
Analysis of Algorithm Complexity

Algorithms usually possess the following
qualities and capabilities:

• Easily modifiable if necessary.
• They are correct for clearly defined solution.
• Require less computer time, storage and

peripherals, i.e. they are more economical.
• They are documented well enough to be

used by others who do not have a
detailed knowledge of the inner working.

• The solution is pleasing and satisfying
to its designer and user.

• They are able to be used as a sub­
procedure for other problems.

Two or more algorithms can solve the same
problem in different ways. So, quantitative
measures are valuable in that they provide a
way of comparing the performance of two or
more algorithms that are intended to solve the
same problem. This is an important step
because the use of an algorithm that is more
efficient in terms of time, resources required,
can save time and money.

Computational Algorithm Complexity

We can characterize an algorithm's per­
formance in terms of the size (usually n) of
the problem being solved. More computing
resources are needed to solve larger problems
in the same class. Table 3.1 illustrates the
comparative cost of solving the problem for a
range of n values.

Table 3.1 shows that only very small
problems can be solved with an algorithm that
exhibit exponential behavior. An exponential
problem with n = 100 would take immeasurably
longer time. At the other extreme, for an
algorithm with logarithmic dependency
would merely take much less time (13 steps
in case of log2n in Table 3.1). These examples

Table 3.1

Log2n n nlog2n n2 n3
2"

1 2 2 4 8 4

3.322 10 33.22 102 103 >103

6.644 102 664.4 104 106 >>1025

9.966 103 9966.0 106 109 >>10250

13.287 104 132877 108 1012 »102500

Fundamental of Programming ++w

emphasize the importance of the way in which
algorithms behave as a function of the
problem size. Analysis of an algorithm also
provides the theoretical model of the inherent
computational complexity of a particular
problem.

To decide how to characterize the behavior
of an algorithm as a function of size of the
problem n, we must study the mechanism
very carefully to decide just what constitutes
the dominant mechanism. It may be the
number of times a particular expression is
evaluated, or the number of comparisons or
exchanges that must be made as n grows. For
example, comparisons, exchanges, and moves
count most in sorting algorithm. The number
of comparisons usually dominates so we use
comparisons in the computational model for
sorting algorithms.

The Order of Notation

The 0-notation gives an upper bound to a
function within a constant factor. For a given
function g (n), we denote by O (g (n)) the set
of functions. 0 (g (n)) = if (n) : there exist
positive constants c and nO, such that O <= J
(n) <= cg (n) for all n >= nO }

Using the 0-notation, we can often describe
the running time of an algorithm merely by
inspecting the algorithm's overall structure. For
example, a double nested loop structure of the
following algorithm immediately yields O (n2)
upper bound on the worst case running time.
for i=O to n

for j=O to n
print i,j
nextj
next i

What we mean by saying "the running time
is O (n2)" is that the worst case runnin� time
(which is a function of n) is O (n). Or
equivalently, no matter what the particular
input of size n is chosen for each value of n,
the running time on that set of inputs is O (n2).

Rules for Using the Big-0 Notation

Big-0 bounds, because they ignore constants,
usually allow for very simple expression for
the running time bounds. Below are some

Computer Concepts and Programming in C

program development life cycle with 9. Draw a flow chart to input 10 numbers
suitable example. and print the maximum number between

2. Define the term compiler, interpreter, them.
loader and Linker with suitable example. 10. Write the algorithm to input 10 numbers

3. Define the term programming language and print the maximum number between
and also provide the classification of pro- them.
gramming language with suitable example. 11. Write an algorithm and draw a flow

4. What do you mean by flow chart and chart to input 10 numbers and print the
define all the symbols used in flow chart sum of that numbers.
and give one example?

12. Write an algorithm and draw a flow chart
5. Define the term structured programming to input a number and check whether that

with suitable example. Also define the number is prime or not.
various constructs used in structured
programming. 13. Write an algorithm and draw a flow chart

6. Differentiate between higher level to input a number and check whether that

programming language and lower level num�er is palindrome or not.

programming language with suitable 14. Write an algorithm and draw a flowchart
example. to input a number and check whether that

7. Describe top-down and bottom-up number is Armstrong or not.
approaches of system development. 15. Write an algorithm and draw a flowchart

8. What do you understand by efficiency to input a number and print the reverse
of algorithm? How can it be evaluated? of that number.

Result from Step 3: -0100
To verify, note that 9· -13 = - 4

Subtracting Using 2's Complement

For subtracting a smaller number from a
larger number, the 2's complement method is
as follows:

l. Determine the 2's complement of the
smaller number

2. Add the 2's complement to the larger
number

3. Discard the final carry (there is always
one in this case).

Example
11001 -10011

Solution

Result from Step 1: 01101
Result from Step 2: 100110
Result from Step 3: 00110
Again, to verify, note that 25 -19 = 6

For subtracting a larger number from a
smaller number, the 2's complement method
is as follows:

1. Determine the 2's complement of the
larger number.

2 . Add the 2's complement to the smaller
number.

3. There is no carry of the left-most column.
The result is in 2's complement form and
is negative.

4. Change the sign and take the 2's com­
plement of the result to get the final
answer.

Example
1001-1101

Solution

Result from Step 1: 0011
Result from Step 2: 1100
Result from Step 3: -0100
Again to verify, note that 9 -13 = -4

Binary Multiplication

Multiplication in the binary system works the
same way as in the decimal system:

• 1*1=1
• 1*0=0
• 0*1=0

Example
101
* 11

101
1010

1111

Number System HMM

Note that multiplying by two i s extremely easy.
To multiply by two, just add up a O on the end.

Binary Division

Binary division follows the same rules as in
decimal division. For the sake of simplicity,
throw away the remainder.
Example

111011/11
10011 r 10

11)111011
-11

101
-11

101
11

10

OCTAL NUMBER SYSTEM

Although this was once a democratic number
base, particularly in the Digital Equipment
Corporation PDP/8 and other old computing
system, it is rarely used today. The octal
system is founded on the binary system with
a 3-bit boundary. The octal number system:

• uses base 8
• includes only the digits Oto 7 (any other

digit would make the number an invalid
octal number).

The weighted values for each position are
as follows:

8"5 8" 4 8"3 8"2 8"1 8"0
32768 4096 512 6 4 8 1

Octal to Decimal Conversion

To convert from octal to decimal, multiply the
value in each position by its octal weight and
add each value.

Example 1
Convert (127662)8 into decimal form.

Computer Concepts and Programming in C

for that machine only depending upon
the processor that the machine is using.

ii. High-level Languages or Problem Oriented
Languages:
These languages are particularly oriented
towards describing the procedures for
solving the problem in a concise, precise
and unambiguous manner. Every high
level language follows a precise set of
rules. They are developed to allow appli­
cation programs to be run on a variety
_of computers. These programming
languages are machine independent.
Languages fall�g in this category are
FORTRAN, BASIC, and PASCAL, etc.
They are easy to learn and programs
may be written in these languages with
much less effort. However, the computer
cannot understand them and they need
to be translated into machine language
with the help of other programs known
as compilers or translators.

C LANGUAGE-INTRODUCTION

C is a programming language formulated at
AT & T's Bell Laboratories of USA in 1972. It
was projected and written by a man named
Dennis Ritchie. In the late 70s, C began to
replace the more intimate languages of that
time like PL/I, ALGOL, etc. No one forced C.
It was not made the 'official' Bell Laboratories
programming language. Thus, without any ad
C's reputation spread and its pool of users
grew. 'Ritchie seems to have been rather
surprized that so many programmers favoured
C to older languages like FORTRAN or PL/I,
or the newer ones like Pascal and· APL. But,
that is what happened.

The programming language C was pri­
mitively developed by Dennis Ritchie of Bell
Laboratories and was planned to run on a
PDP-11 with a UNIX operating system.
Although it was earlier designated to run
under UNIX, there has been a great interest
in running it under the MS-DOS operating
system on the IBM PC and compatibles. It is
an first-class language for this surrmmdings
because of the simplicity of expression, the
compactness of the code, and the wide range

of applicability. Also, due to the simplicity
and ease of writing a C compiler, it is usually
the first high level language available on any
new computer, including microcomputers,
minicomputers, and mainframe computer.

C is not the best beginning language
because it is somewhat cryptical in nature. It
allows the programmer a. wide range of
procedures from high level down to a very
low level, approaching the level of assembly
language. There seems to be no limit to the
tractability available. One experienced C
programmer made the statement, "You can
program anything in C", and the statement is
well supported by my own feel with the
language. Along with the resulting freedom
however, you take on a great deal of duty
because it is. very easy to write a program that
destroys itself due. to the silly little errors that
a good Pascal compiler will flag and call a fatal
error. In C, you are a lot on your own as you
will soon find. In 1972, C programming
language was developed at Bell Laboratories
by Dennis Ritchie. C is a simple programming
language with a comparatively simple to
understand syntax and few keywords. C 'is
useless. C itself has no input/output commands,
does not have support for strings as a key data
type. There is no predefined useful math
functions. C demands the use of libraries as
C is useless by itself. This increases the
complexity of the C programming language.
The use of ANSI libraries and other methods,
the issue of standard libraries is settled.

Why Use C?

C has been used successful for every type of
programming problem conceivable from
operating systems to spreadsheets to expert
systems and efficient compilers are available
for machines ranging in power from the Apple
Macintosh to the Cray supercomputers. The
largest measure of C's success seems to be
based on purely practical considerations:

• The portability of the compiler
• The standard library concept
• A powerful and varied repertoire of

operators
• An elegant syntax

