Solution: We know that the Jacobi series are

$$J_0(x) + 2J_2(x)\cos 2\theta + 2J_4(x)\cos 4\theta + ... = \cos(x\sin\theta)$$
 ...(1)

and
$$2J_1(x)\sin\theta + 2J_3(x)\sin 3\theta + ... = \sin(x\sin\theta)$$
. ...(2)

Squaring (1) and (2) and integrating w.r.t. ' θ ' between the limits 0 to π and using the integrals, if m, n are integers

$$\int_0^{\pi} \cos^2 n\theta \ d\theta = \int_0^{\pi} \sin^2 n\theta \ d\theta = \frac{\pi}{2}$$

and $\int_0^{\pi} \cos m\theta \cos n\theta \, d\theta = \int_0^{\pi} \sin m\theta \sin n\theta \, d\theta = 0, \, m \neq n.$

We get
$$\pi [J_0(x)]^2 + 2\pi [J_2(x)]^2 + 2\pi [J_4(x)]^2 + ...$$

= $\int_0^{\pi} \cos^2(x \sin \theta) d\theta$...(3)

and
$$2\pi [J_1(x)]^2 + 2\pi [J_3(x)]^2 + ... = \int_0^{\pi} \sin^2(x \sin \theta) d\theta$$
. ...(4)

Adding (3) and (4), we have

$$\pi \left\{ \left[J_0(x) \right]^2 + 2 \left[J_1(x) \right]^2 + 2 \left[J_2(x) \right]^2 + \ldots \right\} = \int_0^{\pi} d\theta = \pi.$$

Hence, we have the required result.

Example 12: If
$$a > 0$$
, prove that $\int_0^\infty e^{-ax} J_0(bx) dx = \frac{1}{\sqrt{a^2 + b^2}}$.

Solution: We know that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \phi) d\phi$

$$\Rightarrow J_0(bx) = \frac{1}{\pi} \int_0^{\pi} \cos(bx \sin \phi) d\phi.$$

Therefore
$$\int_0^\infty e^{-ax} J_0(bx) dx = \int_0^\infty e^{-ax} \left\{ \frac{1}{\pi} \int_0^\pi \cos(bx \sin \phi) d\phi \right\} dx$$
$$= \frac{1}{\pi} \int_0^\infty \left\{ \int_0^\pi e^{-ax} \cos(bx \sin \phi) d\phi \right\} dx$$
$$= \frac{1}{\pi} \int_0^\pi \left\{ \int_0^\infty e^{-ax} \cos(bx \sin \phi) dx \right\} d\phi$$
[on changing order of integration]

$$=\frac{1}{\pi}\int_0^{\pi}\left\{\int_0^{\infty}e^{-ax}\,\frac{e^{ibx\sin\phi}+e^{-ibx\sin\phi}}{2}\,dx\right\}d\phi$$

$$= x^{0} \left[c_{1} J_{n}(x^{2}) + c_{2} J_{-n}(x^{2}) \right]$$

$$= c_{1} J_{n}(x^{2}) + c_{2} J_{-n}(x^{2})$$

When n is an integer, the solution of (1) is

$$y = x^{\alpha} \left[c_1 J_m(\beta x^{\gamma}) + c_2 \gamma_m(\beta x^{\gamma}) \right]$$

= $x^{0} \left[c_1 J_n(x^{2}) + c_2 \gamma_n(x^{2}) \right] = c_1 J_n(x^{2}) + c_2 \gamma_n(x^{2}).$

Example 26: Solve the differential equation 4y'' + 9xy = 0 in terms of Bessel's functions.

Solution: The given equation can be written as

$$x^2 y'' + \frac{9}{4} x^3 y = 0$$
 ...(1)

Comparing with the general form (6) of section 4.6.7, we get

$$1 - 2\alpha = 0$$
, $\beta^2 \gamma^2 = \frac{9}{4}$, $2\gamma = 3$ and $\alpha^2 - n^2 \gamma^2 = 0$.

On solving these equations, we get

$$\alpha = \frac{1}{2}, \gamma = \frac{3}{2}, \beta^2 \cdot \frac{9}{4} = \frac{9}{4} \Rightarrow \beta = 1$$

and
$$\left(\frac{1}{4}\right) - n^2 \left(\frac{9}{4}\right) = 0 \Rightarrow n^2 = \frac{1}{9} \Rightarrow n = \frac{1}{3}$$
,

Since n is not an integer, the solution of equation (1) is

$$y = x^{\alpha} \left[c_1 J_n (\beta x^{\gamma}) + c_2 J_{-n} (\beta x^{\gamma}) \right]$$

$$\Rightarrow \qquad y = x^{1/2} \left[c_1 J_{1/3} (x^{3/2}) + c_2 J_{-1/3} (x^{3/2}) \right].$$

Example 27: Solve the differential equation $y'' + \frac{y'}{x} + \left(\frac{8}{x} - \frac{1}{x^2}\right)y = 0$ in terms of Bessel's functions.

Solution: The given equation is

$$x^2 y'' + xy' + (8x - 1)y = 0$$
 ...(1)

Comparing (1) with the general form

$$x^{2}y'' + (1-2\alpha)xy' + [\beta^{2}\gamma^{2}x^{2\gamma} + (\alpha^{2}-n^{2}\gamma^{2})]y = 0$$
 ...(2)

where α , β , γ and n are constants, we get

$$1-2\alpha=1$$
 , β^2 $\gamma^2=8$, $2\gamma=1$ and α^2-n^2 $\gamma^2=-1$

Solving these, we get

$$\alpha = 0$$
 , $\gamma = \frac{1}{2}$, $\frac{\beta^2}{4} = 8 \Rightarrow \beta^2 = 32 \Rightarrow \beta = 4\sqrt{2}$,

Now for y = 1, we have $p = 2 x y \phi'_1(x^2 y) + y^2 \phi'_2(x y^2) = 2 x ...(9)$

And
$$q = x^2 \phi'_1(x^2 y) + 2 x y \phi'_2(x y^2) = -2 y$$
 ...(10)

Solving (9) and (10), we get
$$\phi'_1(x^2y) = \frac{4}{3y} + \frac{2y}{3x^2}$$
 ...(11)

And
$$\phi'_2(xy^2) = -\frac{2x}{3y^2} - \frac{4}{3x}$$
 ...(12)

Putting y = 1 in (11), we have

$$\phi'_1(x^2) = \frac{4}{3} + \frac{2}{3x^2} \text{ or } 2x \phi'_1(x^2) = \frac{8}{3}x + \frac{2}{3}\frac{2x}{x^2}.$$

Integrating, we get

$$\phi_1(x^2) = \frac{4}{3}x^2 + \frac{2}{3}\log x^2$$
.

Substituting $x^2 y$ for $x^2 (:: y = 1)$, we have

$$\phi_1(x^2 y) = \frac{4}{3}x^2 y + \frac{2}{3}\log(x^2 y)$$
 ...(13)

Also putting y = 1 in (12), we have $\phi'_{2}(x) = -\frac{2}{3}x - \frac{4}{3x}$.

Integrating, we obtain

$$\phi_2(x) = -\frac{1}{3}x^2 - \frac{4}{3}\log x$$
.

Substituting xy^2 for x(: y = 1), we have

$$\phi_2(xy^2) = -\frac{1}{3}(xy^2)^2 - \frac{4}{3}\log(xy^2)$$
 ...(14)

Using (13) and (14) in (7), we have

$$z = \frac{4}{3}x^2y + \frac{2}{3}\log(x^2y) - \frac{1}{3}x^2y^4 - \frac{4}{3}\log(xy^2) + c$$

$$\Rightarrow z = \frac{4}{3}x^2y - \frac{1}{3}x^2y^4 + \frac{2}{3}\log\{(x^2y)/(xy^2)^2\} + c$$

$$\Rightarrow z = \frac{4}{3}x^2y - \frac{1}{3}x^2y^4 - 2\log y + c \qquad ...(15)$$

when y = 1, the values of z from (8) and (15) should be the same. Hence

$$\frac{4}{3}x^2 - \frac{1}{3}x^2 - 2\log 1 + c = x^2 - 1 \implies c = -1.$$

Hence the required surface is given by

$$z = \frac{4}{3} x^2 y - \frac{1}{3} x^2 y^4 - 2 \log y - 1.$$

Again from the last two members, we have

$$\frac{dy}{x} = \frac{dz}{f(A)} \implies dz = f(A) \frac{dy}{\sqrt{(y^2 + A)}}.$$

Hence
$$z = f(A) \log \left[y + \sqrt{A + y^2} \right] + A'$$

$$\Rightarrow z = f(x^2 - y^2) \log(y + x) + F(x^2 - y^2).$$

Example 10: Solve q(1+q)r - (p+q+2pq)s + p(1+p)t = 0.

Solution: Putting $r = \frac{dp - s \, dy}{dx}$ and $t = \frac{dq - s \, dx}{dy}$ in the given equation, we have

$$q(1+q)\frac{dp-s\,dy}{dx} - (p+q+2\,q\,p)\,s + p(1+p)\frac{dq-s\,dx}{dy} = 0$$

$$\Rightarrow \left\{ q(1+q) dp dy + p(1+p) dq dx \right\}$$

$$-s\left\{ q(1+q)dy^{2}+\left(p+q+2pq\right) dx\,dy+p\left(1+p\right) dx^{2}\right\} =0.$$

Hence Monge's subsidiary equations are

$$q(1+q) dp dy + p(1+p) dq dx = 0$$
 ...(1)

and
$$q(1+q) dy^2 + (p+q+2qp) dx dy + p(1+p) dx = 0$$
 ...(2)

Equation (2) gives
$$p dx + q dy = 0$$
 ...(3)

and
$$(1+p)dx + (1+q)dy = 0$$
 ...(4)

From (3), we have $dz = p dx + q dy = 0 \implies z = A$.

Also from (1) and (3), we have

$$p(1+q)dp - p(1+q)dq = 0 \Rightarrow \frac{dp}{1+p} - \frac{dq}{1+q} = 0.$$

Therefore
$$\log (1+p) - \log (1+q) = \log B \implies (1+p) = (1+q) f_1(z)$$
 ...(5)

which is one intermediate integral.

Now from (4), we have dx + dy + (p dx + q dy) = 0

$$\Rightarrow dx + dy + dz = 0 \Rightarrow x + y + z = A.$$

From (1) and (4), we have $q dp - p dq = 0 \Rightarrow \frac{dp}{p} = \frac{dq}{dp}$

$$\Rightarrow$$
 $\log p = \log q + \log B$

Hence
$$p = q f_2 (x + y + z)$$
. ...(6)

Solving (5) and (6), we have $p = \frac{(f_1 - 1)f_2}{(f_2 - f_1)}$ and $q = \frac{(f_1 - 1)}{(f_2 - f_1)}$.