used to simplify Boolean functions. 

23.	 A K-map is a diagram made up of squares with each square representing a minterm. 

24.	 When minterms are considered for simplification using K-map the resultant Boolean function will be in  
	 sum-of-products form. 

25.	 When maxterms are considered for simplification using K-map the resultant Boolean function will be in  
	 product-of-sums form.

26.	 For n-variable Boolean function the K-map will have 2n squares.

27.	 In a K-map, combine adjacent 1's to form prime implicants.

28.	 While forming prime implicants any number of over lapping is allowed in horizontal and vertical directions.

29.	 When squares with 1's are considered for forming prime implicants, the simplified Boolean function is  
	 sum of all the product terms of prime implicant.

30.	 If all minterms are 1's then all squares of K-map will be filled by 1 and the function value is 1.
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31.	 The undefined function outputs are called don't-care conditions and denoted by ×.

32.	 In simplification of Boolean functions using K-maps, don't-care conditions can be considered as either  
	 0 or 1. 

33.	 Binary arithmetic is similar to decimal arithmetic of only two numbers 0 and 1 with results in binary.

34.	 Adders have been developed to perform arithmetic addition operation on binary numbers. 

35.	 Half adder can perform addition of two 1-bit binary number.

36.	 Full adder is a combinational circuit that perform the arithmetic sum of three binary bits.

37.	 The outputs of half and full adders are sum and carry.

38.	 A binary parallel adder performs arithmetic sum of two n-bit binary numbers.

39.	 In decimal addition we can use binary or BCD to represent decimal numbers. 

40.	 In BCD addition the sum of any two digits will be in the range 0 to 1910.

41.	 Subtractors have been developed to perform arithmetic subtraction operation on binary numbers.

42.	 Half subtractor can perform subtraction of two 1-bit binary number.

43.	 Full subtractor is a combinational circuit that perform arithmetic subtraction of three binary bits.

44.	 The outputs of half and full subtractors are difference and borrow.

45.	 Magnitude comparator is a combinational circuit used to compare two binary numbers.

46.	 A decoder is a combinational logic device that decodes n-bit binary input to one of the 2n binary information.  

47.	 An encoder is a combinational circuit that will generate a unique n-bit output, for each of the 2n inputs.

48.	 A priority encoder is an encoder circuit that includes a priority function in order to recognize only one  
	 input when multiple inputs are asserted high.

49.	 A multiplexer is a combinational circuit which can select one of the 2n inputs as output using n selection 
	 lines.	

50.	 Multiplexer of smaller size can be connected in cascade to expand the size of multiplexer.

51.	 A demultiplexer will perform the reverse operation of multiplexer.

52.	 A demultiplexer is a combinational circuit which can transmit a binary input to any one of 2n output lines 
	 using n selection lines or n-bit address.

53.	 Demultiplexers of smaller size can be connected in parallel to expand the size of demultiplexer.

1.15  Short-Answer Questions

Q1.1	 Define digtal logic circuits.

	 Electronic circuits constructed using digital logic gates and devices and designed to operate on digital inputs 
	 and outputs are called digital logic circuits.

Q1.2  	 What are the types of digtal logic circuits.

	 The digital logic circuits can be broadly classified into,

	 1.   Combinational circuits

	 2.   Sequential circuits.
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Q1.3  	 Explain the design procedure for combinational circuits.

	 1.   Determine the required inputs and outputs from the problem specifications. 
	 2.   Assign a symbol to each input and output.
	 3.   Derive the truth table.
	 4.   Draw K-map for every output and form the prime implicants.
	 5.   Determine the simplified Boolean function for every output from the prime implicants.
	 6.   Implement the Boolean functions of all the outputs as a digital circuit using logic gates.

Q1.4  	 Prove that  A + A'B = A + B using Boolean algebra.

	 Solution:

	 A + A'  B = A(1 + B) + A' B 

                              = A + AB + A' B 

                              = A + (A + A' )B 

                              = A + B 

Q1.5  	 Simplify the three variable function Y(A, B, C) = ∑ m(1, 3, 5, 7) using Boolean algebra.

	 Solution:

Y(A, B, C) = ∑m(1, 3, 5, 7)

                   = A' B' C + A' B C + AB' C + A B C

                                        = A' C (B' + B) + A C (B' + B)

                                        = A' C + A C 
                                                                       = C (A' + A) = C

Q1.6       Find the complement of F = w x + y z and then show that FF' = 0. 

	 F = w x + y z

	 F' = (w x + y z)' = (w x)' (y z)' = (w' + x' ) (y' + z' )
	 FF' = (w x + y z) (w' + x' ) (y' + z' ) 
                      = (w x (w' + x' ) + y z (w' + x' )) (y' + z' ) 
                      = (w x w' + w x x' + y z w' + y z x' ) (y' + z' ) 
                      = (0 + 0 + y z w' + y z x' ) (y' + z' ) 
                     = y z w'  y' + y z w' z' + y z x' y' + y z x' z'

                     = 0 + 0 + 0 + 0 = 0

Q1.7  	 Reduce the following Boolean expression.

	 A B + A(B + C) + B' (B + D)

	 Solution:

A B + A(B + C) + B' (B + D) = A B + A B + A C + B' B + B' D

	                                         = A B + A C + B' D

	                                         = A (B + C) + B' D

x + x' = 1

x + x' = 1

x . x' = 0

Using DeMorgan's theorem
     (x + y)' = x' y'
     (x . y)' = x' + y'

x . x' = 0

Repeated terms are considered once.



1.162	                                              Digital Principles and Computer Organization

Q1.5	 Demonstrate by means of truth table the validity of the DeMorgan's theorem for three variables:

               (x y z)'  = x'  + y' + z' 

	 Solution:

             	  Table 1: Truth Table

Q1.6  	 Write a truth table for the function, Z = (A + B)'  (A B + C). 

	 Solution:

	 Table 1: Truth Table for Function, Z

	

Q1.7	 Realize the NAND operation using NOT, AND and OR gates.

	    Solution:

	 Table 1: Truth Table of NAND Operation

x       y     Minterm      (x y)'

0        0            m0                 1

0        1            m1                 1

1        0            m2                 1

1        1            m3                 0

   F = m0 + m1 + m2 = x' y' + x' y + x y'

Input               Complement                   
Variables             of inputs        xyz    (xyz)'    x' + y' + z'                                                                                           

x      y       z       x'      y'     z'                                                                
0       0        0        1        1       1           0          1                1             
0       0        1        1        1       0           0          1                1
0       1        0        1        0       1           0          1                1
0       1        1        1        0       0           0          1                1
1       0        0        0        1       1           0          1                1
1       0        1        0        1       0           0          1                1
1       1        0        0        0       1           0          1                1
1       1        1        0        0       0           1          0                0

    Inputs                             Outputs

 A    B    C     A + B   (A + B)'     AB    (AB) + C     Z       

 0     0    0            0               1             0                0             0
 0     0    1            0               1             0                1             1
 0     1    0            1               0             0                0             0
 0     1    1            1               0             0                1             0
 1     0    0            1               0             0                0             0
 1     0    1            1               0             0                1             0
 1     1    0            1               0             1                1             0
 1     1    1            1               0             1                1             0

x y

Fig. Q1.7: .NAND operation using NOT, AND and OR gates

x’ y’
x y’ ’

x y’

xy’

F = x y + x y + xy’ ’ ’ ’
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Q1.8	 Implement the result of A + A' D + A C'. 
	 Solution:

	 Let, F be result of A + A'  D + A C' and it can be obtained from the logic circuit shown in Fig. Q1.8. 

Q1.9     Implement F = A' B' + A + (B + C)' using NAND gates only.
	    Solution:

   F = A' B' + A + (B + C)'

      = A' B' + A + B' C'      (Using DeMorgan's theorem)

Q1.10  	 i)  When is the output of an NAND operation equal to 1?

	 ii) When is the output of an NOR operation equal to 1?

	 From the truth of NAND gate we can say that if any one of the input is 0, then the output of  NAND operation 
	 is equal to 1. 	

	 From the truth table of NOR gate we can say that if all the inputs are 0, then the output of NOR operation 
	 is equal to 1.

F = A + A D + AC’ ’

Fig. Q1.8: Logic circuit.

A

D

C

A’

C’

A D’

AC’

Fig. Q1.9: Logic circuit of F using only NAND gates.

A’

A

B’

B

C’

C

(A ) ’’ ’B

(B C )’ ’ ’ F = ((A ) . A (B C ) )’ ’ ’ ’ ’ ’ ’ ’B .

= A B + A + B C’ ’ ’ ’

FA’

 A           B        (AB)'     

 0           0             1

 0           1             1

 1           0             1 

 1           1             0

Table 1: Truth Table of NAND Gates

 A           B      (A + B)'     

 0           0             1

 0           1             0

 1           0             0 

 1           1             0

Table 2: Truth Table of NOR Gates
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Q1.11  	 Simplify the following Boolean function, F = x' y' + x y + x' y.

	    Solution:

F  =  x' y' + x y + x' y  =  x' y' + x' y + x y   

    =  x' (y + y' ) + x y  =  x' 1 + x y  

    =  x' + x y  =  (x' + x) (x' + y)  

    =  1 (x' + y)  =  x' + y

Q1.12 	 Express F = A + B' C in both canonical SOP and POS form. 
		  Solution:

	 F = A + B' C

		  Canonical SOP:  It is formed by taking sum 
	    of minterms for which F = 1 in truth table.

		  ∴ F = ∑ (m1, m4, m5, m6, m7)

                       =  A' B' C + AB' C' + AB' C + ABC' + ABC

		  Canonical POS: It is formed by taking product 
	    of maxterms for which F = 0 in truth table.

		  ∴ F = Π (M0, M2, M3)  

                       = (A + B + C) (A + B' + C) (A + B' + C' ) 

Q1.13     Convert the following Boolean expression into standard SOP form: 
               A B' C + A' B'  + A B C' D

	          Solution:

	          F  =  A B' C + A' B'  + A B C' D

                    =  A B' C (D + D' ) + A' B' (C + C' ) + A B C' D                                                                    

                    =  A B' C D + A B' C D' + (A' B' C) (D + D' ) + (A' B' C' ) (D + D' ) + A B C' D

                    =  AB'  C D + AB'  C D' + A'  B'  C D + A' B' C D' + A' B' C' D + A'  B' C' D' + A B C' D            
                              (m11)          (m10)           (m3)              (m2)            (m1)              (m0)           (m13)

                    =  m0 + m1 + m2 + m3 + m10 + m11 + m13

                                 =  ∑ m(0, 1, 2, 3, 10, 11, 13)

Q1.14   	 Convert the function Y = A + B' C in canonical POS form using Boolean algebra.
	 Solution:

	 Y =  A + B' C = (A + B' ) (A + C)

   	    = ((A + B' ) + (C C' )) ((A + C) + (B B' ))

	    = (A + B' + C) (A + B' + C' ) (A + B + C) (A + B' + C)   
                           (M2)               (M3)               (M0)           (M2) 

                  = (A + B + C) (A + B' + C) (A + B' + C' )  

                  =  M0 M2 M3

x + x' = 1

A  B C    Minterm   Maxterm    B'   B' C  F = A + B' C
0   0   0           m0                  M0           1       0              0
0   0   1           m1                  M1           1       1              1
0   1   0           m2                  M2           0       0              0
0   1   1           m3                  M3           0       0              0
1   0   0           m4                  M4           1       0              1
1   0   1           m5                  M5           1       1              1  
1   1   0           m6                  M6           0       0              1
1   1   1           m7                  M7           0       0              1

Table 1: Truth Table

Missing literals in first 
term is D and second 
term is C and D

Missing literals in first 
term is C and second 
term is B.

Repeated maxterms are 
considered only one time.
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Q1.15  	 Compare SOP and POS.

Q1.16  	 Show that A B' C + B + B D' + A B D' + A' C = B + C.         

	          Solution:

              A B' C + B + B D' + A B D' + A' C =  B + B D' + A B D' + A' C + A B' C       

		                                   =  B(1 + D' + A D' ) + (A' + A B' )C   

		                                 =  B.1 + ((A' + A) (A' + B' ))C

		                                =  B + (A' + B' )C

		                                =  (B + A' + B' ) (B + C)  = (1 + A' ) (B + C)

	                           	      = 1.(B + C) = B + C

Q1.17  	 Using the Boolean algebra, simplify the expression:  

	 A' B' C + (A + B + C' )'  + A' B' C' D   

	 Solution:  

A' B' C + (A + B + C' )'  + A' B' C' D  =  A' B' C + A' B' C  + A' B' C' D    

												              =  A' B' C + A' B' C' D                     

										                         =  A' B' C(1 + D) + A' B' C' D       

										                         =  A' B' C + A' B' CD + A' B' C' D

									                             =  A' B' C + A' B' D (C + C' )             

										                         =  A' B' C + A' B' D

Q1.18      Show that the dual of the XOR is equal to complement of XOR.

	 Solution:

            F = x ⊕ y = x y' + x' y

           Case i: Direct Complement

            F' = (x ⊕ y)' = (x y' + x' y)'

                                    = (x y' )'  (x' y)' 

                                       = (x' + y) (x + y' )  

1 + x = 1

x . 1 = x

x + x' = 1

                    SOP (Sum-of-Products)	                             POS (Product-of-Sums)

1.   SOP form of Boolean function is formed using        1.   POS form of Boolean function is formed using
      minterms.                    			                  maxterms.

2.   SOP form can be realized by AND operation       2.   POS form can be realized by OR operation    
      of literals followed by OR operation of output          of literals followed by AND operation of output
      of AND.                                                                      of OR. 

3.   SOP form of a Boolean function can be used to       3.   POS form of a Boolean function can be used to        
      realize the function using only NAND gates.                realize the function using only NOR gates.        

             

Using DeMorgan's 
theorem (x + y)' = x'.y'

1 + x = 1

x + x' = 1

Repeated terms are considered once.

  Using DeMorgan's theorem
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           Case ii: Duality

             x ⊕ y = x   .   y'  +  x'   .   y
                                  ↓  ↓  ↓  ↓   ↓  ↓  ↓     
                              (x'  + y)   .  (x  +  y' )
                                                   ⇓
                              (x'  + y)   .  (x  +  y' ) = F'

Q1.19  	 Find the complement of the function: F = x (y' z' + y z) by taking their duals and complementing each 
	 literal.

	 Solution:

	 Case i: Direct Evaluation of Complement

                   F = x (y' z' + y z)

                         ⇓

 F'  = (x (y' z' + y z))'  = x' + (y' z'  + y z)'  

      = x' + ((y' z' )'  (yz)' ) = x' + ((y + z) (y' + z' )) = (x' + y + z) (x' + y' + z' )   

              Case ii: Complement using Duality
           x  .  (y'  .  z'  +   y  .  z)

↓  ↓  ↓     ↓  ↓   ↓   ↓  ↓  ↓
x' + ((y + z)  .  (y' + z' )) 

                      ⇓ 
           (x' + y + z' ) . (x' + y'  + z' )  = F'

Q1.20  	 Draw the logic diagram of the following Boolean expression without simplification.

	 B C' + A B + A C D      

	 Solution:

	   

Q1.21  	 Draw the multiple-level NAND circuit for the following expression:

	 (A B' + C D' ) E + B C (A + B) 

	 Solution:

(A B' + C D' ) E + B C (A + B) = A B' E + C D' E + A B C + B B C  

                                                 = A B' E + C D' E + A B C + B C

										            

  Using DeMorgan's theorem
     (x + y)' = x' . y'
     (x . y)' = x' + y'

Complement

Replace by dual elements

x . x' = 0

Replace by dual elements

Fig. Q1.20: Logic circuit using basic gates.
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Q1.22 	   Simplify the function and obtain minimum SOP for

	     	    F(A, B, C, D) = ∑ m(0, 2, 3, 10, 11, 14, 15) + ∑ d(8, 12)

		     Solution:

	   Minimum SOP form is given by sum of three product  
               terms obtained from K-map. 

               ∴  F = B' D' + A C + B' C

	    

Q1.23 	  Find the minimum POS expression for the function F(A, B, C) = ΠM (2, 6, 7)
	    Solution:

	   Minimum POS form is given by complement of sum of two  
               product terms obtained from K-map. 

               ∴ F = (B C' + A B)' 

                       = (B C' )'  (A B)'

                         = (B' + C) (A' + B' )

Q1.24    Why K-map is arranged in Gray code? 
            In Gray code, the consecutive codes differ only in value of one bit. In K-map, the minterms are arranged 
		     similar to Gray code to identify and group the minterms that differ only by one variable.

 

Fig. Q1.21: Logic circuit using multiple level NAND gates.
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Fig. Q1.22: K-map for F.
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Q1.25	 Draw the two-variable K-map with single prime implicant formed using single 1's. 

            Solution:

                      F = x y                                                          F = x' y'

Q1.26	 Draw the two-variable K-map with two prime implicants formed using single 1's. 

            Solution:

                          F = x' y + xy'                                                    F = xy + x' y'

Q1.27  	 Define Half adder and Full adder.

	 Half adder is a combinational circuit that performs arithmetic sum of 2-bit binary.

	 Full adder is a combinational circuit that performs arithmetic sum of 3-bit binary.

Q1.28	 Design a half adder using basic logic gates.

	 Solution:

s  = a b' + a' b    ;       co = a b

Q1.29	 Give the logical expression for half adder and a full adder.

Half adder:           Sum, s = ab' + a' b               

                       Carry, co = ab 

Full adder:            Sum, s = a'  b' ci + a' bci + ab' ci + abci               

                       Carry, co = ab + aci + bci   

0 1

1

Fig. Q1.25a: K-map for F
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Fig. Q1.25b: K-map for F
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Fig. Q1.26b: K-map for F
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Fig. Q1.28: Logic circuit of half adder.
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Q1.30 	 Determine the exact number of half adders and full adders required for performing the addition of two 
	 binary numbers of 5 bits length each.

	 When addition is performed using half adders, we require two half adders to add one bit binary number. 
	 Therefore, for addition of 5-bit binary numbers 10 half adders are required. 

	 When addition is performed using full adders we require one full adder to add one bit binary number.  
	 Therefore, for addition of 5-bit binary numbers we require 5 full adders.

Q1.31	 What is binary parallel adder.

	 A binary parallel adder performs arithmetic sum of two n-bit binary numbers. A full adder can add two 
	 1-bit binary along with previous carry. Hence, in order to add two n-bit binary numbers, n full adders are  
	 required. Each full adder will add one bit of binary numbers.

Q1.32  	 Define Half subtractor and Full subtractor.

	 Half subtractor is a combinational circuit that performs arithmetic subtraction of two binary bits.

	 Full subtractor is a combinational circuit that performs arithmetic subtraction of three binary bits.

Q1.33	 Draw the logic diagram and truth table of a half subtractor.
	 Solution:

Table 1: Truth Table of Half Subtractor

	

Q1.34	 What is a magnitude comparator.

	 Magnitude comparator is a combinational circuit used to compare two binary numbers and determine whether 
	 they are equal or unequal and if unequal then it can make a decision on larger or smaller magnitude.

Q1.35  	 Define Decoder.

	 A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 
	 2n unique output lines. In a decoder, for an n-bit binary input one of the 2n output is activated.

Q1.36  	 How multiplexer differ from decoder?

	 A decoder accept n-bit binary input to activate one of the 2n outputs whereas the multiplexer accept n-bit 
	 address to allow one of the 2n input on the output line.

Q1.37 	 Define Encoder.

	 An encoder is a combinational circuit that perform the inverse operation of a decoder. An encoder has 2n 
	 input lines and n output lines. When one of 2n inputs is activated, it generates an unique n-bit output. 

Q1.38  	 What is priority Encoder.
	 A priority encoder is an encoder circuit that includes the priority function. In priority encoder, if two or more 
	 inputs are asserted high (or equal to 1) then the output corresponds to the input having highest priority.

d = ab + a b’ ’

a

b

Fig. Q1.33: Logic circuit of half subtractor.

b’

a’

ab’

a’b co = a b’

Inputs   Minterm   Outputs
a     b                         d       co

0      0            m0            0        0    

0      1            m1            1        1  

1      0            m2                    1        0   

1      1            m3            0        0    
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Q1.39  	 What is Demultiplexer.

	 Demultiplexer is a combinational circuit which can transmit a binary input to any one of 2n output lines 
	 using n selection lines or n-bit address.

Q1.40 	 Convert a 2-to-4 decoder with enable input to 1:4 demux.
	 Solution:

	 The truth table of 2-to-4 decoder working as 1:4 MUX is shown in Table 1.

	 When the 2 inputs I0, I1 of decoder are used as selection inputs S0 and S1 of demux and enable of decoder 
	 used as demux input, a 2-to-4 decoder will work as a 1:4 demux.

              

 

               Table 1: Truth Table of 2-to-4 Decoder with 1:4 Demux

Q1.41  	 Differentiate between multiplexer and demultiplexer.

 		         Multiplexer                                                          Demultiplexer

1.  A multiplexer is a combinational circuit	 1.  A demultiplxer will perform the reverse operation   
                 that select one binary information from                 of multiplexer.
	   many inputs. 		                                     

2.  In general, a MUX will have 2n inputs	 2.  A demux is a combinational circuit which can            
	   and one output. In order to select one                   transmit a binary input of any one of 2n output
	   of the 2n inputs the MUX will have n                    lines using n selection lines or n-bit address.  
                 selection lines or address. 

Q1.42  	 How many selection inputs, data inputs and outputs for 16:1 multiplexer?
	 A 16:1 multiplexer has 16 data inputs (I0 to I15), 4 selection inputs (S0 to S3) and One output (Y).

Fig. Q1.40.1: 2-to-4 decoder.

2-to-4
Decoder

2-bit input

Y0

Y1

Y2

Y3

I0

I1

4 outputs

Enable

E

Fig. Q1.40.2: 1:4 demux.

1:4
Demux

Y0

Y1

Y2

Y3

Ii

S0S1

Fig. Q1.40.3: 2-to-4 decoder
as 1:4 demux.

2-to-4
Decoder

as 1:4
Demux

Y0

Y1

Y2

Y3

I0

I1

E

S0

S1

Input

Selection
input

Selection
input

Ii

Input

4 outputs
4 outputs

  Inputs    Selection Inputs      Outputs                                

  Ii = E            S1      S0           Y0   Y1   Y2   Y3        

   Ii = 0               0          0              0      0     0      0           
   Ii = 0               0          1              0      0      0      0
   Ii = 0              1           0              0      0     0      0
   Ii = 0              1           1              0      0     0      0
   Ii = 1              0           0              Ii      0     0      0
   Ii = 1              0           1              0      Ii     0      0
   Ii = 1              1           0              0      0     Ii      0
   Ii = 1              1           1              0      0     0      Ii

 

(AU, Nov/Dec'23, 2 Marks)
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Fig. Q1.44.1: Block diagram of 2 :1 multiplexer.
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Fig. Q1.43.2: Block diagram of decoder.
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Fig. Q1.43.1: Block diagram of demux.
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Q1.43  	 Compare demux and decoder. 

	                Demultiplexer	                 Decoder

1.	 A demultiplexer is a combinational circuit, 		         1.	 A decoder is a combinational logic device	
	 which can transmit a binary input to any one		  that decodes a n-bit binary input to one of the 	
	 of 2n output lines using n-bit address or 'n' 			   2n binary information.
	 selection lines. 

2.	 Two types of inputs: input and selection lines.          2.	 Two types of inputs: input and enable. 

3.	 A demux is a single input to multi output device       3. 	A decoder, decodes n-bit code to 2n binary
	 based on selection input.	                    information.

Q1.44  	 Compare multiplexer and encoder. 
	                     Multiplexer	                 Encoder

1.	 A multiplexer is a combinational circuit, 		          1.	 An encoder is a combinational circuit that can  	
	 which can select one output from 2n inputs,			  generate an unique n-bit output for each of 2n

	 using 'n' selection lines.                                                   binary inputs.

2.	 A MUX is multi inputs to single output device           2.   An encoder, generate n-bit code for each of 
	 based on selection input.                                                 2n binary inputs.

Q1.45  	 Differentiate between multiplexer and decoder.

                                 Multiplexer                                                            Decoder

1.  MUX accepts several inputs and allow	 1.  It takes n input binary code and convert it   
                 only one data output.			        into a corresponding outputs.

2.  Select line are used to select data inputs	 2.  Enable inputs are used to control the operation
	   and allow only one of them.                                  of the decoder.

3.  Multiplexer converts the unary code into	 3.  Decoder converts binary code into unary.
                 binary code.

m = 2n - 1 m = 2n - 1

 

m = 2n - 1 m = 2n - 1
Fig. Q1.44.2: 2 -to-n encoder.
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1.16  Exercises
I.  Fill in the blanks

1.	 In combinational circuits, there is no _______ from output to input.
2.	 Digital logic circuits with feedback are known as _______ circuits.

3.	 The two voltage levels of logic circuits are called ______ and ______.  

4.	 NAND and NOR gates are called ______ . 

5.	 The realizations in SOP and POS forms are called ______ .  	

6.	 A gate in which any one input must be low to get a high output is called _______.

7.	 A gate in which any one input must be high to get a low output is called _______. 

8.	 Binary ______ can be performed via addition by using the 1's or 2's complement method.

9.	 The ______ gate output in high when the inputs are not the same.

10.	 The output of a 2-input ______ gate is 0 if and only if its inputs are unequal.

11.	 The most suitable gate for comparing two bits is ______ .

12.	 The  ______ of a sum term is equal to the product of the complements of the variables in the sum term.

13.	 The operational symbol for exclusive-OR operation is ______. 

14.	 AND-OR logic produces the output of an expression in ______ form.

15. 	 Binary logic consist of binary variables and a set of ______.

16. 	 NOT operation is same as ______.

17. 	 Boolean function can be realized using only ______ or ______ gates.

18. 	 The realizations in SOP and POS  standard form are called ______.

19. 	 The Two-level realization of SOP form of a Boolean function can be obtained using only ______.

20. 	 Two-level realization of POS form of a Boolean function can be obtained using only ______.

21.	 A 3-variable Karnaugh map has ______ cells.

22. 	 Each variable with in a term of Boolean expression is called ______.

23. 	 The Boolean Expression can be reduced or simplified using postulates and theorems of ______.

24. 	 ______ is a pictorial term of truth table and used to simplify Boolean functions.

25. 	 The literal of minterm are split and arranged as ______ and ______.

26. 	 Prime implicant with single 1 represent ______ literal product term.

27. 	 All minterms are 1’s then all squares of K-map will be filled by 1 and function value is ______.

28. 	 Two-variable, K-map will have ______ squares.

29. 	 Three-variable, K-map will have ______ squares.

30. 	 Four-variable, K-map will have ______ square.

31.	 _______ is a combinational circuit that perform arithmetic sum of three 1-bit binary.

32.	 _______ is a combinational circuit that performs arithmetic sum of two 1-bit binary.

33.	 The two outputs of a half adder are _______ and _______.

34.	 In a half adder, the sum can be realized using _______ gate.

35.	 In a half adder, the carry can be realized using _______ gate.

36.	 Full adder is a combinational circuit that perform arithmetic sum of _______ binary bits.
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37.	 A full adder has _______ outputs.

38.	 Practically _______ is considered as addition of positive and negative numbers.

39.	 _______ is a combinational circuit used to compare two binary numbers.

40. 	 Adders have been developed to perform _______ operation on binary numbers.

41. 	 Half subtractor can perform subtraction of _______ 1-bit binary number.

42. 	 A _______ performs arithmetic sum of two-n-bit binary numbers.

43. 	 The logic circuit of half subtractor using _______ gate.

44.	 A half subtractor has _______ outputs.

45.	 A full subtractor has _______ inputs.

46.	 A decoder decodes n-bit binary information into _______ binary information.

47.	 An encoder performs the _______ operation of a decoder. 

48.	 The digital multiplexer is basically a combination logic to perform the _______ operation.

49.	 The multiplexer is otherwise called _______ . 

50.	 A multiplexer will have _______ inputs and _______ output.

51.	 A demultiplexer will perform the _______ operation of multiplexer.

52.	 A demultiplexer is shortly called as _______ .

53.	 Demultiplexers of smaller size can be connected in _______ to expand the size of demux.

54. 	 An encoder has _______ input lines and _______ output lines.

55. 	 The operation the priority encoder is such that if two or more inputs are asserted _______.

56. 	 A multiplexer is shortly called as _______.

57. 	 The 4:1 multiplexer is used to select one of the four inputs using _______ selection input.

58. 	 The 8:1 multiplexer is used to select one of the eight inputs using _______ selection input.   

59.	 Multiplexer of smaller size can be connected in _______ to expand the size of multiplexer. 

60. 	 The data distributor is otherwise called as _______.

Answers

 1.  feedback 	            16.  complement operation               31.  full adder	                               46. 2n

 2.  sequential	            17.  NAND, NOR                             32.  half adder                           47.  inverse
 3.  high, low	            18.   two-level realization form      33.  sum, carry                                          48.  AND-OR
 4.  universal gates           19.  NAND gates                                           34.  half adder                           49.  data selector
 5.  standard form            20.  NOR gates                                35.  XOR                                     50.  2n, one 
 6.  NAND gate                21.  8  	                                                             36.  AND                                    51.  reverse
 7.  NOR gate                    22.  literal                                                   37.  two                                       52.  demux
 8.  subtraction                 23.  Boolean algebra                       38.  subtraction                          53.  parallel
 9.  exclusive-OR              24.  K-map                                                      39.  magnitude comparator     54.  2n and n
10.  XNOR                        25.  rows, colums                                   40.  arithmetic addition            55.  high
11.  XOR                               26.  n literal                                       41.  two                                        56.  mux  
12.  Complement              27.  1                                                  42.  binary parallel adder        57.  2-bit
13.   ⊕                                 28.  4                                                 43.  XOR                                     58.  3-bit
14.  SOP                             29.  8                                                 44.  two                                        59.  cascade
15.  logical operations     30.  16                                               45.  three                                    60.  demux
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II.  State whether the following statements are True or False

1.	 The output of NOR gate is high if and only if all its inputs are low.
2.	 AND gate can be used as an inverter.
3.	 A + A' B = A + B.
4.	 The complement of a product term is equal to the sum of the complement of the variables in the product  
	 term.
5.	 An example of a product-of-sums expression is A(B + C) + A C'.
6.	 The expression A' B C D + A B C D' + A B' C' D cannot be simplified.
7.	 An inverter performs an operation known as complement.
8. 	 Boolean algebra is an algebraic structure.
9. 	 (X + Y)' = X' + Y'.
10. 	 The basic logic gates are AND, OR and NOT gates.
11. 	 The NAND gate is a combination of OR followed by NOT gate.
12. 	 Logic gates can also be designed to work with negative logic levels.
13. 	 Binary variables are denoted by either lower case or upper case alphabets.
14. 	 Boolean function can't be evaluated for all possible combinations of binary values of the variables of the  
	 function.
15. 	 Minterms are 2n possible combinations of AND terms with  n variables such that the logical AND of all 
	 the variables is 0.
16.	 On a Karnaugh map grouping the 0's produces AND-OR logic.
17. 	 The Boolean expression can be reduced or simplified using postulates and theorems of Boolean algebra.
18. 	 There are one methods have standard procedure for simplification of Boolean functions.
19. 	 Maxterm can be used to construct K-map in which each squares represent a minterm.
20. 	 Arranging the literal/minterms only one change is allowed if we move from one row to next row or from  
	 one column to next column.
21. 	 While forming prime implicants any number of overlapping is allowed in horizontal and vertical directions. 
22. 	 The simplified Boolean function is sum of all the product terms of prime implicant
23. 	 If all minterms are 1’s then all squares of K-map will be filled by 1 and function value is 0.
24. 	 Reducing the number of literals in a Boolean expression or function will simplify the implementation of  
	 function by logic gates with minimum number of gates.
25. 	 The simplified Boolean function using K-map is not unique. Sometimes there may be multiple solutions.
26.	 A full adder is characterized by two inputs and two outputs.
27.	 A 4-bit parallel adder can add two 4-bit binary numbers.
28. 	 A comparator compares for the equality of two input numbers.
29.	 Half adder has two inputs and two outputs. 
30. 	 In addition of n-bit binary numbers, the addition is performed bit-by-bit.
31. 	 n-bit binary addition can be performed by using n full adder in parallel.
32. 	 Subtractor have been developed to perform arithmetic subtraction operation on binary numbers.
33. 	 In the subtractor 2-bit result, first bit is called borrow and the second bit is called difference. 
34. 	 The addition of negative number and 2's complement of positive number will give the result of subtraction.
35. 	 The BCD adder is a binary adder with additional logic circuit to perform addition of correction 610 when 
             the sum of a BCD digit exceeds 910.
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36. 	 Full subtractor is a combinational circuit that perform arithmetic subtraction of two binary bits in which  
             one of the bit is borrow generated in previous subtraction.

37. 	 The input to full adders has to be modified for different arithmetic and logical operations.

38.	 Half subtractor has two inputs and two outputs.

39.	 Full subtractor has two inputs and two outputs.

40.	 In general, a multiplexer has several data inputs, several data outputs and selection inputs.

41.	 A comparator compares for the equality of two input numbers.

42.	 A demultiplexer can transmit a binary input to any one of 2n output lines using n-bit address.

43.	 Demultiplexer of smaller size can be connected in series to expand the size of demultiplexer.

44.	 In a decoder, n-bit binary information is decoded into 2n binary information.

45.	 A n-to-2n decoder outputs may be logic high or low.

46.	 An encoder is a combinational circuit that performs the reverse of decoder function.

47.	 A priority encoder is a decoder.

48.	 A demultiplexer is a data distributor.

49.	 The code 10011000 exhibits even parity.

50. 	 In combinational circuits the output at any time depends on input at that time.

51. 	 In combinational circuits there is a storage element and there is a feedback from output to input.

52. 	 The code converters are combinational circuits that convert one type of code to another type of codes.

53. 	 The design of code converter starts with formation of truth table by taking one type of code as inputs and  
             another type of code as outputs. 

54.  	 A decoder is a combinational logic device that decodes one of the 2n binary information depending on  
             n-bit binary input.

55. 	 The n-bit binary information is decoded into n binary information.

56. 	 The complement of logic high decoder output will be same as output of logic low decoder.

57. 	 The complement of output of logic high decoder can be used to realize POS form of Boolean function.

58. 	 A multiplexer is otherwise called data distributor.

59. 	 2:1 Multiplexers can be connected in series to form 4:1 multiplexer or multiplexers of higher order.

60.  	 The logic circuit of Boolean functions in SOP form can be realised using multiplexer.

 Answers

	 1.  True	        11.  False             21.  True                 31.  True             41.  True           51.  False		
	 2.  False	        12.  True              22.  True                 32.  True             42.  True           52.  False
	 3.  True	        13.  True              23.  False                  33.  False            43.  False           53.  True 
	 4.  True	        14.  False             24.  True                 34.  False             44.  True           54.  True
	 5.	  False	        15.  False             25.  True                 35.  True             45.  True           55.  True
	 6.  True             16.  False             26.  False                36.  False             46.  True           56.  False
	 7.  True             17.  True              27.  True                 37.  True             47.  False           57.  True
	 8.  True             18.  False             28.  True                 38.  True             48.  True           58.  True 
	 9.  False             19.  False             29.  True                 39.  False            49.  False           59.  True
           10.  True             20.  True             30.  True                 40.  False             50.  True           60.  True
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III.  Choose the right answer for the following questions

1.	 The Boolean expression A' B' + (A B)' + A B is equivalent to    

	 a)  A' + B' A'     	                                            b)  A' B   	        

            c)  A B + (AB)'	                                            d)  A B

2.	 The Boolean expression A 5  B 5  B is equivalent to   

		  a)  A B + A' B'  		                                          b)  A' B   	                 

            c)  A   	                                                                  d)  B

3.		  In the logic circuit shown in Fig. 3, the output F is 

		  a)  x y' + y z'  + z x'     	   

		  b)  x + z   	      

		  c)  x y + y z + z x   	   

		  d)  (x y)' + (y z)' + (z x)'

4.		  An XOR gate with 6-variables is given by A ⊕ B ⊕ C ⊕ D ⊕ E ⊕ F. The number of minterms in the Boolean 
	       expression 
	       a)  6				                b)  12		                 c)  64			                    d)  32

5.		  Which of the following equation is equivalent to NOT 

		  a)  X NAND X		        b)  X NOR X'	          c)  X NAND 1	    d)  X NOR 1

6.		  The Boolean function Y = A B + C D is to be realized using only 2-input NAND gates. The minimum number 
		  of gates required is
		  a)  2		                           b)  3	                       c)  4	                               d)  5
7.		  Y = A B' C' + A' B C' is equivalent to  
           a)  Y = A        	                    b)  Y = A B               c)  Y = A C         	    d)  Y = C' (A ⊕ B)

8.	      The circuit shown in Fig. 8 realizes the function 

	       a)  [(A' + B' ) + C] . (D' + E' )	                 

	       b)  (A + B) C + D + E

            c)  A B + C + DE                                                   

            d)  A B + C(D +E)

9.	       The output Y of the given function in Fig. 9 represents 
	       a)  OR               	         		             b)  AND	           

	       c)  NAND		                                             d)  NOR

10.	      Which of the following is equivalent of AND-OR realization

	       a)  NAND-NOR realization        	            b)  NOR-NOR realization

	       c)  NOR-NAND realization        	            d)  NAND-NAND realization

Fig. 3.

x y z

F

A

B

Fig. 8.

D

E

C

A

B

Fig. 9.

Y
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11.	      The number of minterms in the function f(x, y, z) = xy' + z' is

	       a)  4	              b)  5	          c)  3	             d)  6

12.       If X = 1 in the logic equation, (X + Z (Y' + (Z' + XY' ))) (X' + Z' (X + Y)) = 1, then 

	      a)  Y = Z        	          b)  Y = Z'                  c)  Z = 1                          d)  Z = 0

13.	      The circuit shown in Fig. 13 realises the function 
	      a)  (A' + B' ).C + (D E)'

	      b)  (A + B) (C + D + E)

	      c)  A B + C + D E

	      d)  A B + C ( D + E)

14.	     In the Fig. 14 X0 , X1 , X2 will be 1’s complement of ABC if  

	      a)  Y = 1                               

	      b)  Y = 0
	      c)  Y = A' = B' = C'               

	      d)  Y = A = B = C

15.       The circuit in Fig. 15 works as 

	      a)  XOR						    

	      b)  XNOR
	      c)  NOR 						    

	      d)  NAND

16.       The Boolean function A + BC is a reduced form of  
	      a)  A B + B C	 b)  (A + B) (A + C)           c)   A' B + AB' C              d)  (A' + C) B	

17.       The number of distinct Boolean expression of 4 variables is  

	      a)  16		  b)  256                               c)  1024                             d)  65536

18.       The complete set of only those logic gates designated as universal gates is 

	      a)  NOT, OR and AND gates	                            b)  XNOR, NOR and NAND gates                       

           c)  NOR and NAND gates                                  d)  XOR, NOR and NAND gates

19.       The logical expression Y = A + A' B is equivalent to 

	      a)  Y = AB + A	                                            b)  Y = A' B + A'                       

           c)  Y = AB' + B                                                             d)  Y = AB + A'

20.       The minimized form of logical expression Y = A' B' C' + A' B C' + A' B C + ABC' is 

	      a)  A' C' + BC' + A' B	                                           b)  AC' + B' C + A' B                       

           c)  A' C + B' C + A' B                                            d)  AC' + B' C + AB'
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21.      For the identity AB + AC + BC = AB + AC the dual form is  

	      a)  (A + B) (A' + C) (B + C) = (A + B) (A' + C)	                                   

           b)  (A' + B' ) (A' + C' ) (B' + C' ) = (A' + B' ) (A' + C' )                       

           c)  (A + B) (A' + C) (B + C) = (A' + B' ) (A + C' )                                   

           d)  A' B' + AC' + B' C'  = A' B' + AC'

22.	     The number of boolean functions that can be generated by n variable is equal to

	      a)  22 n

	                 b)  22n                             c)  2n-1                             d)  2n

23.	     The Booelan expression AC + BC' is equivalent to

	      a)  A' C + B C' + A C	                                         

	      b)  B' C + A C + B C' + A' C B'                       

           c)  A C + BC' + B' C + A B C                               

	      d)  A B C + A' B C' + A B C' + A B' C

24.      For the logic circuit in Fig. 24 the required input condition (x, y, z) to make the output F = 1 is

	      a)  1, 0, 1	                 

	      b)  0, 0, 1                       

           c)  1, 1, 1                        

           d)  0, 1, 1

25.      For the logic circuit, the simplified Boolean expression for the output F is 

	      a)  x + y + z	                

	      b)  x                       

           c)   y                       

           d)  z

26.       The minimum number of 2 input NAND gates required to implement the Booelan function AB' C assuming 
           that A, B and C are available is  

	      a)  2	                 b)  3                                c)  5                                d)  6

27.      For the logic circuit shown in Fig. 27 the output F is 

	      a)  (x y z)'	                 

	      b)  x' + y' + z'                       

           c)  (x y)' + (y z)' + x' + z'                        

           d)  x' + z'
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28.      Boolean expression for output of  XNOR equivalent logic gate in dual form with inputs A and B is

           a)  A B' + A' B            	                                                 b)  (A B)' + A B                       

           c)  (A' + B) (A + B)                                                      d)  (A' + B' ) (A + B)

29.      The output of a logic gate is 1 when all its inputs are at logic 0. Then gate is either

   a)  a NAND or an XOR gate                                     b)  a NOR or an XNOR gate

   c)  an OR or an XNOR gate                                      d)  an AND or an XOR gate

30.       The minimum number of NAND gates required to implement the boolean function A + AB' + AB' C is equal to

   a)  0                                       b)  1                                c)  4                                   d)  7

31.      The output of the logic gate in Fig. 31 is 

   a)  0                                       b)  1                                c)  A                                  d)  A'

32.      What is output Z of an XOR gate whose all inputs are set at A

           a)  Z = A                              b)  Z = 1                         c)  Z = 0                            d)  Z = A 

33.      In the circuit shown the value of input for Y = 0 is

           a)  00                b)  01                  c)  10                       d)  11

34.      The simplified form of the boolean expression Y = (A' B C + D) (A' D + B' C' ) can be written as

           a)  A' D + B' C' D		                                   b)  A D + B C' D

   c)  (A' + D) (B' C + D' )		                   d)  A D' + B C D'

35.     The boolean expression x' yz' + (xy)' z + xyz' + xy' z + xyz can be simplified to

          a)  x' + z	                                                                  b)  y + z

  c)  y' + z'		                                                   d)  y' + z

36.      The output F in Fig. 36 is

	     a)  (A' + B' ) 	                                                                b)  A B

	     c)  (A' . B' )  	                                                                d)  A + B  

37.	    The function F in Fig. 37 is
	     a)  A + B C + C D 

	     b)  A + B C' + C' D'

	     c)  A(B' + C) (C + D)

	     d)  A' (B + C' ) (C' + D' )

38.	    The dual of the function is A(B' C + BC + BC' )

	     a)  A' + (B + C' ) (B' + C' ) (B' + C)		                      b)  A' (B C' + B' C' + B' C)

   c)  C (B' A + C A + C A' ) 	                                 d)  A B' C + A B C + A B C'
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39.	    The expression (A + A' B) (B' + B A) can be simplified to 

	     a)  A B' + A' B	                 b)  A B' + A' B'	               c)  1	                              d)  A

40.	    The circuit in Fig. 40 is works as 

	     a)  XOR									                            b)  XNOR

	     c)  NOR 									                       d)  NAND

41.      Each variable within a term of a Boolean expression is called

           a)  Literal                          b)  Minterm                     c)  Maxterm                   d)  Prime implicant

42.      A prime implicant with single 1 represent 

           a)  n literal product term	                                 b)  n - 1 literal product term

           c)  n - 2 literal product term	                                 d)  n - 3 literal product term

43.      A K-map is a diagram made up of squares with each square representing

           a)  Literal                          b)  Minterm                      c)  Maxterm                    d)  Prime implicant

44.      When minterms are considered for simplification using K-map the resultant Boolean function will be in  

           a)  Sum-of-product form	                                 b)  Product-of-sum form

           c)   MSOP form    	                                                 d)  Prime implicants 

45.     For n-variable Boolean function the K-map will be

           a)  2n square                     b)  2n square                     c)  n square                    d)  22n square

46.      A prime implicant with two 1's represent

           a)  n literal product term	                                 b)  n - 1 literal product term

           c)  n - 2 literal product term	                                 d)  n - 3 literal product term

47.       While forming prime implicants any number of overlapping is allowed in   

            a) Horizontal directions  	                                 b)  Vertical directions  

            c)  Both (a) and (b)	                                                 d)  None of the above

48        Undefined function outputs are called 

            a)  Literal                        b)  Minterm                      c)  Maxterm                      d)  Don't-care

49.     The expansion phase is the first phase in which minterms are obtained from truth table are prime                                          
	       implicants are identified after eliminating

            a)  Literal                        b)  n - 1 literal                  c)  n - 2 literal                   d)  Redundant literals

50.      The literals of minterm are split and arranged

            a) Only rows                                                             b)  Only columns

            c)  Both (a) and (b)	                                                 d)  None of the above

Fig. 40.
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51.	     The K-map for a Boolean function is given. The number of essential 
            prime implicants for this function is 

	       a)  4                                 

            b)  5                       

            c)   6                                   

            d)  8

52.	     The minimum POS expression for K-map given in the Fig. 52 is

	      a)  (B + C) (C' + D)                                                          

	      b)  (B + D) (A + C)

	      c)  (A' + C' ) (C + D' )

	      d)  (B + D) (A + D' )

53.	     While obtaining minimal SOP expression 

		  a)  All don't-cares are ignored		                        

		  b)  All don't-cares are treated as logic ones

	       c)  All don't-cares are treated as logic zeros		    

     d)  Only such don't-cares that aid minimization are treated as logic ones	

54.	   The given logic diagram in Fig. 54 represents a

	    a)  Multiplexer		

	    b)  Full adder

	    c)  Half adder	

	    d)  None of the above 

55.     An instruction used to set the carry flag in a computer can be classified as

	    a)  data transfer                           b)  arithmetic

	    c)  logical						       d)  program control

56.    Two 2's complement number having sign bit x and y are added and the sign bit of the result is 2. If z is  
	    input carry, then the occurance of overflow is indicated by the Boolean function, 
	    a)  xyz                                        	  b)  x' y' z'

	    c)  x' y' z + xyz'					      d)  xy + yz + zx

Fig. 51.
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57.	   The circuit in Fig. 57 works as

	    a)  a full subractor         		

	    b)  a full adder          

   c)  a binary to gray converter          

   d)  a gray to binary converter

58.   For a binary half subtractor having 2 input A and B, the correct set of logical expression for the outputs  
         D = (A - B) and X = (Borrow) are,

         a)  D = AB + A' B ; X = A' B                        	   b)  D = A' B + AB' + AB' ; X = AB'

	    c)  D = A' B + AB' ; X = A' B			            d)  D = AB + A' B ; X = AB'

59.    A half adder is characterized by

         a)  two inputs and two outputs                    b)  three inputs and two outputs

	    c)  two inputs and three outputs			     d)  two inputs and one output

60.    A full adder is characterized by

         a)  two inputs and two outputs                    b)  three inputs and two outputs

	    c)  two inputs and three outputs			     d)  two inputs and one output

61.    A full adder can add

         a)  two 1-bit binary number                        	  b)  two 2-bit binary number

	    c)  two 4-bit binary number			                d)  four bits at a time

62.    A 4-bit parallel adder can add

         a)  two 2-bit binary number                        	  b)  two 4-bit binary number

	    c)  two 1-bit binary number			                d)  four bits at a time

63.    Parallel adder are

         a)  combinational circuits                        	   b)  sequential circuits

	    c)  both of the above			                                      d)  None of the above

64.   The following switching functions are to be implemented using a decoder

	   f1 = Σm (1, 2, 4, 8, 10, 14)  ;   f2 = Σm (2, 5, 9, 11)   ;     f3 = Σm (2, 4, 5, 5, 7)

	   The minimum configuration of the decoder should be

	   a)  2 to 4 line		                                               b)  3 to 8 line			     

        c)  4 to 15 line		                                          d)  5 to 32 line

65.	  The circuit of Fig. 65 is equivalent to,

	   a)  AND gate                                                    b)  OR gate

        c)  XOR gate							                      d)  XNOR gate

C
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66.	      The minimum number of  2×1 MUX needed (with no added gates) to form a 3×1 MUX is

	       a)  2	   b)  3	           c)  4	          d)  1

67.	      The circuit in Fig. 67 works as

	       a)  binary to Gray converter          

	       b)  Gray to binary converter          	

	       c)  odd parity generator                  

	       d)  even parity generator

68.	      The function "F" implemented by the multiplexer shown in Fig. 68 is

	       a)  A          

	       b)  B          	

	       c)  A' B                  

	       d)  AB' + A' B

69.	      The MUX in Fig. 69 implements the function

          a)  F = BC'		

	       b)  F = BC

	       c)  F = B' C' 	

	       d)  F = B' C

70.	      The circuit shown in Fig. 70 is a 	

	       a)  Odd parity generator	      b)  Even parity generator	

	       c)  Full adder	                          d)  Comparator

71.	      The multiplexer in Fig. 71 implements the function

	       a)  Y = AB                     	

	        b)  Y = A' B + B' C      

	        c)   Y = A + BC	

	        d)  Y = BC

72.	      The MUX in Fig. 72 implements the function 

	         a)  Y = ∑ m(1, 3, 5, 7)                     	

	        b)  Y = ∑ m(1, 2, 3, 5)      

	        c)   Y = ∑ m(2, 5, 5, 7)	

	       d)  Y = ∑ m(1, 4, 5, 5)

Fig. 67.
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73.	      The MUX in Fig. 73 implements the function

	       a)  B'                     	

	        b)  B      

	        c)   B ⊕ C	

	       d)  BC

74.	      The output of the 4:1 MUX shown in Fig. 74 is

	       a)  x' y' + x                     	

	        b)  x + y     

	        c)   x' + y' 	

	        d)  xy + x'

75.	     The boolean function realized by the given multiplexer is given by,

	      a)  ∑ m(0, 3, 5, 7,  8, 11, 12, 14)

	      b)  ∑ m(0, 3,  5, 7, 12, 14) 

	      c)  ∑ m(2, 4, 5, 9, 10, 13, 15)

	      d)  ∑ m(0, 1, 5, 7, 9, 12) 

76.	     The boolean function implemented by the MUX is given as,

	      a)  ∑ m(0, 3, 4, 7)

	      b)  ∏M( 3, 4, 7)

	      c)  ∏M(1, 2, 5, 5)

	      d)  None of the above

77.      The circuit perform

	      a)  OR function

	      b)  AND function	

	      c)  NOR function	

	      d)  Inverter

78.      Without any additional circuitry, an 8 : 1 MUX can be used to obtain

	      a)  Some but not all boolean function of 3 variables

	      b)  All functions of 3 variables but none of 4 variables	

Fig. 73.
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	      c)  All functions of 3 variables and some but not all of 4 variables	

	      d)  All functions of 4 variables

79.	     The minimum number of  2:1 MUX required to realize a 4:1 MUX is

	      a)  1	   b)  2	           c)  3	          d)  4

80.	     A digital system is required to amplify a binary encoded audio signal, the user should be able to control 
           the gain of the amplifier from a minimum to a maximum in 248 increments. The minimum number of bits  
           required encode in straight binary is   

	      a)  8	   b)  5	           c)  5	          d)  7

Answers

	 1.  c           11.  b	    21.  b            31.  d             41.  a             51.  a             61.  a            71.  c     

	 2.  c           12.  d           22.  b            32.  c              42.  a              52.  a             62.  b            72.  c          

	 3.  b           13.  a            23.  d            33.  d             43.  b             53.  d             63.  a            73.  a           

	 4.  a           14.  a            24.  d            34.  a              44.  a              54.  c	            64.  c             74.  c     

	 5.  a           15.  a            25.  c	          35.  b             45.  b             55.  b             65.  c            75.  a        

	 6.  b           16.  b            26.  c             36.  b             46.  b             56.  d             66.  a            76.  b         

	 7.  d           17.  b           27.  b            37.  a              47.  c              57.  b             67.  a            77.  a         

    	 8.  a           18.  c            28.  d            38.  a             48.  d             58.  c             68.  b            78.  d

	 9.  a           19.  c            29.  b            39.  d             49.  d             59.  a             69.  b            79.  c 

	 10. d          20.  a            30  a	          40.  d             50.  c	      60.  b             70.  a            80.  a

IV.  Answer the following questions

1.	 Explain absorption theorem with truth table.
2.	 Which are universal gates, why are they called so?
3.	 What are minterms and maxterms?
4.   	 What is the difference between canonical and SOP/POS form?
5.	 What is truth table. Give an example.
6.	 What is duality?
7.	 What are postulates of Boolean algebra. Give two examples.
8.	 What is DeMorgan's theorem.

9.	 How will be the resultant function of K-map when minterm and maxterm are used?

10.	 How do we handle don't-care conditions?

11.	 What are the methods available to simplify a Boolean expression?

12.	 Explain K-map.

13.	 Define expansion phase and covering phase.

14.	 Realize half adder using K-map.	

15.	 Draw logic circuit and truth table of full adder.

16.	 Explain the operation of half subtractor.

17.	 Realize full subtractor using K-map.
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18.	 Design full subtractor circuit. Write a truth table. 

19.	 Explain the working of 4-bit parallel adder.

20.	 Design binary adder/subtractor using full adders.

21.	 Draw a logic circuit of 2-bit magnitude comparator.

22.	 Realize the Boolean function F(A, B, C, D) = ∑(0, 1, 5, 5) using appropriate multiplexer.

23.	 What is the purpose of enable input in a decoder?

24.	 How can we derive a priority encoder from an encoder?

V.  Solve the following problems

E1.1	 Find the complement of the following expression:

	 a)  x' y + x' y'                        b) x y z + x' y + x y z' 

E1.2 	 Given two Boolean functions F1 and F2 , show that (a) the Boolean function E = F1 + F2 contains the sum 
	 of the minterms of F1 and F2. (b)  The Boolean function G = F1 F2 contains only the minterms that are 
	 common to F1 and F2.

E1.3	 List the truth table of the function:         	a)  F1 = x' y' + x' y + y z'       b)  F2 = b' c' + a c

E1.4	 Demonstrate the validity of the following identities by means of truth tables:

	 DeMorgan's theorem for 3 variables:  a) (x + y + z)' = x' y' z'      b) (x y z)' = x' + y' + z'

	 The associate law:   c) x + (y + z) = (x + y) + z     d) x . (y . z) = (x . y) . z

E1.5 	 Express the complement of the following functions in sum of minterms form,

	 a)  F(A, B, C, D) = ∑ m(3, 5, 9, 11, 15)                 b)  F(x, y, z) = ∏ M(2, 4, 5, 7)

E1.6	 Convert each of the following expression into sum of products and product of sums.

	 a)  (A B + C) (B + C' D)		      b)  x + x' (x' + y' ) (y' + z' )

E1.7	 Show that the complement of XOR is equal to XNOR.

E1.8	 Determine the complement of Boolean expression (b + d) (a' + b' + c) and show that POS becomes SOP. 

E1.9	 Determine the complement of Boolean expression a' b + a' c' + abc and show that SOP becomes POS.

E1.10	 Implement the Boolean function, F = xy + x' y + y' z'

	 a)  With AND, OR and NOT gates.        b)  With OR and NOT gates.

	 c)  With AND and NOT gates.                d)  With NAND and NOT gate.	  e)  With NOR and NOT gates.

E1.11	 Obtain the truth table of the following functions and express each function in sum of minterms and  
	 product of maxterms form:   

	 a)  (x y + z) (y + x z)      b)  (x + y' ) (y' + z)     c)   x' z + w x' y + w y z' + w' y'     d)  (x y + y z' + x' z) (x + z) 

E1.12	 For the Boolean function, F = x' y z + x yz' + w x' y' + w' x y + w x y   

	 a)    Obtain the truth table of F. 

	 b)   Draw the logic diagram, using the original Boolean expressions.

	 c)    Use Boolean algebra to simplify the function to a minimum number of literals.

	 d)   Obtain the truth table of the function from the simplified expression and show that it is the same  
		        as the one in part (a).

	 e)   Draw the logic diagram from the simplified expression and compare the total number of gates 
		        with the diagram in part (b).      
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E1.13	 Simplify the following Boolean functions using 3-variable K-maps:

	 a)   F1(x, y, z) = ∑ m(0, 1, 5, 7)                  	b)   F2(x, y, z) = ∑ m(2, 3, 4, 5)

E1.14 	Simplify the following Boolean functions using K-maps:

	 a)   F1(x, y, z) = ∑ m(2, 3, 6, 7)                  	b)   F2(A, B, C, D) = ∑ m(4, 6, 7, 15)

E1.15	 Simplify the following Boolean functions using 4-variable K-map:

	 a)   F1(w, x, y, z) = ∑ m(1, 4, 5, 6, 12, 14, 15)            b)   F2(A, B, C, D) = ∑ m(2, 3, 6, 7, 12, 13, 14)

E1.16	 Simplify the following Boolean functions using 3-variable K-maps:

	 a)   F1 = x' y' + y z' + x' y z'                         	b)   F2 = x' y z + x y' z' + x y' z

E1.17	 Simplify the Boolean function using 4-variable K-maps: F = A' B' C' D' + AC' D' + B' CD' + A' BCD + BC' D

E1.18	 Find the minterms of the following Boolean expression by first plotting each function in a K-map:

	 a)  F1 = x y + y z + x y' z                     	b)  F2 = C'  D + A B C' + A B D' + A'  B' D

E1.19	 Using K-map find the minimum sum of products (MSOP) representation for, 

	 F(A, B, C, D, E) = ∑ m(2, 5, 7, 11, 21, 23, 25, 27) + ∑ d(1, 12, 17, 28)

	 Draw the logic circuit of the minimal expression using only NAND gates.

E1.20  Using K-map find the minimum product of sum (MPOS) representation for, 

           F(A, B, C, D, E) = ∏(0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 24, 25) + ∑ d(26, 27)

           Draw the logic circuit of the minimal expression using only NOR gates.

E1.21 Find the prime implicants for the following Boolean function and determine the essential prime  
           implicants. 

	           F(A, B, C, D) = ∑ m(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)

E1.22  Implement the Boolean function with NAND gate and draw the logic diagram.

           a)  F(x, y, z) = (1, 2, 3, 4, 5, 7)	                   b)  F(x, y, z) = (0, 1, 3, 5, 6, 7) 

E1.23	 Obtain the simplified Boolean expression for output F interms of the input variables in the circuit of  
	 Fig. E1.23.   

E1.24   	Design a Boolean function with 3 inputs and 1 output. 

	 a)   The output is 0 when the binary value of the input is less than 3. The output is 1 otherwise. 

	 b)   The output is 1 when the binary value of the input is an odd number.

E1.25   Design a combinational circuit that compares two 3-bit numbers to check if they are equal. The circuit  
            output is 0 if the two numbers are equal and 1 otherwise.

E1.26  	Using adders,

	 a)   Design a 3-bit combinational circuit incrementer (a circuit that adds 1 to a 3-bit binary number).

	 b)  Design a 3-bit combinational circuit decrementer (a circuit that subtracts 1 from a 3-bit binary  
	        number).

Fig. E1.23.
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E1.27	 Design a half adder using NAND gates.

E1.28	 Design a half adder using logic low decoder.

E1.29	 Design a half adder using a logic high decoder and NAND gates.

E1.30	 Design a half adder using multiplexer.

E1.31	 Design a full adder using NOR gates.

E1.32	 Design a full adder using logic low decoder.

E1.33	 Design a half subtractor using NOR gates.

E1.34	 Design a half subtractor using logic low decoder.

E1.35	 Design a half subtractor using a logic high decoder and NAND gates.

E1.36	 Design a half subtractor using multiplexer.

E1.37	 Design a full subtractor using logic low decoder.

E1.38 	 Design a full subtractor using multiplexer.

Answers

 E1.1	 a)  (x + y' ) (x + y)                  b)  (x' + y' + z' ) (x + y' ) (x' + y' + z)

 E1.3	 a)    				             b)

  

 E1.4	a)                                                                                           b)           

     

    Input         Complement      Product         Function
Variables         of Inputs           Terms           Output

  x      y     z      x'      y'     z'    x' y'   x' y    yz'         F1

  0       0      0       1        1        1       1        0        0             1
  0       0      1       1        1        0       1        0        0             1
  0       1      0       1        0        1       0        1        1             1
  0       1      1       1        0        0       0        1        0             1
  1       0      0       0        1        1       0        0        0             0
  1       0      1       0        1        0       0        0        0             0
  1       1      0       0        0        1       0        0        1             1
  1       1      1       0        0        0       0        0        0             0

    Input         Complement   Product   Function
Variables         of Inputs        Terms      Output

  a      b     c      a'      b'     c'    b' c'    ac          F2

  0       0      0       1        1        1       1        0              1
  0       0      1       1        1        0       0        0              0
  0       1      0       1        0        1       0        0              0
  0       1      1       1        0        0       0        0              0
  1       0      0       0        1        1       1        0              1
  1       0      1       0        1        0       0        1              1
  1       1      0       0        0        1       0        0              0
  1       1      1       0        0        0       0        1              1

  x    y    z     x + y + z     (x + y + z)'   x'     y'    z'    x' y' z'

  0     0     0             0                      1              1      1      1         1

  0     0     1             1                      0              1      1      0         0

  0     1     0             1                      0              1      0      1         0

  0     1     1             1                      0              1      0      0         0

  1     0     0             1                      0              0      1      1         0

  1     0     1             1                      0              0      1      0         0

  1     1     0             1                      0              0      0      1         0

  1     1     1             1                      0              0      0      0         0

  x   y    z     x y z   (x y z)'    x'   y'   z'      x'  + y' + z'

  0    0     0         0            1           1     1    1               1

  0    0     1         0            1           1     1    0               1

  0    1     0         0            1           1     0    1               1

  0    1     1         0            1           1     0    0               1

  1    0     0         0            1           0     1    1               1

  1    0     1         0            1           0     1    0               1 

  1    1     0         0            1           0     0    1               1

  1    1     1         1            0           0     0    0               0
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           c)                                                                                        d)

E1.5 	 a)  ∑m(0, 1, 2, 4, 6, 7, 8, 10, 12, 13, 14)              b)  ∑m(2, 4, 5, 7)

E1.6   a)  A B + B C  (SOP),  B(A + C)  (POS)              b)  x + x' y' + x' z'  (SOP),  x + y' + z'  (POS)

E1.8  b' d' +  a b c'    (Sum of products) 

E1.9  (a + b' ) (a + c) (a' + b' + c' )   (Product of sums)

E1.10  a)  F = x y + x' y + y' z'         		        b)  F = (x' + y' )' + (x + y' )' + (y + z)' 

           c)  F = ((x y)' (x' y)' (y' z' )' )'                                                   d)  F = ((x y)' (x'  y)' (y' z' )' )' 

 

            

  x     y    z     y + z     x + (y + z)     x + y     (x + y) + z

  0      0     0         0                   0                  0                  0

  0      0     1         1                   1                  0                  1

  0      1     0         1                   1                  1                  1

  0      1     1         1                   1                  1                  1

  1      0     0         0                   1                  1                  1

  1      0     1         1                   1                  1                  1 

  1      1     0         1                   1                  1                  1

  1      1     1         1                   1                  1                  1

  x     y    z     y . z     x . (y . z)    x . y   (x . y) . z

  0      0     0         0               0               0               0

  0      0     1         0               0               0               0

  0      1     0         0               0               0               0

  0      1     1         1               0               0               0

  1      0     0         0               0               0               0

  1      0     1         0               0               0               0 

  1      1     0         0               0               1               0

  1      1     1         1               1               1               1

x y z

F = xy + x y + y z’ ’ ’

Fig.

x’ y’ z’
xy

x y’

y z’ ’

x y z

F

Fig.

x’ y’ z’
x + y’ ’

x + y’

y + z

(x + y )’ ’ ’

(x + y )’ ’

(y + z)’

x y z

F

Fig.

x’ y’ z’
xy

x y’

y z’ ’

(xy)’

(x y)’ ’

(y z )’ ’ ’

x y z

F

Fig.

x’ y’ z’
(xy)’

(x y)’ ’

(y z )’ ’ ’
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            e)  F = (x' + y' )' + (x + y' )' + (y + z)'   

	

	

 E1.11	a)  ∑ m(3, 5, 6, 7) = ∏ M(0, 1, 2, 4) 	                   

	 b)  ∑ m(0, 1, 4, 5, 7) = ∏ M(2, 3, 6)        	           

	 c)  ∑ m(0, 1, 3, 4, 5, 9, 10, 11, 14) = ∏ M(2, 6, 7, 8, 12, 13, 15)   

	 d)  ∑ m(1, 3, 6, 7) = ∏ M(0, 2, 4, 5)

 E1.12	a)  

x y z

F

Fig.

x’ y’ z’
(x + y )’ ’ ’

(x + y )’ ’

(y + z)’

F1

F = ((x + y ) + (x + y ) + (y + z) )1 ’ ’ ’ ’ ’ ’ ’

F = (x + y ) + (x + y ) + (y + z)’F =1 ’ ’ ’ ’ ’’

        Input                Complement                     Product                         Function
     Variables               of Inputs                           Terms                            Output                                   
w     x      y       z      w'    x'    y'    z'    x' yz   xyz'   wx' y'   w' xy   wxy          F        

0        0        0         0        1       1      1       1        0           0            0             0           0                0    

0        0        0         1        1       1      1       0        0           0            0             0            0                0

0        0        1         0        1       1      0       1        0           0            0             0            0                0

0        0        1         1        1       1      0       0        1           0            0             0           0                 1

0        1        0         0        1       0      1       1        0           0            0             0           0                 0

0        1        0         1        1       0      1       0        0           0            0             0           0                 0

0        1        1         0        1       0      0       1        0           1            0             1           0                 1 

0        1        1         1        1       0      0       0        0           0            0             1           0                 1

1        0        0         0        0       1      1       1        0           0            1             0           0                 1

1        0        0         1        0       1      1       0        0           0            1             0           0                 1

1        0        1         0        0       1      0       1        0           0            0             0           0                 0

1        0        1         1        0       1      0       0        1           0            0             0           0                 1

1        1        0         0        0       0      1       1        0           0            0             0           0                 0

1        1        0         1        0       0      1       0        0           0            0             0           0                 0

1        1        1         0        0       0      0       1        0           1            0             0           1                 1

1        1        1         1        0       0      0       0        0           0            0             0           1                 1
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	 b)  

 	

	 c)    Fsimplified = xy + yz + wx' y' 

	 d)                                                                                                  e)  	

                                                                                                        

E1.13	a)  F1 = x' y' + x z       	                   b)  F2 =  x' y + x y'

E1.14 a)  F1 = y          			            b)  F2 = A' B D' + B C D   

E1.15 a)  F1 = w' y' z + wxy + xz'          b)  F2 = A B C'  +  A' C + B C D'

E1.16 a)  F1 = x' y'  + y z'                          b)  F2 = x y'  + x' yz   

x y z

F

Fig: Logic circuit of F.

x’ y’ z’
w x yz’ ’

w xyz’ ’

w xyz’

w

w’

wx y z’ ’ ’

wx yz’

wx y z’ ’

wxyz’

wxyz

        Input                    Product           Function
     Variables                  Terms              Output                                   
w     x      y       z      xy    yz    wx' y'       Fsimplified        

0        0        0         0        0         0          0                   0    
0        0        0         1        0         0          0                   0 
0        0        1         0        0         0          0                        0
0        0        1         1        0         1          0                   1
0        1        0         0        0         0          0                      0
0        1        0         1        0         0          0                      0
0        1        1         0        1         0          0                      1 
0        1        1         1        1         1          0                      1
1        0        0         0        0         0          1                      1
1        0        0         1        0         0          1                      1
1        0        1         0        0         0          0                   0
1        0        1         1        0         1          0                   1
1        1        0         0        0         0          0                       0
1        1        0         1        0         0          0                   0
1        1        1         0        1         0          0                   1
1        1        1         1        1         1          0                   1

x y z

Fig: Logic circuit of F .Simplified

x’ y’

FSimplified

w

xy

yz

wx y’ ’
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E1.17   F = A B C' + A' B D + B' D'

E1.18    a)                                   		   	 b)  

                 F1 = Σm(3, 5, 6, 7)

                                                                                                        F2 = ∑m(1, 3, 5, 9, 12, 13, 14)

 E1.19    F = A' B' C' DE' + B C' D E + B' C E + A B C'  E	         E1.20   F = (B + C) (A + B + D) (A' + C)

 E1.21	 F = B' D' + B' C + A C + A' B D  (Alternatively, F = B' D' + C D + A C + A' B D)	

 E1.22  a)      				         b)

0

m
0

1

m
1

m
3 m

2

m
4

m
5 m

7
m

6

00 01 1011x
yz

1

0 0 0 0

Fig: K-map for F .1

11 1
xy

yz

xy z’

Fig: K-map for F2 .

m
0

m
15

m
1

m
3 m

2

m
4

m
5 m

7
m

6

m
14

m
13

m
12

m
10

m
11m

9
m

8

00 01 1011AB

01

10

00

0 1

1

0 0

0

1 1 0

CD

0

00

1011

A B D’ ’

11 ABD’

C D’

ABC’

Fig: Logic circuit of function, F using only NAND gates.

A’

A

B’

B

C’

C D E

E’
(A B C DE’ ’ ’ ’ ’)

F

(BC DE’ ’)

(B CE’ ’)

(ABC E’ ’)

Fig: Logic circuit of function, F using only NOR gates.

A’

A B C D E

(B+C)’

F(A+B+D)’

(A +C’ ’)

Fig: Logic circuit of F using only NAND gates.

x’

x y z

(x y’ ’)
y’

(xy’ ’)

z’ F = ((x ) . (x y ) . z )’ ’ ’ ’ ’ ’y

= x + x y + z’ ’y

Fig: Logic circuit of F using only NAND gates.

x’

x y z

(xy)’
y’

(x y’ ’ ’)

z’ F = ((x ) . (x y ) . z )y ’ ’ ’ ’ ’ ’
= x + x y + zy ’ ’
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3-bit input data
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Fig.

0ci
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 E1.23		  F = A + B + C' + D + E               E1.24        a)  x + yz            b)  z

 E1.25

 E1.26     a)                                                                                    b)

 E1.27                  				         E1.28

 E1.29

Fig: Combinational circuit to
compare two 3-bit numbers for equality.

A0

B0

A1

B1

A2

B2

Y

A + B0 0

A + B1 1

A + B2 2

Fig: Alternate circuit.
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Fig: Logic circuit of half adder using NAND gates.

a b

b’
(ab )’ ’
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(a b)’ ’

Half adder

s = ((ab . (a b’) ) )’ ’ ’ ’

(ab)’
= ab + a b’ ’

s

co = ((ab) )’ ’
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Fig: Half adder using logic low 2-to-4 decoder.
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 E1.30

 E1.31

 E1.32

Fig: Logic circuit of full adder using NOR gates.

a b ci

ci’b’

s

(a + b + c )i ’

a’

co

(a + b + c )i ’’

(a + b + c )i ’’

(a + b + c )i ’’’

(a + b)’

(b + c )i ’

(a + c )i ’

Sum

Carry

Full adder

’ s = ((a + b + c ) +i ’ (a + b + c )

+ (a + b + c ) + (a + b + c ) )

’ ’
’ ’ ’ ’ ’ ’

i

i i

= (a + b + c ) .i (a + b + c )

. (a + b + c ) . (a + b + c )

’
’ ’ ’

i

i i

’
’

c = ((a + b) +o ’ (b + c ) + (a + c ) )i i’ ’ ’
= (a + b) . (b + c ) . (a + c )i i

Fig: Full adder using logic low 3-to-8 decoder.
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 E1.33							             E1.34

 E1.35							              E1.36

 E1.37 						             

Fig: Half subtractor using logic low 2-to-4 decoder.
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 E1.38

Fig: Full subtractor using two 4:1 MUX.
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