

Stoichiometry and Bacterial Energetics 27

Fig. 2.5. Reciprocal maximal yield of biomass on Gibbs energy, $1/Y_{GX}^m$, (kJ/C-mol X); (a) Heterotrophic growth (triangles, aerobic; squares, fermentation, X's denitrifying systems); C is the number of carbon atoms in the carbon source; γ is the degree of reduction of the carbon source. (b) Autotrophic growth (squares, electron donors where reversed electron transport [RET] is needed; circles, donors without RET). The lines represent Eqs 2.3a and 2.3b.

Equation 2.3a further shows that for heterotrophic growth $1/Y_{GX}^{m}$ ranges between about 200 and 1000 kJ/C-mol biomass, for the *C* sources explored, for which:

- 1. The number of carbon atoms in the carbon source ranges between C = 1 (e.g. CO₂, formate, methane) and C = 6 (e.g. glucose, citrate).
- 2. The degree of reduction of the C source γ ranges between 0 (for CO₂) and 8 (for CH₄).

Fig. 2.6. Comparison of energy needed for biomass synthesis on different carbon sources in mol ATP/C-mol biomass and in kJ/C-mol biomass ($1/\Upsilon_{GX}^m$). The numbers refer to the conventional biomass yield on ATP in gram biomass/mol ATP for different carbon sources.

Fig. 2.7. Comparison of measured and predicted biomass yield Y_{DX} (solid circles, fermentative; open circles, aerobic growth systems).

USEFUL REFERENCE SYSTEM TO SIMPLIFY GROWTH STOICHIOMETRIC AND ENERGETIC CALCULATIONS AND TO GAIN INSIGHT

Growth Reference System

In the preceding sections, the stoichiometric coefficients for the macrochemical reaction equation of biomass formation have been solved by setting up the proper conservation equations (C, H, O, N, charge, enthalpy) and the Gibbs energy balance. Although this is a sufficient and straightforward method, solving these linear equations remains unattractive and does not provide insight. To simplify these calculations and to gain insight, a special reference system has been designed — the growth reference system. This reference system is based on the observation that, in all chemotrophic growth systems, H_2O , HCO_3 , H^+ , and N source (mostly NH_4^+) occur as chemical compounds (see earlier section on growth system definition). In this special reference system each chemical compound is assigned three new numbers.

- γ The degree of reduction, which represents the electron content per C-mol (for organic compounds) or per mol (for inorganic compounds).
- $\Delta G_{\rm e}$ The Gibbs energy per electron present in the compound.
- $\Delta H_{\rm e}$ The enthalpy per electron present in the compound.

Clearly γ is a stoichiometric quantity and ΔG_e and ΔH_e are energetic parameters.

The reference system is designed such that for H₂O, HCO₃, H⁺ (pH = 7), N source for growth, HPO₄²⁻, NO₃, SO₄²⁻, and Fe³⁺, the values of γ , ΔG_e , and ΔH_e are zero. For ΔG_e , the biochemical standard conditions (1 mol/l, 1 bar, pH = 7298 K) are assumed, ΔH_e is calculated for CO₂ (gas) because of the large heat effect of HCO₃ (liq) \Leftrightarrow CO₂ (gas) transfer. The calculation of γ , ΔG_e , and ΔH_e follows from the reference redox half reaction where 1 C-mol of organic or 1 mol of inorganic compound is converted into the reference chemicals and a number of electrons. The number of electrons is by definition equal to γ (Example 2.5). From the Gibbs energy and enthalpy of this reference reaction, called ΔG_{ref} and ΔH_{ref} (calculated with the usual thermodynamic ΔG_{f}^{01} , and ΔH_{f}^{01} values, see Table 2.2), the values of ΔG_e and ΔH_e follow from equations 2.4a and 2.4b.

$$\Delta G_{e} = \frac{-\Delta G_{\text{ref}}}{\gamma} \qquad \dots (2.4a)$$

$$\Delta H_{\rm e} = \frac{-\Delta H_{\rm ref}}{\gamma} \qquad \dots (2.4b)$$

Example 2.5. The reference redox half reaction and calculation of γ and $\Delta G_{\rm e}$ for chemical compounds. For methanol the following reference redox half reaction can be set up according to the preceding definition by converting methanol to the reference compounds HCO₃, H₂O, and H⁺

$$-1CH_4O - 2H_2O + HCO_3^- + 7H^+ + 6e^-$$

In this reference redox half reaction, 1 C-mol methanol is converted and six electrons are produced, hence $\gamma = +6$ for methanol. Using the $\Delta G_{f^-}^{01}$ values from Table 2.2, the ΔG_{ref} for the methanol-reference redox half reaction follows as (standard conditions)

$$\Delta G_{\rm ref}^{01} = (7)(-39.87) + 1(-586.85) - (2)(-237.18) - (1)(-181.75) = -216.192 \text{ kJ}$$

This gives for the $\Delta G_{\rm e}^{01}$ value of methanol by Eq. 2.4a

$$\Delta G_e^{01} = -\left(\frac{-216.192}{6}\right) = +36.032 \text{ kJ/e-mol}$$

Obviously $\Delta H_{\rm e}$ can be calculated in a similar way by calculation of $\Delta H_{\rm ref}$.

For biomass the following redox half reaction can be set up, assuming that NH⁴₄ is the N source:

$$-1$$
CH_{1.8}O_{0.8}N_{0.2} $- 2.5$ H₂O $+$ HCO₃ $+ 0.2$ NH₄⁺ $+ 5$ H⁺ $+ 4.2e^{-1}$

Obviously, the degree of reduction for biomass is 4.2. The ΔG_{ref}^{01} value is obtained similarly as earlier for methanol. ΔG_{ref}^{01} can be calculated to be -142.128 kJ, giving

$$\Delta G_{\rm e} = -(-142.128)/(4.2) = +33.840 \text{ kJ/e-mol}$$

In a similar way as shown in Example 2.5 for each chemical compound, the values of γ , ΔG_e , and ΔH_e can be calculated for a large number of relevant compounds. Table 2.3 contains all relevant stoichiometric and energetic information for growth systems, clearly shown in the following. A point of attention is the finding (Table 2.3) that for biomass the degree of reduction depends on the N source used in the growth system. For example $\gamma = 4.2$ for NH⁺₄ and 5.8 for NO⁻₃ as N source. This is a consequence of the reference definition. The advantage is that the N source disappears from the stoichiometric calculations using γ , ΔG_e , and ΔH_e . The defined reference system is closely related to the generalised degree of reduction as defined by Roels and Erickson. It can be seen that for reduced organic compounds γ is between 0 and 8 (per C-mol). For inorganic compounds, such an upper limit does not exist (because there is not a normalisation per atom). For O₂, γ is negative (-4), which is logical for an acceptor. ΔG_e is related to the conventional redox potential of redox half reactions ($\Delta G_e^{01} = -FE_0^1$). ΔG_e is calculated using HCO⁻₃ (the most abundant form of carbon dioxide at pH = 7); ΔH_e has been calculated using CO₂ (gas) as reference, to take the large heat effect of HCO⁻₃ \rightarrow CO₂ (gas) into account.

Compound	γ Degree of reduction per C-mole for organic and per mole for inorganic compounds in electrons/(C)-mole	ΔG_c^{01} (kJ/e-mol)	ΔH_c^0 (kJ/e-mol)
Biomass/NH ₄ ⁺ – N source	+4.2	+33.480	-26.1
Biomass/NO3 - N source	+5.8	+14.820	-44.2
Biomass/N2-N source	+4.8	+32.948	-26.3
N source for growth HCO_3^-	0 0	0 0	0 0
Oxalate	+1	+52.522	-20
Formate	+2	+39.186	-15.50
Glyoxylate	+2	+48.229	-
Tartrate	+2.5	+39.577	_
Malonate	+2.67	+28.976	_
Fumarate	+3	+33.662	-31.60
Malate	+3	+33.354	-32.20
Citrate	+3	+32.282	-33.90
Pyruvate	+3.33	+34.129	-23.60
Succinate	+3.50	+28.405	-36.30

Table 2.3. Calculated γ , ΔG_{e}^{01} , and ΔH_{e}^{0} values for chemical compounds under standard conditions.

(Contd ...)

Contents at a Glance

Preface	V
SECTION I	
General Considerations	1-134
1. Environmental Biotechnology: A Review	3–11
2. Stoichiometry and Bacterial Energetics	12–56
3. Microbial Kinetics	57–78
4. Bioreactor Design	79–103
5. Microbes and Metabolism	104–134
SECTION II	
Environmental Biotechnology in Waste-water Treatment	135–258
6. Biological Treatment Fundamentals	137–162
7. Biological Treatment of Waste-water	163–219
8. Biological Treatment of Solid Wastes	220-243
9. Biomethanation Systems for Energy Recovery from Urban and Industrial	
Waste-waters	244–258
SECTION III	
Environmental Biotechnology in Soil and Landfill	259–296
10. Biological Soil Treatment	261-270
11. Life Cycle Assessment in Soil Bioremediation Planning	271–276
12. Slurry Decontamination Process	277-290
13. Immobilisation of Pesticides in Soil through Enzymatic Reactions	291–296
SECTION IV	
Applications of Environmental Biotechnology	297-415
14. Chemical Industries	299–365
15. Food Processing Industries	366–376
16. Metal and Mining Industries	377-415

viii Environmental Biotechnology

SECTION V	
Biodegradation and Biotransformation	417–511
17. Biotechnology and Bioremediation	419–447
18. Methods for Biocatalysis and Biotransformations	448-472
19. Bioremediation : An Advanced Strategy to Restore the Health of Aquaculture	
Pond Ecosystems	473-480
20. Biodegradation of Organic Pollutants	481–511
SECTION VI	
Special Topics	513-578
21. Environmental Monitoring	515-564
22. Microbial Biodiversity: Strategies for its Recovery	565–578
Glossary	579–587
References	589
Index	591–597

Contents

Pref	ace	V
Con	tents at a Glance	vii
	SECTION I	
Gen	eral Considerations	1–134
1.	Environmental Biotechnology: A Review	3–11
	Introduction	3
	Issues for Environmental Biotechnology	4
	International Issues	4
	National Issues	6
	Scope of Environmental Biotechnology	9
	Biotechnology for a Safer Environment	9
2.	Stoichiometry and Bacterial Energetics	12–56
	Introduction	12
	Standard Description of Microbial Growth Stoichiometry	13
	Measurement of Growth Stoichiometry	19
	Noncalculability of Stoichiometry	19
	III-Conditioned Calculability of Stoichiometry (Error Propagation)	19
	Redundancy of Measurements	20
	Mathematically Complete Analysis of Calculability, Analysis of Redundancy,	
	Error Diagnoses, and Data Reconciliation	21
	Effect of Growth Rate on Growth Stoichiometry	21
	Maintenance Energy Concept	21
	Measuring $m_{\rm D}$	23
	Other Maintenance Quantities	23
	Complete Growth Stoichiometry as a Function of Growth Rate	24
	Thermodynamically Based Method to Estimate Growth Stoichiometry	24
	Maintenance Gibbs Energy Need m _G	25
	Gibbs Energy for Growth	26
	Useful Reference System to Simplify Growth Stoichiometric and Energetic Calculations and to Gain Insight	31
	Growth Reference System	31
	Balance of Degree of Reduction, Atomic Degrees of Reduction and the COD Balance Energetics of Redox Couples, Catabolic Redox Reactions, RET and Energetic	34
	Regularities	36
	Mathematical Equations to Calculate the Growth Stoichiometry from Known	
	Gibbs Energy Dissipation	38

x Environmental Biotechnology

Deriving the Equations	38
Applications of the Mathematical Stoichiometry Relations	39
Growth Stoichiometry	44
Macrostoichiometry of Microbial Growth	44
Growth Yield: Catabolic and Conserved Substrates	46
Yield Variation as Dependent on the Chemical Nature of Organic Substrates	47
Variations in Yield from Energy Source, Maintenance Requirements	49
Experimental Determination of m	50
Maintenance Requirements and Wasteful Catabolism	51
Variation in Biomass Yield from Conserved Substrates	52
Microscopic Approach in Studies of Growth Stoichiometry	53

3. Microbial Kinetics

57-78

79-103

Introduction	57
Kinetic Modelling of Cell Growth	60
Model Structure and Model Complexity	60
Definitions of Rates and Yield Coefficients	61
Black Box Models	63
Linear Rate Equations	66
Effect of Temperature and pH	67
Mass Balances for Ideal Bioreactors	69
General Mass Balance Equations	69
Batch Reactor	71
Chemostat	72
Fed-batch Reactor	74

4. Bioreactor Design

Introduction	79
Classification of Biochemical Reactor	81
Mechanically Stirred Tank Reactor	81
Multicompartment Reactor or Cascade Reactor	82
Bubble Columns	84
Airlift Bioreactor Systems	84
Fluidised Beds	86
Packed Bed Columns	86
Bioreactor Design Features	87
Design For Sterile Operation	88
Sterilisation-in-place	88
Clean-in-place Considerations	90
Photobioreactors	91
Heat Transfer	93
Dimensional Analysis	97
Mass Transfer	98
Shear Effects in Culture	102

1 `on	tonto	v
CUL	tents	X

144 144

5.	Microbes and Metabolism	104–134
	Introduction	104
	Heterotrophic Microbial Metabolism	104
	Immobilisation, Degradation or Monitoring of Pollutants from a Biological Origin	105
	The Players	105
	Microbes	106
	Plants	107
	Metabolism	108
	Genetic Blueprint for Metabolic Capability	113
	Microbial Diversity	115
	Metabolic Pathways which are Particular Relevance to Environmental Biotechnology	/ 115
	Glycolysis	115
	TCA Cycle	116
	Glyoxalate Cycle	116
	Macromolecules—Description and Degradation	117
	Lipids	117
	Proteins	118
	Nucleic Acids	119
	Carbohydrates	119
	Production of Cellular Energy	120
	Fermentation and Respiration	120
	Fermentations Electron Transport Chainer Ovidative Phasehorelation and Mathemagenesis	121 121
	Electron Transport Chains: Oxidative Phosphorylation and Methanogenesis Photosynthesis and the Basis of Phytotechnology	121
	Light Reactions	120
	Photosystems in Eukaryotes and Cyanobacteria	127
	Photosystems in Purple and Green Bacteria	128
	Photosystem in a Halophile	120
	Dark Reactions	131
	C_3 and C_4 Plants	132
	Photorespiration	133
	Balancing the Light and the Dark Reactions in Eukaryotes and Cyanobacteria	133
	Nitrogen Cycle	134
	SECTION II	
Env	ironmental Biotechnology in Waste-water Treatment	135-258
6.	Biological Treatment Fundamentals	137–162
	Introduction	137
	Biochemical Reactions	137

Biochemical Reactions Basic Biological Processes Energy Relationships Micro-organisms Bacteria Fungi Algae

xii Environmental Biotechnology

	Protozoa	145
	Rotifers	145
	Crustacea	145
	Biochemical Transformations	145
	Carbon	146
	Nitrogen	146
	Phosphorus	147
	Sulphur	147
	Food and Mass	148
	Oxygen	148
	pH	148
	Nutrient Needs	148
	Oxygen Demand Measurements	149
	Biochemical Oxygen Demand	149
	Chemical Oxygen Demand	151
	Total Organic Carbon	152
	Total Oxygen Demand	153
	Temperature	153
	General	153
	Process Equations	155
	General	155
	Continuous Growth	155
	Solids Recycle	160
	Application to Agricultural Wastes	161
		1/2 310
7.	Biological Treatment of Waste-water	163–219
7.	Biological Treatment of Waste-water Introduction	163–219 163
7.		
7.	Introduction	163
7.	Introduction Environmental Requirements	163 163
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability	163 163 166
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism	163 163 166 166 169 171
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability	163 163 166 166 169 171 176
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems	163 163 166 166 169 171 176 179
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics	163 163 166 166 169 171 176 179 179
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects	163 163 166 166 169 171 176 179 179 183
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics	163 163 166 166 169 171 176 179 179
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects	163 163 166 166 169 171 176 179 179 183
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects	163 163 166 166 169 171 176 179 179 179 183 184
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects Reaction Rate Determination	163 163 166 166 169 171 176 179 179 183 184 184
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects Reaction Rate Determination System Limitations Biomass Production Oxygen Requirements	163 163 166 166 169 171 176 179 179 183 184 184 184
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects Reaction Rate Determination System Limitations Biomass Production Oxygen Requirements Loading Factor	163 163 166 166 169 171 176 179 179 183 184 184 184 184 185 186 188
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects Reaction Rate Determination System Limitations Biomass Production Oxygen Requirements Loading Factor Cell Residence Time or Sludge Age	163 163 166 166 169 171 176 179 179 179 183 184 184 184 185 186 188
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects Reaction Rate Determination System Limitations Biomass Production Oxygen Requirements Loading Factor Cell Residence Time or Sludge Age Nutrient Requirements	163 163 166 166 169 171 176 179 179 183 184 184 184 184 185 186 188 188 188
7.	Introduction Environmental Requirements Microbial Metabolism and Biodegradability Protista Growth Energy Metabolism Biodegradability Activated Sludge Reaction Systems Flow Schemes and Reaction Kinetics Temperature Effects Feed Concentration Effects Reaction Rate Determination System Limitations Biomass Production Oxygen Requirements Loading Factor Cell Residence Time or Sludge Age	163 163 166 166 169 171 176 179 179 183 184 184 184 184 185 186 188 188

	Contents xiii
Power and Mixing	193
Aeration Equipment	193
Clarification/Thickening	195
Thickener Analysis	195
Settling Problems	197
Clarification Equipment	198
Oxygenated Activated Sludge and other Modifications	198
Direct Oxygenation	198
Other Process Modifications	200
Aerated Stabilisation	201
Aerated Stabilisation Applications	201
System Design	201
Fixed Film Systems	203
Applications	203
Trickling Filters	203
Rotating Biological Contactors and other Modifications	206
Anaerobic Systems	207
Anaerobic Treatment Basics	207
Anaerobic Reactors	208
Stabilisation Ponds	211
Pond Applications	211
Design of Ponds	212
Pond Upgrading	212
Natural Systems	213
Biological Experimental Techniques	214
General Approach	214
Equipment	214
Analysis	217
Engineering Judgment	217
Appendix 7.1	217
Biological Terms and Notation	217
8. Biological Treatment of Solid Wastes	220–243
Introduction	220
Biological Treatment Objectives	221
Pretreatment for Disposal	221
Valorisation	222
Biological Treatment Processes	223
Pretreatment	223
Aerobic Processing: Composting	224
Anaerobic Processing: Biogasification	227
Compost Markets	229
Compost Standards	231
Environmental Impacts: Input-Output Analysis	233
Defining the System Boundaries	233
Inputs	233
	255

	Outputs	235
	Other Considerations	241
	Economic Costs	243
9.	Biomethanation Systems for Energy Recovery from Urban and Industrial	
	Waste-waters	244-258
	Introduction	244
	Principles of Biomethanation	244
	Process Parameters	246
	Design of Biomethanation Reactors	248
	SECTION III	
Envi	ronmental Biotechnology in Soil and Landfill	259–296
10.	Biological Soil Treatment	261-270
	Introduction	261
	Fundamentals	261
	Necessary Preliminary Investigations	261
	Degradability of Contaminants	262
	Bioavailability	262
	Adjustability of the Biological and Physico-Chemical Conditions for Biological	
	Degradation in the Soil	263
	Bioremediation Techniques	264
	Ex Situ Processes	264
	In Situ Methods	267
	Re-use of the Soil	269
	Bioassays for Soils	269
	Perspectives	269
	Development Trends	269
	Future Perspectives	270
11.	Life Cycle Assessment in Soil Bioremediation Planning	271–276
	Introduction	271
	Life Cycle Assessment in Soil Remediation Planning	271
	Environmental Balancing of Soil Remediation Measures Method	272
	REC Method	272
	Environmental/Economic Evaluation and Optimising of Contaminated Sites	272
	Remediation Method	273 274
	General Comparison of the Three Software Tools Comparison of the Life Cycle Assessment Approaches	274
10		
12.	Slurry Decontamination Process	277-290
	Introduction	277
	Recycling of Contaminated Solid Waste	277

		Contents	<u> </u>
	Characteristics of Contaminated Soil, Sediments and Sludges		278
	Classification of Treatment Technologies		278
	In Situ Remediation		279
	Constructed Natural Systems/Simple Technologies		279
	Ex Situ Processing		280
	Bioreactors		280
	Slurry Bioreactors		281
	Solid State Bioreactors		281
	Configuration of Ex Situ Bioprocesses		282
	Ex Situ Slurry Bioprocess		282
	Slurry Decontamination Process		283
	Microbial Breakdown in the SDP		285
	SDP-Improvements: Froth Flotation in the DITS-Reactor		286
	Scale-up		287
	Process Economics		287
	Extensive (Low Cost) Treatment of the Fines		288
	Environmental Efficiency of the SDP		289
13.	Immobilisation of Pesticides in Soil through Enzymatic Reactions	291-	-296
	Introduction		291
	Reactions between Pesticides and Humic Material		292
	Covalent Binding by Soil Micro-organisms		292
	Oxidative Coupling		292
	Enzymes and their Origin		292
	Peroxidases		293
	Polyphenol Oxidases		293
	Function of Enzymes in Binding Reactions between Pesticides and Humic Materi	al	293
	NMR Spectroscopy to Determine the Type of Binding of Pesticides in the Soil		293
	Stability and Release of Bound Pesticides		295
	Enzymes as Decontaminating Agents		295
	SECTION IV		
Appl	lications of Environmental Biotechnology	297.	-415
	v GV		

14.	Chemical Industries	299–365
	Introduction	299
	Treatment of Waste from Organic Chemical Industries	300
	Biotreatment	303
	Phytoremediation	306
	Gaseous Pollutants and Volatile Organics	307
	Physical Methods	307
	Biotreatment Processes	308
	Bioscrubber	311
	Membrane Bioreactor	311

	Suspended Growth Reactors	313
	Treatment of Inorganic Gases	313
	Petroleum Refinery and Petrochemicals	315
	Bioremediation	315
	Phytoremediation	323
	Reactors	324
	Pulp and Paper	325
	Bioprocesses	326
	Bioreactors	329
	Sugar and Distillery	331
	Alcohol Distillery Effluent	332
	Distillery Waste	333
	Leather and Tannery	336
	Biochemical Treatment	338
	Chromium	340
	Paint and Dyes	342
	Paint	342
	Dyes	346
	Pesticides and Insecticides	348
	Biopesticides	348
	Propellant and Explosives	350
	Toxicity and Occurrence	351
	Bioremediation	352
	Nuclear and Radioactive Pollution	354
	Waste Management	355
	Bioremediation	356
	Phytoremediation	358
	Composting	359
	Pharmaceuticals	359
	Effect on Plants	362
	Pharmaceutical Industry Effluent	362
	Biodegradation of Pharmaceutical Products	364
15.	Food Processing Industries	366–376
	Introduction	366
	Nature of Effluents (Wastes) from Food Processing Industries	367
	Biological Treatment Methods for Food Industry	368
	Dairy Industry	368
	Starch Industries	370
	Corn Starch	370
	Wheat Starch	370
	Potato Starch	370
	Vegetable Oil Industries	371
	Vegetable Canning Wastes	373
	Slaughterhouses	373

	Cont	ents	xvii
	Meat Processing Industry		374
	General Treatment Methods		375
16.	Metal and Mining Industries	377	-415
	Introduction		377
	Metal Processing, Semiconductor and Cyanide		378
	Metal Processing		378
	Semiconductor		385
	Cyanide		392
	Toxic Metal Resistances and Potential for Bioremediation		396
	Mercury		396
	Arsenic		398
	Silver		399
	Microbial Processes for Immobilisation of Metals and their Potential for Environmental		
	Bioremediation		400
	Solubilisation		401
	Immobilisation		403
	Metal Precipitation		404
	Transformations		408
	Application of Micro-organisms to the Decontamination of Heavy Metal-bearing Wastes		411
	Biomineralisation		411
	Acinetobacter		411
	Uranyl Phosphate Solid Waste		411
	Metal Cations, Anions of High Valence		413 414
	Sulphate Reducing Bacteria		414
	SECTION V		
Biod	legradation and Biotransformation	417	-511
17.	Biotechnology and Bioremediation	419	-447
	Introduction		419
	Scope and Characteristics of Contaminants		422
	Organic Compounds		422
	Mixtures of Organic Compounds		423
	Mixtures Created by Codisposal		426
	Biodegradability		429
	Contaminant Availability for Biodegradation		430
	Sorption to Surfaces		430
	Formation of a Nonaqueous Phase		431
	Solubility		431
	Treatability Studies		433
	Engineering Strategies for Bioremediation		435
	Site Characterisation		435
	Engineered In Situ Bioremediation		435
	Bioventing		436

	Intrinsic In Situ Bioremediation and Natural Attenuation	439
	In Situ Biobarriers	439
	Ex Situ Remediation	440
	Phytoremediation	441
	Bioremediation of Gas-Phase VOCs	443
	Evaluating Bioremediation	444
18.	Methods for Biocatalysis and Biotransformations	448–472
	Introduction	448
	Concept and General Features of Biotransformations	449
	Procedures	450
	Taxonomy	451
	Biocatalyst Acquisition and Preservation	451
	Growth Fundamentals	451
	Measurement of Cell Mass	452
	Forms of the Biocatalyst	452
	Growing Cultures	452
	Resting Cells	453
	Dried Cells	453
	Permeabilised Cells	454 454
	Isolated Enzymes and Cell-Free Preparations Immobilised Systems	454
	Techniques	455
	Media	456
	Chemically Defined Media	450
	Semidefined Media	457
	Complex Media	457
	Reactions in Solvent Mixtures	458
	Addition of Organic Compounds to Reaction Mixtures	459
	Organic Carrier Solvents	460
	Timing of Substrate Additions	461
	Equipment	462
	Incubators and Shakers	462
	Sterilisers (Autoclaves)	463
	Fermenters	463
	Microscale Conversions	463
	Automation	463
	Standardisation, Quality Control, and Quality Assurance	464
	Thin-Layer Chromatography (TLC)	464
	Gas Chromatography (GC)	464
	High Performance Liquid Chromatography (HPLC)	465
	Mass Spectrometry (MS)	465
	Optimisation Procedures	466
	Environmental Parameters	467
	Nutritional Parameters	467
	Examples of Typical Bioconversion Procedures: Pulling it All Together	468
	Aerobic Screening	468

		Contents	xix
	Microscale Screening of Resting Cells		469
	Permeabilised Cells		469
	Reductions with Yeast		469
	Catalysis with Dried Cells		470
	Use of Metabolic Inhibitors		470
	Blocked Mutants		470
	Solid Adsorbents		470
	Practical Application of Biodegradation in Aromatic Desulphuration		471
	Catalysis with Purified Enzymes		471
	B-12 Synthesis by a Multienzyme Packed Column		471
	Enablement Technologies		472
19.	Bioremediatio: An Advanced Strategy to Restore the Health of Aquaculture		
	Pond Ecosystems	473-	-480
	Introduction		473
	Bioremediation—Concept		475
	Probiotics		475
	Enzymes		477
	Nitrogen Cycle		477
	Conclusion		479
20.	Biodegradation of Organic Pollutants	481	-511
	Introduction		481
	Aerobic vs Anaerobic Degradation		482
	Aerobic Degradation		482
	Anaerobic Degradation		482
	Sequential Degradation		484
	Biodegradable Organic Pollutants		484
	Determination of Biodegradability		484
	Bacterial Succession in the Polluted Environment		485
	Measurement of Biodegradability		486
	Testing for Biodegradability		486
	Surfaces for Biodegradation		487
	Principles of Bacterial Degradation		487
	Decomposition of Organic Pollutants in Ecosystems		487
	Degradation of Polymers		488
	Biodegradation		489
	Aerobic Bacterial Degradation of Biopolymers		495
	Basic Biology, Mass, and Energy Balance of Aerobic Biopolymer Degradation		495
	Growth Associated Degradation of Carbohydrates		495
	Growth Associated Degradation of Proteins		496
	Aerobic Degradation of Hydrocarbons		496
	Anaerobic Conditions		505
	Bioremediation		506
	Addition of Oxygen or Other Gases		509

Nutrient Addition	509
Stimulation of Anaerobic Degradation Using Alternative Electron Acceptors	510
Addition of Surfactants	510
Addition of Micro-organisms or DNA	510
SECTION VI	
Special Topics	513-578

21.	Environmental Monitoring	515-564
	Introduction	515
	Sampling	516
	Land (Site) Sampling	516
	Water Sampling	517
	Air Sampling	517
	Analysis	517
	Physical Analysis	518
	Chemical Analysis	518
	Spectrophotometric Methods	518
	Gas Chromatography	524
	Mass Spectrometry	527
	Analysis of Water Samples	528
	Atmospheric Monitoring	532
	Sampling	533
	Methods of Analysis	535
	Analysis of Sulphur Dioxide	536
	Nitrogen Oxides	537
	Analysis of Oxidants	538
	Analysis of Carbon Monoxide	538
	Analysis of Hydrocarbons	540
	Analysis of Particulate Matter	540
	Direct Spectrophotometric Analysis of Gaseous Air Pollutants	542
	Biological Analysis	543
	Microbiological Determination of Cell Numbers	543
	Recombinant DNA Technology	549
	Proteomics	550
	Determination of Biodegradable Organic Material	552
	Monitoring Pollution	553
	Bioindicators	553
	Biomarkers	554
	Biochemical Indicators	554
	Immunochemistry	556
	Genetic Indicators	556
	Toxicity Testing Using Biological Material	557
	Toxicity Testing Using Plants and Algae	558
	Luminescent Organisms	558
	Ames Test	558
	Molecular Biology Biomarkers	559

	Contents xxi
Biosensors for Environmental Monitoring	559
Methods of Biomonitoring	560
Need of Biosensors in Environmental Monitoring	560
What are Biosensors?	561
Applications	562
2. Microbial Biodiversity: Strategies for its Recovery	565–578
Introduction	565
Microbial Diversity on Earth	565
Extent of Microbial Diversity on Earth	565
Importance of Microbial Diversity	566
The Problem	567
Where is New Diversity to be Found?	567
Biodiversity of Culturable Bacteria	569
What Level of Bacterial Diversity Matters?	569
Isolation Strategies	571
Has the Isolated Strain Been Seen Before?	574
Fungal Biodiversity: Isolation and Identification	575
Recovering Biodiversity Using Environment DNA	575
Accessing Uncultivated Microbes	575
Environmental Genomics	576
Screening Environmental Libraries	577
Barriers and Challenges	578
Glossary	579–587
References	589
Index	591–597