Factor	81	82	Totals
\boldsymbol{p}_1	73.31	86.31	159.62
p_2	72.66	98.57	171.23
<i>p</i> ₃	91.46	93.43	184.89
Total	237.43	278.31	515.74

Table-IV $P_d \times G$ interaction table

S.S.
$$(P_d) = \frac{1}{16} (159.62^2 + 171.23^2 + 184.89^2) - \frac{515.74^2}{48}$$

= 5561.41 - 5541.41 = 20.00

S.S
$$(P_d \times G) = \frac{1}{8}(73.31^2 + 86.31^2 + \dots + 91.46^2 + 93.43^2) - \frac{515.74^2}{48}$$

= $5614.17 - 5541.41 - 34.82 - 20.00 = 17.94$

Table-V $P_d \times S$ interaction table

Factor	s_1	<i>s</i> ₂	Total
p_1	89.34	70.28	159.62
P ₂	95.95	75.28	171.23
<i>p</i> ₃	91.79	93.10	184.89
Total	277.08	238.66	515.74

S.S.
$$(P_d \times S) = \frac{1}{8} (89.34^2 + 70.28^2 + 91.79^2 + 93.10^2) - \frac{515.74^2}{48}$$

- 20.00 - 30.75
= 5610.93 - 5541.41 - 20.00 - 30.75 = 18.77

Factorial effects S.S. =
$$\frac{1}{4}$$
(44.67² + 40.70² + + 43.32² + 45.84²)

$$= 5676.33 - 5541.41 = 134.92$$
S.S. $(P_d \times S \times G) = 134.92 - 34.82 - 30.75 - 20.00 - 0.52 - 17.94 - 18.77$

$$= 12.12$$

S.S. (Treatments) =
$$\frac{1}{4}$$
(28.30² + 38.92² + + 43.32² + 45.84²) - $\frac{658.87^2}{64}$
= 6978.63 - 6782.96 = 195.67

S.E. of a mean difference between varieties at the same level of spacing by the formula (7.6.3) is,

S.E.₃ =
$$\sqrt{\frac{2 \times 2 \times 1.732 + 2.842}{3 \times 3}}$$
 = 1.042

S.E. of a mean difference among spacings at the same level of varieties by the formula (7.6.4) is,

S.E.₄ =
$$\sqrt{\frac{2 \times 4 \times 1.732 + 0.698}{3 \times 5}}$$
 = 0.985

Comparison of calculated F-values with the respective tabulated F-values for various factors reveals that there is a significant difference among varieties as well as spacings whereas the interaction $\mathbf{V} \times \mathbf{S}$ is non-significant. Therefore, critical differences (CD) for varieties and spacings will be worked out at 5% level of significance for comparing all pairs of variety means and spacing means.

$$CD_{1} = S.E_{1} \times t_{error1 \ d.f.; .05} = 0.795 \times t_{8; .05}$$

$$= 0.795 \times 2.306 = 1.833$$

$$CD_{2} = S.E_{2} \times t_{error 2 \ d.f.; .05} = 0.305 \times t_{4; .05}$$

$$= 0.305 \times 2.776 = 0.847$$

$$CD_{3} = SE_{3} \times t_{1}^{*}$$

where,

$$t_{1}^{*} = \frac{(p-1)E_{3} \times t_{error3d.f.;\alpha} + E_{1} \times t_{error1d.f.;\alpha}}{(p-1)E_{3} + E_{1}}$$

$$= \frac{4 \times 1.732 \times t_{16;05} + 2.842 \times t_{8;05}}{4 \times 1.732 + 2.842}$$

$$4 \times 1.732 \times 2.120 + 2.842 \times 2.306$$

$$=\frac{4\times1.732\times2.120+2.842\times2.306}{4\times1.732+2.842}=2.174$$

Thus, $CD_3 = 1.042 \times 2.174 = 2.265$ Similarly, $CD_4 = SE_4 \times t_2^*$

$$t_{2}^{*} = \frac{(q-1)E_{3} \times t_{error3d.f.;\alpha} + E_{2} \times t_{error2d.f.;\alpha}}{(q-1)E_{3} + E_{2}}$$

$$= \frac{2 \times 1.732 \times t_{16,.05} + 0.698 \times t_{4;.05}}{2 \times 1.732 + 0.698}$$

$$= \frac{2 \times 1.732 \times 2.120 + 0.698 \times 2.776}{2 \times 1.732 + 0.698} = 2.230$$

block effects adjusted for treatments within replications. Let W_i denotes a function of the sum of blocks in which treatment i occurs. W_i can be estimated by the formula,

$$W_i = k T_i - (k+1) B_{(i)} + G$$
 (11.6.4)

In the above formula, G is the grand total and $B_{(i)}$ is the sum of block totals in which the treatment i appears.

Check that,
$$\sum_{i} B_{(i)} = kG$$
 and $\sum_{i} W_{i} = 0$.

Sum of square due to blocks within replications adjusted for treatment effects is,

$$=\frac{\sum_{i}W_{i}^{2}}{k^{3}(k+1)} \tag{11.6.5}$$

Analysis of variance using intrablock information will be as given in Table 11.5.2. for a simple lattice, $v = k^2$, b = k (k + 1), r = k + 1, $\lambda = 1$.

		·	
Source	d.f.	S.S.	M.S.
Replications	k	$\frac{1}{k}\sum_{u}R_{u}^{2}-C.F.=R_{yy}$	$R_{yy}/k = R_y$
Treats.(Unadj.)	k² – 1	$\frac{1}{k+1}\sum_{i}T_{i}^{2}-C.F.=T_{yy}$	$T_{yy}/(k^2-1)=T_y$
Blocks (Adj.) within Reps.	$k^2 - 1$	$\frac{\sum_{i}W_{i}^{2}}{k^{3}(k+1)} = B_{yy}$	$B_{yy}I(k^2-1)=E_b$
Intrablock error	$(k-1) \times (k^2-1)$	By difference = E_{yy}	$E_{yy}/(k-1)(k^2-1) = E_e$
Total	$k^2(k+1)-1$	$\sum_{i} \sum_{j} \sum_{u} y_{iju}^{2} - \frac{G^{2}}{k^{2}(k+1)}$	8
		= S _{yy}	

Table 11.6.2. Intrablock analysis ANOVA table

Where,

$$R_u$$
 – uth replication total for $u = 1, 2, \dots, (k + 1)$.
 G – total of all observations.
 $E_{yy} = S_{yy} - R_{yy} - T_{yy} - B_{yy}$

Blocks	Rep	lication IV	AB ²	Confounded	Block totals
10	(00)	(11)	(22)	$x_1 + 2x_2 = 0 \bmod 3$	63.1
	V ₁ 22.8	V ₅ 22.0	V ₉ 18.3		
11	(02)	(10)	(21)	$x_1 + 2x_2 = 1 \mod 3$	69.7
	V ₃ 20.6	V ₄ 21.5	V ₈ 27.6	S	
12	(01)	(12)	(20)	$x_1 + 2x_2 = 2 \mod 3$	72.6
	V ₂ 27.2	V ₆ 25.1	V ₇ 20.3		
Total					205.4

[Hint: $V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9 = 00, 01, 02, 10, 11, 12, 20, 21, 22.$]

Nota bene:

- (i) Through the layout equivalence is shown between a partially confounded 3² factorial and simple lattice with nine non-factorial treatments.
- (ii) x_1 shows the levels of factor A and x_2 , the levels of factor B
- (iii) This design is also a nested design as the blocks are nested within replications.
- (iv) Block and replication totals have been worked out and placed along with the experimental data.

Calculations

Grand total, G = 807.9

Correction factor, C.F. =
$$\frac{807.9^2}{36}$$
 = 18131.35
Total S.S. = $23.9^2 + 25.9^2 + \dots + 25.1^2 + 20.3^2 - \text{C.F.}$
= 18430.99 - 18131.35 = 299.64
Rep.S.S. = $\frac{1}{9}$ (199.8² +201.9² + + 200.8² + 205.4²) - C.F.

Now various quantities required for analysis are calculated by the formulae given in the theory portion.

= 18132.60 - 18131.35 = 1.25

Table-I

Treats.	Treat. totals	Block totals B _(i)	W_i	Adj. treat. T _i ²	Adj. treat. mean \overline{T}_i'
V ₁	94.0	271.7	3.1	94.2356	23.5589
V_2	104.5	280.5	-0.6	104.4544	26.1136

(Contd.)