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Suppose that there are large number of
particles in a system whose masses are m1, m2,
m3, …. The system can be a rigid body in which
the particles are in fixed position with respect
to each other, or it can be a collection of
particles in which there may be all kinds of
internal motion.

Let us suppose that the particles of the
system are interacting with each other and are
also acted by external forces. If p1 = m1v1,
p2 = m2v2, …, pn = mnvn are the momenta of
particles of masses m1, m2, …, mn respectively,
then the total momentum (p) of the system of
the particles is the vector sum of the
momentum of individual particles, i.e.

p = p1 + p2 + … + pn

   = m1v1 + m2v2 + … + mnvn (1.38)

Differentiating Eq. (1.38) with respect to time
t, we have

d
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 = 1 2 nd d d
dt dt dt
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   = F1 + F2 + … + Fn (1.39)
where F1, F2, …, Fn are the forces acting on the
particles m1, m2, …, mn  respectively.

We may note that these forces include
external as well as internal forces. However,
in accordance with Newton’s third law, the
internal forces exist in pairs of equal and
opposite forces and they balance each other
and hence they do not contribute any thing to
the external force. This means that right hand
side of Eq. (1.39) represents the result and force
Fext only due to the external forces acting on all
the particles of the system. Thus, the sum of
external forces is

Fext = 1 2( ... )n
d d
dt dt
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If the resultant external force is zero, then

d
dt
p

 = 0 or p = a constant

i.e.        p = p1 + p2 + … + pn = a constant (1.40)
Thus, if the resultant external force acting on a

system of particles is zero the total linear momentum
of the system remains constant. This simple but

quite general result is called the law of
conservation of linear momentum for a system of
particles. We may note that momentum of
individual particle may change but their sum,
i.e. total momentum remains unaltered in the
absence of external forces.

The law of conservation of momentum is a
fundamental and exact law of nature and so
far no violations of it have even been reported.

Law of Conservation of Angular
Momentum
The angular momentum of a particle is defined
as the moment of its linear momentum.
Mathematically, the angular momentum J of
a particle about a point is defined by

         J = r × p = m(r × v) (1.41)
where r is the vector distance of the particle
from that point and p = mv is the momentum
in an inertial frame in which the point is
stationary.

Differentiating Eq. (1.41) with respect to time
t , one obtains
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where F = 
d
dt
p

 is the force applied on the

particle.
The vector product of r and F is called torque

or moment of force about the reference point and
is represented by τττττ. Thus,

τ =
d
dt

= ×J
r F (1.42)

Obviously, the torque is equal to the rate of
change of angular momentum ( J ). Its unit is
N/m.

Extending the above for a system of n
particles in the form of a rigid body, we obtain

J = J1 + J2 + … + Jn
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Fig. 1.13

ILLUSTRATIVE EXAMPLES

Example 1
A bullet is fired horizontally in the north
direction with a velocity of 500 m/s at 30°N
latitude. Calculate the horizontal component
of Coriolis acceleration and the consequent
deflection of the bullet as it hits a target 250 m
away. Also find the vertical displacement of
the bullet due to gravity.
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Now, the vertical displacement of bullet due

to gravity
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Now, Coriolis force = –2mω × V
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Example 2
Prove that the observed acceleration due to
gravity gφ at the latitude φ is related to its real
value g by the relation

( ) ( )2 22 2cos cos sing g R gφ = φ − ω φ + φ

Solution
If the particle is at rest at latitude φ, then it is
not acted by Coriolis force.
Thus ai = ar – ω × (ω × R)

Now, we take Z-axis along the axis of the
earth and X-axis perpendicular to it, then

ar= ai – ω (ω × R)

or       ( )φ = − φ + φ − ωˆ ˆˆ cos sing g i k k

( )⎡ ⎤× ω × φ + φ⎣ ⎦
ˆ ˆˆ cos sink R i k

( ) 2ˆˆ ˆcos sin cosg i k R i= − φ + φ + ω φ

( )2 ˆˆ cos cos sini g R kg= − φ + ω φ − φ

∴ ( ) ( )φ φ φ= ⋅ φ − ω φ + φ
2 22 2cos cos sing g g g R g

Example 3
A particle of mass 200 gm is stationary in an
inertial reference system. Describe and
interprete its motion in a frame rotating with
angular speed 5π rad/s. The axis of rotation is

Solution
Let us take X-axis vertically, Z-axis towards north
and Y-axis along east. The velocity of the bullet

V = 500 ��  m/s
and angular velocity

ˆ ˆ( cos30 sin 30 )k iω = ω °+ °
Since the angular velocity ω of the earth is

directed parallel to its axis and is inclined at
30° to the horizontal. Here

52
7.2 10 rad/s

24 60 60
−πω = = ×

× ×

� Coriolis acceleration = 2ω × V

ˆ ˆˆ2 (2 cos30 sin 30 ) 500k i k= ω ° + ° ×

5 2 1 ˆ2 7.2 10 10
2

j−= − × × × ×

   = 0.036 m/s2 towards west.

Time taken during the journey

= 250/500 = 0.5 s.

∴ Deflection of the bullet due to Coriolis
acceleration
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observers. The Lorentz contraction may be
observed, but not ‘seen’ (since the eye and the
instantaneous cameras record pictures formed
photons that arrive together).

Time Dilation
Consider a clock at a point x′ in an inertial
frame S′. Let S′ be moving with a velocity v
with respect to another inertial frame S along
the common X-axis. Let a clock be situated
in frame S at x. Let clock in S frame give out
signals at two instants of time t1 and t2 as
measured by an observer in S. Let an observer
in frame S′ measure these instants of time t′1
and t′2 with his own clock. Then from Lorentz
transformation equations, we obtain
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Subtracting one from the other, we obtain
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(2.25)

Letting t′2 – t′1 = τ and t2 – t1 = τ0, we have

0
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c

ττ =

−
(2.26)

or
2

0 21
v
c

τ = τ − (2.27)

For the observer in frame S, the time interval
between the two signals is τ0 = t2 – t1 and for
the observer in S′ the time interval between the
same two signals is τ = t′2 

 – t′1. Equation (2.26)
reveals that τ is larger than τ0. Obviously, for

the moving observer, the time interval appears
to be elongated or dilated. This phenomenon is
called time dilation.

2.10 PROPER FRAME, PROPER LENGTH AND
PROPER TIME

The inertial frame of reference in which the
observed body is at rest is called the proper
frame of reference. The length of a rod as
measured in the inertial frame in which it is
at rest is called the proper length. The relation
between the proper length (L0) and the apparent
or non-proper length (L) is as follows:

2

0 21
v

L L
c

= − (2.28)

The time interval recorded by a clock fixed
with respect to the observed event is called
the proper time interval. The relation between
the proper time (τ0) and apparent or non-
proper time (τ) is as follows:

0
2

21 v
c

ττ =

−
(2.29)

Obviously, proper time noted by a moving
observer is always less than the corresponding
interval of time in a stationary frame. A
stationary observer finds that a moving clock
runs slower than a stationary one. An event
which repeats itself with a certain period in S′
will appear to have a longer period when
observed from S. It is important to note that
this effect is mutually reciprocal between two
observers.

The relation (2.29) suggests that any
physical process occurring in S′ appears,
when viewed from S, to have slowed down
compared with an identical process occurring
in S. Thus, spectrum of radiation emitted by
atoms moving relative to a spectroscope will
appear shifted towards the longer wavelength
or the red side of the corresponding spectrum
emitted by atoms which are at rest relative
to the spectroscope. This effect due to time
dilation has to be considered while consi-
dering Doppler shift in radiation.
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The relativistic velocity transformation
equations take the form as c → ∞ , i.e.

U′x = Ux , U′y = Uy and U′z = Uz

Example 12
A spaceship moving away from the earth with
velocity 0.5 c fires a rocket whose velocity
relative to spaceship is 0.8 c (a) away from the
earth (b) towards the earth. What will be the
velocity of the rocket as observed from the
earth in the two cases?

Solution
Let us regard the earth as S frame and
spaceship as S′ frame. The rocket is the object
whose velocity in the S frame is to be deter-
mined.

We have 
′ += ′

+ 21
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 U′ = 0.8 c
   v = 0.5 c

∴ U
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In the second case, U′ = –0.8c
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Example 13
In the laboratory frame two particles are
observed to travel in opposite directions with
speed 2.8 × 108 m/s. Deduce the relative speed
of the particles.

Solution

We have   
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 Ux = 2.8 × 108 m/s

  v = – 2.8 × 108 m/s

       c = 3 × 108 m/s
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   = 2.99 × 108 m/s
Obviously, the velocity of the first particle

relative to the second is 2.99 × 108 m/s.

Example 14
A radioactive nucleus while moving with a
velocity 0.2 c in the lab-frame emits a β-particle.
The β-particle moves with a speed 0.6 c relative
to the nucleus. What is the velocity and
direction of the β-particle if it is emitted in a
direction (a) parallel (b) perpendicular to the
direction of motion of the nucleus in the lab-
frame?

Solution
Let us consider that the frame of reference
fixed on nucleus be S′ and the lab-frame be S.
The direction of motion of the nucleus be the
X-direction.
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Similarly,  Uz = 0.




