
Complex Numbers and Elementary Complex Functions 1.3
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Distance between two complex numbers: The distance between two complex numbers zJ and z2 is given by

d = 1=2 - Zl I= I(x2 - xl) + i(Y2 - Yl) I= ~(X2 - Xl)2 + (Y2 - Yl )2 .
Remark 1
We cannot compare two complex numbers that is, for any two complex numbers zl’ =2 we cannot write zl > z2

or zl < z2’ However, we can compare the magnitudes of two complex numbers.

EXAMPLE 1.1 A rectangle is constructed in the complex plane
with its sides parallel to the axes and its centre situated at the origin.

If one of the vertices of the rectangle is 1+ iJj. find the complex
numbers representing the other three vertices. Find also the area of
the rectangle.

Solution Since A represents 1+ iJj, its co-ordinates are (1,Jj).
From symmetry, the co-ordinates of B, C and D are respectively

(-I, Jj), (-1, - Jj) and (1~ - Jj).

Therefore, complex numbers representing B, C, Dare (-1 + iJj),

(-1 - iJj) and (1 - iJj) respectively.

The area of the rectangle ABCD = (2) (2Jj) =4Jj sq units.

EXAMPLE 1.2 Find real and imaginary parts of (z3 - z).
Solution Let z = X + iy. Therefore, z3 - z = (x + iy)3 - (x + (y) = x3 + i3y3 + 3ixy(x + iy) - x - iy

= x3 + 3ix2y - 3xl- iy3 - x - iy
= (x3 - 3xy2 - x) + ;(_y3 + 3x2y - y).

Therefore, Re(z3 - z) = x3 - 3xy2 - x. Im(z3 - z) = -.v3 + 3x2y - y.

EXAMPLE 1.3 Express the function in the form u(x, y) + ivi»; Y), where u and v are real. f{z) = z3 + 2iz.
Solution We have fez) = z3 + 2iz = (x + i)’)3 + 2i(x + iy)

= x3 + i3y3 + 3ixy(x + iy) + 2ix + 2Py
= x3 - iy3 + 3ix2y - 3xl + 2ix - 2y
= (x3 - 3xy2 - 2y) + ;(3x2y - y3 + 2x).

Hence, we obtain u(x, y) = x3 - 3xl- 2y~ vex, y) = 3x2y - "vJ + 2x.

EXAMPLE 1.4 Express the following complex numbers in the form x + iy, where x and yare real.

(1 .) (2 - .) 2 - 3’ 3 - 2i (1 - 2i)3 i4 + i9 + i16

( .) + I I ( .. ) I ( ...) (. ) ( )I 11 -- III IV V -----.
3 + i ’ 4 + 6i ’ (4 - 5i) (2 + i) , (1 + i) (2 - i) (1 - 3i) , 2 _ i5 + i10 _ ;15

Solution (i) The numerator = (1 + i) (2 - i) = 2 + i - i2 = 3 + i.

Th c. (1 + i) (2 - i) 3 +ill 0 .ere.ore = -- = = + I.
, 3+i 3+i

(ii) Multiplying the numerator and the denominator by the conjugate of the complex number in the
denominator, the given expression becomes

(2 - 3i) (4 - 6i) 8 - 24i + 18;2 -10 - 24i -5 6.
---=---1.

(4 + 6i) (4 - 6;) 16 - 36;2 52 26 13

39 + 44; + ]2;2

169 - 36i2

3 2; 3 + 2; 3 + 2i (3 + 2i) (13+ 6i)(iii) - =--= ------
(4 - 5i) (2 + i) 8 - 6i - 5i2 13 - 6i (13 - 6i) (13+ 6;)

1- 6i + 12i2 - 8i3 I - 6i - 12 + 8i
(iv) The given" expression = ------

(3 + ;) (1 - 3i) 6 - 8i

-11 + 2;

6 - 8i

27 + 44i 27 44.
---=-+-1.

205 205 205

(-11 + 2;) (6 + 8;)

(6 - 8i) (6 + 8i)



8.48 . Vector Differentialand IntegralCalculus

y(0,1,0)

Fig. 8.20

y=x
x

(I) The equations of line AB are x/2 = y = z/3 = t (say).
Therefore, x = 2t, Y = t and z = 31 are the parametric equations of the line AB.
The points (0, 0, 0) to (2, 1, 3) correspond to t = 0 and t = 1 respectively.

Work done =Jc F «dr =J;3(2t)2d(2t) + [2(2t)(3t) - t]dt + 3td(3t)

=J>4t2dt + (1212 - t)dt + 9tdt =J; (36t2 + St)dt =16.

(;1) Work done =Jc F-dr = J>(212)2d(2t2) + [2(2t2X4t2 - t) - t]dt + (4t2 - t)d (4t2 - t)

=J;4St5dt + (16t4 - 4t3 - t) dt + (32t3 -12t2 + t)dt

=J~ (48t5 + 16t4 + 28t3 -12t2)dt =[8t6 + 1: tS+ 7t4
- 4t31 =14.2.

(iii) Let x = t in x2 = 4y, 3x3 = 8z. Then the parametric equations of C are x = t, Y = t2/4, z = 3t3/ S.

Obviously t varies from 0 to 2. Hence the work done = Jc F-dr

= J:3t2dt + [2(t) e~3 )-t;] de;) + 3~3 d( 3~3 )

=12
( 3t2 -~+~tS)dt =[t3 _~+ 17t

6]2
= 16.

o 8 64 32 128 0

EXAMPLE 8.64 Find the work done by the force F = x i ›
z j + 2y k in the displacement along the closed path C consisting
of the segments CI’ C2 and C3 where on CI’ 0 S X S 1, y = x,
z =0, on C2, 0 S Z.S 1, x = 1, y = 1 on C3, 1 ~ x ~ 0, y = z = x.

Solution Total work done =fc F -dr

=~ (xi-zj+2yk)-(dd+dyj+dzk)
.C

=~ cxdx - zdy + 2ydz.

The closed path C consisting of segments CI, C2 and C3 is
shown in the Fig. 8.20.

Let WI’ W2, W3 be the work done in displacement along
CI’ C2 and C3 respectively.

Since on CI, 0 S X S 1, y = x, z = 0, dy = dx, dz = o.
Therefore, Jt) =J xdx =JIx dx =1/2.

CI 0 .

OnC2,OSzSI,x=l,y=1,dx=0,dy=0. Therefore, w2 = J 2dz=2Jl dz=2.
C2 0

On C3, 1 ~ x ~ 0, y = z = x, dy = dz = dx. Therefore, W3 =1 xdx - x dx + 2xdx = 2J 0 x dx =-1.
el 1

Thus, total work done = Jfl + W2 + W3 = (1/2) + 2 - 1= 3/2.

EXAMPLE 8.65 Find the constant a so that the vector field v = (axy - z3)i + (a - 2) x2j + (1 - a)xrk is
conservative. Calculate its scalar potential and the work done in moving a particle from P(I, 2, -3) to
Q(I, -4, 2) in the field.



Vector Differential and Integral Calculus 8.57

Therefore,

th (xy + y2)dx + x2dy = (19/20) -1 = - (1/20). ...(i)’fc 0

x

x =;c/2

A (1tI2,O)
y=o

o

= fJ(-sin x -I)dydx = - L::U::~lt (I + sinx)dy]dx
R

Jft/2 I Jft/2 2x
= - [(1 + sinx)y]~X ftdx = - (1 + sin x) -dx

o 0 1t

Also II( ~~ -~) dytJ: =II[~ (x
2

) - ~ (xy + y
2

) ]dydx =II (x - 2y)dydx
R R. R

J
1 J x J 1 J 1 [.x5 x4

] 1 1= (x-2y)dydx= [xy_ y 2] X2 dx= (x4-x3)dx= --- =--.
x=o’ y=x2 0 x 0 . 5 4 0 20

This agrees with the result obtained in (I). Hence, the Green’s theorem is verified.

EXAMPLE 8.72 Apply Green’s theorem to evaluate ~ (y - sin x) dx + cos x dy, where C is the triangle" ~ ’fc
enclosed by the lines y =0, x =1t/2 and y =2x/1t.

(AMIETE, June 2013, Dec. 2009; MDU 2007; PTU 2006; AMIE-2005; JNTU 2005)
Solution We havef(x, y) =y - sin x, g (x, y) = cos x. Using the Green’s theorem, we obtain

~c(y-sinx)dx+cosxdy= II[ad
... (cosx)- :u (y-SinX)]dydx Y

R A CJ’" B (n/2, 1)

[

2 ] ft/2-2 ft/2 -2 x
=-J (x+xsinx)dx=- -+{x(-cosx)+sinx}

7t 0 7t 2 0

Fig. 8.25
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~~tt~~~~~~;~~~~~~~~~~~t~~~~~~~~f~~~~~~~~~~~I~~
o

= - ( ~ +;.), the required value.

EXAMPLE 8.73 Verify the Green’s theorem for f(x, y) = e- Xsin y, g(x, y) = e- Xcos y and C is the square
with vertices at (0, 0), (7tI2, 0), (1tI2, 1tI2), (0, 7tI2). (AMIETE-June°20 J0, Dec. 2005; AMIE S-2008)

Solution We can write the line integral as 0

~ f(x,y)dx+g(X,y)dy=[J +J +J +J ](f(x,Y)dx+g(X,y)dY)~c ~ ~ y ~
where CI, C2, C3 and C4 are the boundary lines shown in Fig. 8.26. We have along C1: y = 0, 0 Sx S; 1tI2 and

y4

J
e-X(sinydx + cosydy) = 0, along C2 : x = 7tI2, 0 S Y S 1tI2

c,

and J e-X(sinydx + cos y dy) = J 1t/2e-K/2 cosydy =e-7t/2,
C2 0

along C3: y = 7tI2, 1tI2 S x S 0 and"J e-X(sinydx + cosydy)
C3

=J° e-xdx =[-e- X
] 0/2 =[e-X]~/2 =e-7t/2 -1,

ft/2 ft

along C4: x = 0, 1tI2 S Y S 0 and
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A domain D is called simply connected if every simple closed contour C lying entirely in D can be shrunk,
or contracted to a point without leaving D. In other words, in a simply connected domain every simple-closed
contour C lying entirely within it encloses only points ofthe domain D. A domain which is not simply connected
is called multiply connected domain. For example, the domain bounded by a circle or a square is simply
connected domain. Fig. 8.28(c).

A plain sheet of paper from which some interior parts are removed is a multiply connected domain
Fig. 8.28(d). Another simple example of a multiply connected domain is the annulus r < Iz I< R, that is, the
domain between MO concentric circles Iz 1= R and Iz I= r cannot be shrunk to a point. Fig. 8.28(e). In plain
terms a simply connected domain is one which has no "holes" in it. A domain with one "hole" is called doubly
connected and a domain with two "holes" is called triply connected and so on.

EXERCISE 8.5

x=2

--t----+--~.-......----. ... X

1. Apply Green’s theorem to evaluate line integral ~[sinYdr+x(l+cosy)dyl over a circular path C,

c
xl +r = a2, z = o. (AMIETE, Dec. 2011)

[Hint: In this problem f(x, y) = sin y, g(x, y) = x(l + cos y). ~~ - ~ = I + cosY - cosY = l.

By Green’s theorem, the given line integral is

IfI dy dx = If• dxdy = area ofcircle ofradius a = 1Ca
2 ] .

R ;x2+ y2=a2

o
2. Using Green’s theorem to evaluate ~[(2X2 - i)dr + (x2 + i)dyl, where C is the boundaryin the

c
xy-plane of the area enclosed by the x-axis and the semi-circle xl +r = 1 in the upper half xy-plane.

(AMIETE, Dec. 2012; AMIE 8-2010)’ Ans.4/3.
3. VerifyGreen’s theorem in plane for ~(x2 - 2xy)dr+ (x 2y + 3)dy where Y B 2,4)

. C
C is the l;oundary of the region defined byr = 8x and x = 2, using the
Green’s theorem.
[Hint: Refer Fig. 8.29

Line integral = ~ =J+ J + J
C OA ADB BO

Along OA: y =- 2J2£ so dy = - gdr.V~I Fig. 8.29

J(x 2 -2xy)dr + (x 2y + 3)dy = f[X2 -2X(-2J2£)]dr+[X2(-2J2£)+3
l(-l)dr

~ 0

= f(5x2 +4J2 x3/2 -3J2 x- I
/
2)dr=[ix3 +4J2 .~.xS/2 -3.fi, .2£I

o

=( ~o + ~ -12).


