Complex Numbers and Elementary Complex Functions 1.3

Distance between two complex numbers: The distance between two complex numbers z, and z, is given by

d =]z -5 =1 (= x) +i(y2 = W)=y = x)2 + (0 = ).
Remark 1
We cannot compare two complex numbers that is, for any two complex numbers z,, z, we cannot write z, > z,
or z; < z,. However, we can compare the magnitudes of two complex numbers.

EXAMPLE 1.1 A rectangle is constructed in the complex plane

V4 Y ‘i
with its sides parallel to the axes and its centre situated at the origin. (Imaginary axis)
If one of the vertices of the rectangle is 1+ ix/3. find the complex B 21 A1+iV3)
numbers representing the other three vertices. Find also the area of 14
the rectangle. 2 _1

X < + + > X
Solution Since A4 represents | + 1\/5, its co-ordinates are (I, \/5). Ol 1 2  (Real axis)
From symmetry, the co-ordinates of B, C and D are respectively -1t
(=1,3),(=1,-+/3) and (1, -+/3). Com1—=D
Therefore, complex numbers representing B, C, Dare (-1 + i3), Yy
(-1-iv3) and (1-iv3) respectively. Fig. 1.6

The area of the rectangle ABCD = (2) (24/3) =43 sq units.

EXAMPLE 1.2 Find real and imaginary parts of (> - z).

Solution Let z = x + iy. Therefore, 22 —z = (x + iy)> — (x + iy) = x> + Y3 + 3ixy(x + iy) —x — iy
=x3+3idy-3x2 -3 -x—iy
= (=302 —x) + i + 3x%y - y).

Therefore, Re(z> - z) =x3 - 3x32 —x.  Im(2 -2) =7 + 3x?y —y.
EXAMPLE 1.3 Express the function in the form u(x, y) + iv(x, y), where u and v are real. f{z) = z3 + 2iz.
Solution We have f@) = 2 +2iz=(x + iy)> + 2i(x + iy)

= x3 + Y3 + 3ixy(x + iy) + 2ix + 2%y
= x3 - i3 + 3ix2y — 3xy? + 2ix — 2y
= (3 - 3xp? - 2y) + i(3x%y — 3 + 2x).
Hence, we obtain u(x, y) = x> — 3x)2 — 2y, ¥(x, y) = 3x2y - * + 2x.
EXAMPLE 1.4 Express the following complex numbers in the form x + iy, where x and y are real.
La+DQ@-0H .. 2-3i . 3-2i , (1-2i) i+ +i'®
D=0 Do D asyasy M ane-na-s W ipimo s
Solution (/) The numerator = (1 + ) (2 -) =2+ i-i¢=3+i
A+@R-0 _3+i _
3+i T340

1=1+0i

Therefore,

(ii) Multiplying the numerator and the denominator by the conjugate of the complex number in the
denominator, the given expression becomes

(2-30)(4-6)) 8-24i+18i> -10-24i -5 6

= — -

4+6)(4-6i) 16— 36i> 52 26 13
iy =2 3+2i _3+2i_(3+2i)(l3+6i)_39+44i+12i2_27+44i__2l+ﬁi
(4-5)(2+i) 8-6i—-5i 13-6i (13-6)(13+6i) 169 — 36> 205 205 205

1-6i+12i%-87 1-6i-12+8i —11+2i (=11+2i)(6+8i)
(3 +i)(1-3i) 6-8i 6-8  (6-8i)(6+8i)

(iv) The given expression =
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() The equations of line 4B are x/2=y=z/3=t (say).
Therefore, x = 2¢t, y = t and z = 3¢ are the parametric equations of the line 4B.
The points (0, 0, 0) to (2, 1, 3) correspond to ¢ =0 and ¢ = 1 respectively.

1
Work done = j Fedr= j 3@ d(@0)+[20(30) - 1ldt +3td()
LS 2 g2
=j024z dt + (12 —t)dt+9tdt=jo(36t +8f)dt =16.
1
(i)) Work done = J'CF-dr = jo 3(22)2d(212) + [2Q202) 412 — 1) = 1]dt + (4% - 1)d (4% ~ 1)
1
= J'o 4815dt + (166* — 483 1) dt + (323 =122 + )t

1 1 .
= jo (486 +161* + 28 12 )dt = [sr“ + ?ts +714 - 4:3]O =142.
(iii) Letx = tin x? = 4y, 3x> = 8z. Then the parametric equations of Care x =1, y = 12/4, z=3 /8.
Obviously ¢ varies from 0 to 2. Hence the work done = I Fedr

3 2 2
s 20 )-Je( ) ()

3 4
j(3z £ sjdt—[3——t——+l—7t—:| =16.
364 327 128 J,

EXAMPLE 8.64 Find the work done by the force F = x i — Za
z j + 2y k in the displacement along the closed path C consisting
of the segments C,, C, and C; where on C;, 0 <x< 1,y =1x, (0.0.1)

z=0,onC,0<z<l,x=1y=1onC;, 12x20,y=z=x.
Solution Total work done =§CF-dr

= _(xi-z+2yk)+ (dri+dyj+ k)

=¢cxdx—zdy+2ydz.

The closed path C consisting of segments C,, C, and C; is
shown in the Fig. 8.20.

Let W,, W,, W, be the work done in displacement along
C,, C, and C, respectively.

SinceonC|,0<x<1l,y=x,2=0,dy =dx, dz=0.

1
Therefore, W, = Jc xdx= ondx =1/2.
1

i 1
OnCp0szsl,x=1,y=1,dc=0,dy=0. Therefore, W2=_[C 2ds=2[ dz=2.
2 0
0
OnC, 12x20,y=z=xdy=dz =dr. Therefore, %=jcxdx—xdx+2xdr=2j]xdx=—l.
3

Thus, total work done = Wy + W, + W; =(1/2) +2-1=3/2.

EXAMPLE 8.65 Find the constant a so that the vector field v = (axy — 23)i + (a - 2) x%j + (1 - a)xz?k is
conservative. Calculate its scalar potential and the work done in moving a particle from P(1, 2, -3) to
(1, 4, 2) in the field.
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Therefore,

@C(xy +y%)de + xPdy = (19/20) = 1==(1/20).  ..()
.U(ag )dy H[ 2)—aa—y(xy+y2)]dydx=_[_[(x—zy)dydx
R

1
_ x _ I L PP L PR _[i_ﬁ]___l_
_J.x=0‘-“y=x2(x 2y)dys = [ [y =321 o= [ (- )= Sy R

This agrees with the result obtained in (7). Hence, the Green’s theorem is verified.

EXAMPLE 8.72 Apply Green’s theorem to evaluate @C(y —sinx)dx + cosxdy, where C is the triangle
. -]

enclosed by the lines y =0, x=mr/2 and y=2x/n.
(AMIETE, June 2013, Dec. 2009; MDU 2007; PTU 2006; AMIE-2005; JNTU 2005)
Solution We have f(x, y) =y —sinx, g(x, y)=cosx. Using the Green’s theorem, we obtain

' el o d . : Y4
@C(y—smx)dx+cosxdy—g|:$(cosx)—$(Y—smx):|dydx B (w2, 1)

. n/ y=2x/n
_j (~sinx - 1) dydk = — o[j (1+smx)dy] o
R
= J [(l+smx)y]0’/"dx——J. (l+smx)—— ol X A @20) X
y=0
/2 Fig. 8.25
2 ¢rn/2 9| x2 "
=—2 (x+xsinx)dx=—Z[x—+{x(—cosx)+sinx}:| °
TJo nlL2 0
=- (E + Z) the required value
4 gp ™ )
EXAMPLE 8.73 Verify the Green’s theorem for f(x, y) = e sin y, glx, y) = €™ cos y and C is the square
with vertices at (0, 0), (/2, 0), (w2, n/2), (0, 2). (AMIETE-June 2010, Dec. 2005; AMIE S-2008)

Solution We can write the line integral as

§ st sesnay=([ +] + IQ +]o, |oenassmna
where C,, C,, C; and C, are the boundary lines shown in Fig. 8.26. We have f‘lf)ng Ci:y=0,0<x<m2and
~* (si = 1 (x=1R,0<y<nR2
IC e *(sinydx + cos ydy) =0, along C,: x = /2 y Co M2 w2)
(0, W/2) N[

and Ic e *(sinydx+cosydy) = I *2 cosydy=e 2,

Cq

along C;:y = /2, W2 <x <0 and IC e *(sin ydx + cos y dy)

3

v

o _ —x40 —xq%2 _ _-n2 B
=jn/ze *dx =[-e x]n/Z =[e x]g/ =e ™ -1, 5 e 2.0 >
along C;:x=0,w2<y<0and Fig. 8.26
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A domain D is called simply connected if every simple closed contour C lying entirely in D can be shrunk,
or contracted to a point without leaving D. In other words, in a simply connected domain every simple closed
contour C lying entirely within it encloses only points of the domain D. A domain which is not simply connected
is called multiply connected domain. For example, the domain bounded by a circle or a square is simply
connected domain. Fig. 8.28(c).

A plain sheet of paper from which some interior parts are removed is a multiply connected domain
Fig. 8.28(d). Another simple example of a multiply connected domain is the annulus » < |z | < R, that is, the
domain between twd concentric circles | z | = R and | z | = r cannot be shrunk to a point. Fig. 8.28(¢). In plain
terms a simply connected domain is one which has no “holes” in it. A domain with one “‘hole” is called doubly
connected and a domain with two “holes™ is called triply connected and so on.

EXERCISE 8.5

1. Apply Green’s theorem to evaluate line integral @[sin ydx+x(1+cosy)dy] over a circular path C,

Cc
x2+y2=a%z=0. (AMIETE, Dec. 2011)
. )
[Hint: In this problem f(x, y) = sin y, g(x, y) =x(1 + cos y). %‘% - -% =1+cosy—cosy=1.
By Green’s theorem, the given line integral is

Hldydx= ”. .dxaj'=areaofcircleofmdiusa=m2].

R 2+ y2=a?
i 2_ 2 2, 2 . © )
2. Using Green’s theorem to evaluate 4)[(2x - y“)dx + (x° + y°)dy], where C is ths boundary'in the
c

xy-plane of the area enclosed by the x-axis and the semi-circle x2 + y2 = 1 in the upper half xy-plane.
(AMIETE, Dec. 2012; AMIE S-2010) Ans. 4/3.

3. Verify Green’s theorem in plane for @(x2 —2xy)dx+ (x*y +3)dy where Y4 B(2, 4)
X C
C is the Boundary of the region defined by 2 = 8x and x = 2, using the
Green’s theorem. D(2,0) .
[Hint: Refer Fig. 8.29 o) >X
Line integral = Cﬁ = j + J +J
C 04 4DB BO A2, —4)
2 2 = 8x =
e =— |2 y X=2
Along OA: y=-22x so & \/; Fig 829

2
j' (% = 2x)dx + (x2y + 3)dy = j [x2 = 2x(=242x)] de + [x3(~2v24/x) + 3] (—\/g)a&:
OA 0

2 2
= j (5x% +442 ¥*'? =32 x'”z)dx=[§x3 +42. —i—-xS’z —3~/§-2J§]0
) .

(2+8-12)
3 5



