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as discussed under effusion; {.e., the rate of passage is inversely propor-
tional to the square root of the molecular weight.

If the holes of the diaphragm are very small, of the order of 10~% cm for
gases at 1 atm, pressures may be obtained comparable to those calculated
from the equation. For large holes ordinary flow occurs and the pressure
is less. Although maximum pressures are obtainable with very small
holes, clearly high transport of gas cannot be obtained in this case because
of the high resistance. With large holes the rate of transport is low
because of small pressure. At some intermediate size of pores the rate of
transpiration will be a maximum. The usual porous diaphragm will con-
tain openings of a variety of sizes so that thermal transpiration will occur
in the smaller ones and ordinary fluid flow in the opposite direction
through the larger ones, thus internally ‘“short-circuiting’’ the diaphragm
to a large extent. Therefore, the total transport of gas through the
diaphragm usually is considerably less than might otherwise be antici-
pated. For example, when 2 or 3 in. of diatomaceous earth was rammed
into a 1-in. porcelain tube, one end of which was left open to the atmos-
phere and heated to 1000°C and the other end closed and connected to a
manometer, the pressure fell in a few minutes to 1 cm Hg less than atmos-
pheric. When both ends were left open to the atmosphere, the rate of
flow of air was about 20 cc/min. Most commercie! bricks showed the
effects to only about one-tenth the magnitude observed for diatomaceous
earth. This effect may become important in industrial furnaces when it
is necessary to maintain a controlled atmosphere, as in annealing or
heat-treating.

Distribution of Velocities. Thus far, our simplified picture of gas
molecules as mass points (since collisions have not been considered), one-
third of which move in each of the three directions with a single constant
velocity (at a given temperature), has led to several fruitful results. A
more complete picture considers the molecules to have finite diameter and
to move in all possible directions with all velocities but still does not con-
sider them to occupy an appreciable fraction of the space or to have any
forces acting between them. Some of the results of this extended kinetic
theory will be given without derivation.

At constant temperature the probability that a given molecule has a
velocity u at any instant is proportional to e~™**%*7 where k is Boltz-
mann’s constant, that is, R, the gas constant, divided by N, Avogadro’s
number. If we let n, be the number of molecules with velocity between
zero and u, then dn, is the number having velocity between u and u + du,
which is clearly proportional to the above probability. A plot of dn,/du
vs. u is shown in Fig. 2-1. This ordinate has been chosen, since it is pro-
portional to the probability of a given u and hence to the nrumber of mole-
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way: To a steam engineer interested in the properties of water substance
in the vicinity of its critical point, van der Waals’ and Thomson’s concept
sheds considerable light, but to the metallurgist, interested in metals
slightly above their melting point, the concept of the continuity between
gaseous and liquid states contributes little but the incorrect inference
that the atoms of the molten metal behave in the random manner charac-
teristic of gases. For the present it will suffice to mention that the chemi-
cal forces between atoms or molecules are of very short range and play a
predominant role in condensed phases (liquids or solids) but a very minor
role in gases at a pressure of 1 atm or less.

In most metallurgical operations, involving gases at a pressure in the
vicinity of 1 atm and particularly at elevated temperature, the ideal-gas
law is adequate to describe the pressure-volume relations. As a general
rule it may be expected that at low temperature the departures from this
law are more pronounced for gases with higher boiling point. Thus, the
following series is arranged in order of increasing boiling point: hydrogen,
carbon monoxide, nitrogen or oxygen, carbon dioxide, water; and this is
also the order of increasing deviation from ideality at low temperature.
In the vicinity of room temperature and pressure the departure of carbon
dioxide from ideality is 0.6 per cent (i.e., the volume occupied by a mole
is 0.6 per cent less than that calculated from the ideal-gas law), and that
of carbon monoxide is 0.1 per cent. If 100 cc of pure carbon monoxide is
burned to carbon dioxide, as is done in gas analysis, only 99.5 cc of carbon
dioxide is obtained, thus resulting in 7 per cent error in the analysis if no
correction is made. Such a departure from ideality at low temperature
is attributable principally to the intermolecular forces represented by the
a constant of van der Waals’ equation. Since these are the same forces
which hold a liquid together, it is readily seen why these departures corre-
late with the boiling point and why they are negative in sign in the sense
that the observed volume is less than the ideal-gas volume. At high tem-
perature (steelmaking temperature) the departure from ideality becomes
smaller but now is attributable principally to the molecular size, repre-
sented by van der Waals’ b constant, and is therefore positive. As only
the simpler (smaller) molecules are stable at such temperatures, the
departures from ideality cannot be expected to exceed 0.01 to 0.02 per
cent. At some intermediate temperature the positive and negative effects
are equal and the gas behaves as a perfect gas up to a pressure of many
atmospheres.

GAS MIXTURES

When more than one component is present in a phase under considera-
tion, the state is obviously not completely specified unless the relative
amounts of the various components are designated. Of the several ways
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For n = 2, i.e., the second shell, there are eight possible sets of quantum
numbers:
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Table 3-2 shows the number of electrons in the shells and subshells, <.e.,
those with various values of n and [, for each of the chemical elements.
It will be noted that the maximum tota! number of electrons in any shell
is 2(n)? or 2, 8, 18, 32, . . . . Strictly this table refers to an isolated
atom, 7.e., one with no other atom in the vicinity. The arrangement
given in each case corresponds to the lowest possible energy state, and
hence the most stable state, for a given number of orbital electrons.
This is seen from the fact that in the first three periods no electron with
higher value of n (corresponding to higher energy) appears until all possi-
ble lower quantum states are occupied. Although 7 is called the principal
quantum number in the sense that it is predominant in defining the energy
state, the other quantum numbers also define a contribution to the energy.
Thus, although the lowest energy state is always the most stable, it does
not always happen that lower shells are completely filled before a higher
one may be occupied; electrons enter the fourth and higher shells before
the preceding ones are completely filled. This phenomenon gives rise to
the so-called transition elements of the long periods (scandium through
nickel and yttrium through palladium) and also to the group of elements
known as the rare earths. The arrangement of Table 3-2 is quite con-
sistent with the periodic chart of Table 3-1, it being noted that elements
with electrons only with principal quantum number 1 fall in the first
period, those with electrons of principal quantum number 2 (but no
greater) fall in the second period, etc. Also the group number corre-
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The symbol 1| indicates a pair of atomic or nonbonding electrons, ® a
bonding electron, and o a metallic orbital, normally open and accommo-
dating the resonance. The second formulation, Sn B, may be imagined
as derived from the first, Sn 4, by the dropping of one bonding electron
from 5p to 5s, forming there an electron pair; this leaves a vacant orbital
in Sn B. By a similar step Sn C may be imagined as derived from Sn B;
it will be noted that the configuration Sn C corresponds to that given for
an isolated Sn atom in Table 3-2. Gray tin with its diamond-type struc-
ture and absence of metallic properties is assumed to consist exclusively
of tetravalent Sn A. White tin might at first be thought to consist
exclusively of bivalent Sn B atoms, as Sn B possesses the two require-
ments for the metallic bond—bonding electrons and an extra orbital.
In accord with the principle mentioned in the preceding paragraph, how-
ever, only three-quarters of the atoms need have an extra orbital—the
energy of two resonating bonds being roughly the same as that of four
nonresonating bonds. Hence it seems likely that white tin is composed of
75 per cent Sn B atoms and 25 per cent Sn A atoms, leading to a valence
of 3)(2) + (3)(4) = 2.5. This valence seems in accord with the proper-
ties of white tin, in particular with the valence (2.44, given later in Table
3-4) derived from the interatomic distances with the aid of Eq. (3-1), as
will be discussed later in this chapter. It seems worth noting at this
point that Pauling in his later work considers lead in the pure state to have
a valence of 2.0 rather than 2.5, all atoms being analogous to Sn B with
none of the A type; this is in accord with the softer and more metallic
nature of lead.

One more example will be given. - As in the case of tin, possible elec-
tronic configurations for zinc are shown below.

Valence 3d 4s 4p
Znd | 6 (Nl fleele|leee
7Zn B 4 TAUAN eje| 000
Zn C 2 T 11N N|el @00
Zn D 0 Tt du{t] ooo

Clearly, metallic zinc cannot consist exclusively of Zn A atoms, for these
have no extra orbitals to accommodate resonance. Similarly Zn D is
excluded, as it has no bonding electrons at all. It might be expected that
metallic Zn consists principally of Zn B atoms, as this type has the largest
number of bonding electrons consistent with an extra orbital to accommo-
date resonance. In fact Pauling now considers that metallic zinc con-
sists nearly entirely of these B type atoms, corresponding to a valence
of 4. '





