Hence, the general solution of the complete equation is

$$y_x = C_1 3^x + C_2 2^x + 1$$

When $y_0 = 1$ and $y_1 = -1$, we get

$$y_0 = C_1 + C_2 + 1 = 1$$

$$y_1 = 3C_1 + 2C_2 + 1 = -1$$

We get $C_1 = -2$ and $C_2 = 2$

Hence, the solution is

$$y_r = -2.3^x + 2^{x+1} + 1.$$

Alternative Method: To find particular solution of the complete equation, we will use hit and trial method. Let $y_x^* = A$ be the solution of the given equation, we get

$$A - 5A + 6A = 2$$

$$A = 1$$

$$y_x^* = A = 1$$

Example 6. Solution.

Solve
$$\Delta y_x + \Delta^2 y_x = \sin x$$
.

The given equation in symbolic form is

$$\{(E-1) + (E-1)^2\}y_x = \sin x$$

 $(E^2 - E)y_x = \sin x$

$$(E-1)y_{x+1} = \sin x$$

The auxiliary equation is

$$m-1=0, m=1$$

Then, general solution is $y_x = C_1 1^x = C_1$

Particular solution of $\sin x = \frac{1}{E - 1} \sin x$

= imaginary part of
$$\frac{1}{E-1}e^{tx}$$

= imaginary part of
$$\frac{1}{E-1} (e^i)^x$$

= imaginary part of
$$\frac{e^{ix}}{e^i - 1}$$

= imaginary part of
$$\frac{e^{ix}(e^{-i}-1)}{(e^{i}-1)(e^{-i}-1)}$$

= imaginary part of
$$\frac{e^{i(x-1)} - e^{ix}}{1 - (e^i + e^{-i}) + 1}$$

$$=\frac{\sin(x-1)-\sin x}{2(1-\cos 1)}$$

Hence, the general solution is

$$y_{x+1} = C_1 + \frac{\sin(x-1) - \sin x}{2(1 - \cos 1)}$$
$$y_x = C_1 + \frac{\sin(x-2) - \sin(x-1)}{2(1\sin 1)}$$

Example 7.

Solve
$$y_{x+2} + y_x = \sin x \frac{\pi}{2}$$
. ...(1)

Solution.

 \Rightarrow

The auxiliary equation of the given equation is

$$m^2 + 1 = 0$$
$$m = \pm 1$$

$$\Rightarrow m = \cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}$$
The general solution of the re-

The general solution of the reduced equation is

$$y_x = C_1 \cos\left(\frac{x\pi}{2} + C_2\right)$$

For particular solution, we will use hit and trial method. Let

$$y_x^* = A\sin\frac{x\pi}{2} + B\sin\frac{x\pi}{2}$$

Substituting this value in equation (1), we get

$$A\sin(x+2)\frac{\pi}{2} + B\sin(x+2)\frac{\pi}{2}$$

$$+A\sin\frac{\pi x}{2} + B\sin\frac{\pi x}{2} = \sin\frac{\pi x}{2}$$

$$-A\sin\frac{\pi x}{2} - B\sin\frac{\pi x}{2} + A\sin\frac{\pi x}{2}$$

$$+B\sin\frac{\pi x}{2} = \sin\frac{\pi x}{2}$$

$$0 = \sin \frac{\pi x}{2}$$

$$y_x^* = A \sin \frac{x\pi}{2} + B \cos \frac{x\pi}{2}$$
 fails.

Now, consider

$$y_x^* = Ax \sin \frac{x\pi}{2} + Bx \cos \frac{x\pi}{2}$$
 substituting this

in equation (1), we get

$$A(x+2)\sin(x+2)\frac{\pi}{2} + B(x+2)\cos(x+2)\frac{\pi}{2}$$

$$-Ax\sin\frac{x\pi}{2} + Bx\cos\frac{x\pi}{2} = \sin\frac{x\pi}{2}$$

$$-A(x+2)\sin\frac{x\pi}{2} - B(x+2)\cos\frac{x\pi}{2} + Ax\sin\frac{x\pi}{2}$$

$$+Bx\sin\frac{x\pi}{2}=\sin\frac{x\pi}{2}$$

$$\sin\frac{x\pi}{2}(-2A) + \cos\frac{x\pi}{2}(-2B) = \sin\frac{x\pi}{2}$$

On comparing the coefficient of

$$\cos \frac{x\pi}{2}$$
 and $\sin \frac{x\pi}{2}$, we get

$$-2A = 1, -2B = 0$$

$$A = -\frac{1}{2}, B = 0$$

Hence, the general solution of the complete equation is

$$y_x = 4\cos\left(\frac{x\pi}{2} + C_2\right) - \frac{1}{2}x\sin\frac{x\pi}{2}.$$

Solve
$$y_{x+2} - 7y_{x+1} - 8y_x = (x^2 - x)2^x$$
.

The auxiliary equation is

Example 8.

Solution.

$$m^2 - 7m - 8 = 0$$

$$\Rightarrow$$
 $m = 8, -1$

$$y_2 = y_1 + hf(x_1, y_1) = 1.10000 + 0.1[(1.10000)^2$$

$$-(0.1)^2] = 1.22000$$

$$y_3 = y_2 + hf(x_2, y_2) = 1.22000 + 0.1[(1.22)^2$$

$$-(0.2)^2] = 1.22000 - 0.14484 = 1.36484$$

$$y_4 = y_3 + hf(x_3, y_3) = 1.36484 + 0.1[(1.36484)^2$$

$$-(0.3)^2] = 1.54212$$

$$y_5 = y_4 + hf(x_4, y_4) = 1.54212 + 0.1[(1.54212)^2$$

$$-(0.4)^2] = 1.76393$$
Hence, the value of y at $x = 0.5$ is 1.76393 .

Example 3. Find the solution of differential equation $\frac{dy}{dx} = xy$ with $y(1) = 5$ in the interval $[1, 1.5]$ using $h = 0.1$.

Solution. As per given, we have $x_1 = 1, y_0 = 5, f(x, y) = xy$
Using Euler's method
$$y_n + 1 = y_n + hf(x_n, y_n)$$
By considering $n = 0, 1, 2, ...$ in succession, we get
For $n = 0$

$$y_1 = y_0 + hf(x_0, y_0) = 5 + 0.1[1 \times 5] = 5.5$$
For $n = 1$

$$y_2 = y_1 + hf(x_1, y_1) = 5.5 + 0.1[1.1 \times 5.5]$$

$$= 6.105$$
For $n = 2$

$$y_3 = y_2 + hf(x_2, y_2)$$

$$= 6.105 + 0.1[1.2 \times 6.105] = 6.838$$
For $n = 3$

$$y_4 = y_3 + hf(x_3, y_3)$$

$$= 6.838 + 0.1[1.3 \times 6.838] = 7.727$$
For $n = 4$

$$y_5 = y_4 + hf(x_4, y_4)$$

$$= 7.727 + 0.1[1.4 \times 7.727] = 8.809$$
Hence, the value of is 8.809 .

Example 4. Find the solution of $\frac{dy}{dx} = x^2 + y^2, y(0) = 0$ in the range $0 < x < 0.5$ using Euler's method

the range $0 \le x \le 0.5$, using Euler's method.

Solution. We have
$$x_0 = 0$$
, $y_0 = 0$, $h = 0.1$ and $0 \le x \le 0.5$
∴ $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, $x_4 = 0.4$,
 $x_5 = 0.5$
Also $f(x, y) = x^2 + y^2$
⇒ $f(x_0, y_0) = f(0, 0) = 0$
∴ $y_1 = y_0 + hf(x_0, y_0) = 0 + 0.1 \times 0$
 $= 0$
Now $f(x_1, y_1) = f(0.1, 0) = (0.1)^2 + 0^2 = 0.01$
 $y_2 = y_1 + hf(x_1, y_1) = 0 + 0.1(0.01)$
 $= 0.001$

$$f(x_2, y_2) = f(0.2, 0.001) = (0.2)^2 + (0.001)^2$$

$$= 0.040001$$

$$\therefore y_3 = y_2 + hf(x_2, y_2)$$

$$= 0.001 + 0.1(0.040001)$$

$$= 0.005$$

$$\text{Now } f(x_3, y_3) = f(0.3, 0.005)$$

$$= (0.3)^2 + (0.005)^2$$

$$= 0.090025$$

$$\Rightarrow y_4 = y_3 + hf(x_3, y_3)$$

$$= 0.005 + 0.1(0.090025) = 0.014$$

$$\text{Now } f(x_4, y_4) = f(0.4, 0.014) = (0.4)^2 + (0.014)^2$$

$$= 0.160196$$

$$\Rightarrow y_5 = y_4 + hf(x_4, y_4)$$

$$= 0.014 + 0.1(0.160196)$$

$$= 0.03$$
Further
$$f(x_5, y_5) = f(0.5, 0.03)$$

$$= (0.5)^2 + (0.03)^2 = 0.2509$$

$$\Rightarrow y_6 = y_5 + hf(x_5, y_5)$$

$$= 0.03 + 0.1(0.2509) = 0.055$$
Here $y(0.1) = 0.001, y(0.2) = 0.005,$

$$y(0.03) = 0.055, y(0.4) = 0.03,$$

$$y(0.5) = 0.055.$$
Apply Euler's method to initial value problem $\frac{dy}{dx} = x + y, y(0) = 0, \text{ when } x = 0 \text{ to } x = 1.0$

$$taking h = 0.2. \qquad \text{(Mumbai-2005, Rohtak-2003)}$$
We have $h = 0.2, x_0 = 0, x_1 = 0.2, x_2 = 0.4,$

$$x_3 = 0.6, x_4 = 0.8, x_5 = 1.0.$$
Also, $f(x, y) = x + y$
By Euler's method,
$$y_{n+1} = y_n + hf(x_n, y_n)$$
and, $f(x_0, y_0) = f(0, 0) = 0 + 0 = 0$

$$y_1 = y_0 + hf(x_0, y_0) = 0 + 0.2(0) = 0$$

Now, $f(x_1, y_1) = f(0.2, 0) = 0.2 + 0 = 0.2$

Now, $f(x_2, y_2) = f(0.4, 0.04) = 0.4 + 0.04$

 $y_3 = y_2 + hf(x_2, y_2) = 0.04 + 0.2(0.44) = 0.128$

 $f(x_3, y_3) = f(0.6, 0.128) = 0.6 + 0.128 = 0.728$

 $y_4 = y_3 + hf(x_3, y_3) = 0.128 + 0.2(0.728)$

= 0.04

= 0.2736

Now.

 $y_2 = y_1 + hf(x_1, y_1) = 0 + 0.2(0.2)$

Example 5.

Solution.

$$y^{iv} = F_3 + f_v F_2 + 3F_1 (f_{xv} + f f_{vv}) + f_v^2 F_1$$

Putting these values in (7), we get

$$y(x+h) = y_x + hf + \frac{h^2}{2}F_1 + \frac{1}{6}h^3(F_2 + f_y F_1) + \frac{1}{24}h^4[F_3 + f_y F_2 + 3(f_{xy} + ff_{yy})F_1 + f_y^2 F_1] + \dots$$
 ...(10)

Using the above notation and the Taylor's theorems, we get

 $k_{1} = hf$ [where f = f(x, y)] $k_{2} = h \left[f + mhF_{1} + \frac{1}{2}m^{2}h^{2}F_{2} + \frac{1}{6}m^{3}h^{3}F_{3} + \dots \right]$ $k_{3} = h \left[f + mhF_{1} + \frac{1}{2}h^{2}(n^{2}F_{2} + 2mn + f_{y}F_{1}) + \frac{1}{6}h^{3}\{n^{3}F_{3} + 3m^{2}nf_{y}F_{2} + 6mn^{2}(f_{xy} + ff_{yy})F_{1}\} = \dots \right]$

and

$$k_{3} = h \left[f + mhF_{1} + \frac{1}{2}h^{2}(n^{2}F_{2} + 2mn + f_{y}F_{1}) + \frac{1}{6}h^{3}\{n^{3}F_{3} + 3m^{2}nf_{y}F_{2} + 6mn^{2}(f_{xy} + ff_{yy})F_{1}\} = \dots \right]$$

$$k_{4} = h \left[f + phF_{1} + \frac{1}{2}h^{2}(p^{2}F_{2} + 2npf_{y}F_{1}) + \frac{1}{6}h^{3}\{p^{3}F_{3} + 3n^{2}pf_{y}F_{2} + 6np^{2}(f_{xy} + ff_{yy})F_{1} + 6mnpf_{y}^{2}F_{1}\} + \dots \right]$$

Substituting these values in (8), we get

$$y(x+h) = y_{(x)} + (a+b+c+d)hf + (bm+cn+dp)h^2F_1 + \frac{1}{2}(bm^2+cn^2+dp^2).$$

$$h^2 f_y F_1 + \frac{1}{2} (cm^2 n + dn^2 p) h^4 f_y F_2 + (cmn^2 + dnp^2) h^4 (f_{xy} + f f_{yy}) F_1 + dmnph^4 f_y^2 F_1 + O(h^5) \qquad ...(11)$$

Equating this with (10), we get

$$a+b+c+d=1$$
, $cmn+dnp=\frac{1}{6}$
 $bm+cn+dp=\frac{1}{2}$, $cmn^2+dnp^2=\frac{1}{8}$
 $bm^2+cn^2+dp^2=\frac{1}{3}$, $cm^2n+dn^2p=\frac{1}{12}$
 $bm^3+cn^3+dp^3=\frac{1}{4}$, $dmnp=\frac{1}{24}$

These are eight equations in seven unknowns; A classical solution to these eight equations is

$$m = n = \frac{1}{2}, p = 1, a = d = \frac{1}{6}, b = c = \frac{1}{3}$$

Putting these values in (7) and (8), the Runge-Kutta formulae reduces to

$$k_{1} = hf(x, y)$$

$$k_{2} = hf\left(x + \frac{h}{2}, y + \frac{1}{2}k_{1}\right)$$

$$k_{3} = hf\left(x + \frac{h}{2}, y + \frac{1}{2}k_{2}\right)$$

$$k_{4} = hf(x + h, y + k_{3})$$
...(12)

and

$$y(x+h) = y_{(x)} + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

From this formula, we have

$$y_{1} = y(x_{0} + h) = y_{0} + \frac{1}{6} [k_{1} + 2(k_{2} + k_{3}) + k_{4}]$$

$$k_{1} = hf(x_{0}, y_{0})$$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$$
...(13)

where

REMARK

• $0(h^2)$ means 'terms containing second and higher power of h and is read as order of h^2 .'