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2 
n + n -6 =0 

(n + 3)(n-2) = O, n=2 

Overall diameter of the conductor, D =(1 + 2n) d =(1 + 4-) x 29 =14.5 mm 

The equivalent cross-section of a stranded conductor is the a.ea of cross-section of a solid 
conductor of the same material and length as the stranded co ductor and having the same 
resistar.ce at the same temperature. For convenience, the conductCIs are identified by their code 
names .lssigned by the manufacturers. Usually names of some animals, birds or flowers are used. 

3.2 1 "PES OF CONDUCTORS 

Hard-drawn copper, hard-drawn aluminium, and steel-cored alu::ninium conductors are most 
commooly used. In addition to these, various other materials are used for making conductors 
but the ,r use is limited. Some of the important types of conduct~s are given in the discussion 
as foHews , 

3.2.1 Hard-Drawn Copper Conductors 

Copper for overhead lines is hard-drawn to give a relatively high tensile strength, It has a high 
electric:ll conductivity, long life, and high scrap value, Other prcperties of hard-drawn copper 
are given in Table 3.1 along with the properties of hard-drawn a1 minium. Copper conductor is 
most suitable for distribution work where spans are short and tapings are more. 

Table 3.1. Electrical and Mechanical Characteristics of Hard-D:awn Aluminium and Copper 
Wires 

Hard-d -awn Hard-drawn 
aluminiAm copper 

Conductivity at 20°C IACS* 


Resisti'v'ity at 20°C (microhm-cm) 


Resisti ',ity temperature coefficient (microhm-cm 0c) 


Consta:lt mass temperature coefficient of resistance 

per C C at 20°C 

Coeffic ient of linear expansion per DC 


Densit~ at 20°C (gm/cm3) 


Ultima:e tensi le strength (kgflmm2) 


Final modulus of elasticity (kgflmm2) 


61 

2.8264 

0.0115 

0.0040:: 

2.3 x lC-5 

2.703 

16.21 

7000 a~rage 

97.4 

1.774 

0.00681 

0.00381 

1.7 X 10-5 

8.89 

35-47 

12700 average 

* Intenutional Annealed Copper Standard 

3.2.2 Cadmium Copper Conductor 

The ter sile strength of copper is increased by approximately 50 ;>er cent by adding about 0 .7 
to 1.0 ?er cent cadmium to it. The conductivity is, however, re uced by about 15 to 17 per 
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Combination of Eqs. (4.11.1) and (4.11.2) gives 

V ... (4.11.3)gx =x In (Rlr) Vim 

The maximum stress will occur at the smallest radius, i.e., for x =r. The stress is a maximum 
at the surface ofconductor, or in other words, the inner most layer of the dielectric is s"Ubjected 
to a maximum stress. The maximum stress is given by 

V 
gmax =	--R- Vim ... (4.11.4) 

rln­
r 

When x =R, the stress will be a minimum which indicates that stress has a minimum value 
at the sheath. The minimum value is given by 

V 
gmin =--- V1m 	 ...(4.11.5) 

Rln R 

r 


Also, 	 .. . (4.11.6) 

The el~ctric stress in a belted cable cannot be calculated accurately due to non-unifonnity 
of the dielectric and the distortion in the electrostatic field. . 

The present day tendency is to design high voltage cables on the basis of a fixed maximum 
value of operating stress. The stress is usually expressed in kilovolts per mill imetre. Eq. (4.11.4) 
is then utilized to determine the thickness of insulation necessary for a given diameter of 
conductor. It is clear from Eq. (4.11.4) that greater the value of permissible stress the lesser 
will be the insulation thickness. It is desirable to choose a higher value of operating stress in 
order to have a reduced thickness of insulation and, therefore, a reduced size of cable. Since a 
smaller cable size affords more economy, there is a tendency to increase the operating stresses 
to their highest values without the failure to cable either under actual operating conditions or 
during its approval specified tests . 

Considerably improvements have been made in developing high strength paper, conductor 
screening and manufacturing techniques to achieve the objective of operating the cable at 
maximum stress levels. 

Most Economical Size of Cable 

Maximum potential gradient, gmax =	~ 

rln ­

r 

If V and R are constant and r is made variable the expression for gmax has a minimum value 
when r In (Rlr) is a maximum. This occurs when 

d(R) d- , r In - =0 ; - (r In R - r In r) =0 
dr l r dr 


1 R R
In R - r . - - In r = 0 . In - = 1 =In e . - =e =2.718 r ' r ' r 
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4. 	 Larger and stronger steel pipes are needed for bigger sizes of conductor. The pipes have 

to withstand gas pressures of the order of l.725 x 106 N/m2
. 

The pipe may as well be filled with oil, which although more costly than nitrogen gas, permits 
higher dielectric operating stresses than the cheaper gas filling. 

4.28 COMPRESSED GAS INSULATED CABLES (GIC) 

In a compressed gas insulted cable, high pressure sulphur 
hexafluoride (SF6) gas fills the small spaces in oil­
impregnated paper insulation and suppresses the 
ionization. 

The conductors in gas insulated cables consist of 
hollow aluminium tubes rather than solid rods in order 
to have greater rigidity, lower electrical surface stress, 
and lower ac-dc resistance ratio. They are subject to 
severe mechanical, thermal and electrical stresses. It is, 
therefore, necessary to hold these conductors in position 
by spacers. Three types of spacers are used in rigid gas 
insulted cables. They are (a) disc type, (b) cone type, 
and (c) post type as shown in Fig. 4.27. 

The spacers are made from epoxy resin insulating 
material. There are two possible configurations : 

(a) Isolated phase GIC 

(b) Single enclosure type three-phase GIC 

In an isolated phase GIC, the three phases are 
enclosed in separate enclosures, filled with SF6 gas at a 

pressure of 2 to 4 atmospheres (2 x 105 to 4 X 105 N/m2) 
as shown in Fig. 4.28 (a). When all the three phases are (e) 

put into the same enclosure (pipe or sheath), the 
Fig. 4.27. Spacers used in rigid isolated 

configuration is called single-enclosure three-phase GIC phase gas insulated cables. (a) Disc, (b) 
[Fig. 4.28 (b)]. The enclosure is filled with SF6 gas at a Cone, (c) Post. 
pressure of 2 to 4 atmospheres. The enclosure is made 
from an aluminium alloy for greater mechanical strength. 

T e choice between the GIC configurations is made on space and economic considerations. 
An isolated phase system requires (a) larger quantity of aluminium for enclosure pipes and 
(b) wider trenches. The rigid three-phase GIC system provide economies in metal consumption 
and trench width, but its current-carrying capacity is less than an isolated GIC system. 

Most of the gas cables presently in use consist of three separate coaxial lines assembled from 
rigid pipes of aluminium alloy. 

EHVIUHV lines insulated with sulphur hexafluoride (SF6) gas are being used extensively for 
voltages above 132 kV upto 1200 kV. 

GIC systems are very popular for short lengths, river crossings, and highway crossings, etc. 
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Solution 

Let C represent the self capacitance of each unit. The 
capacitances of the link pins to earth and to the line will. 
therefore. be 0.2C and O.lC respectively. The capacitances, 
voltages and currents are shown in Fig. 5.16. 

(a) 	We have 

It =VI (j 00 C). la =VI (j (0) (0.2C) 

il =(V - vl)j 00 (0. 1C) 

h=II+la -il 

= vlj 00 C + 0.2vd 00 C - 0.1 (V - vl)j 00 C Fig. 5.16. 

= j 00 C (1.3vI - 0.1 V) 

h
V2 =--:--C = 1.3vI - 0. 1V

JOO 
Ib =(VI + V2) x D.2 j ':0 C = (VI + 1.3vI - 0.1 V) x 0.2j 00 C =j 00 C (0.46vI - 0.02V) 

h =V3 x O.l} 00 C 

h =h +lb - h 

=}ooC (1.3vI - 0.1 V) + jOO C (D.46vI - 0.D2V) - 0.1 jOOC V3 


=}ooC (1.76vI - D.l2V - 0.1 V2) 


h

V3 = --:--C =1.76vI - ::>.l2V - 0.1 V3

JOO 


V1 = 1.76vI _ 0.12V =1.6vI _ 0.109V 

1.1 	 1.1 

Also, 	 VI + V2 + V3 =V 

VI + 1.3vI - 0.1 V + 1.6vI - 0. 109V =V 

1.209
3.9v1 = 1.209V. \'1 =~ V =0.31 V 

V2 =1.3vI - 0.1 V =1.3 x 0.31 V - 0.1 V .= 0.303V 


V3 = 1.6vI - 0.109V =1.6 x 0.31 V - 0.109V = 0.387V 


String efficiency = 3~3 =3 x 0~87V =0.8613 pu 

(b) With the grading ring 

The capacitance of the lower link pin now becomes 0.35C instead of 0.1 C. 
Therefore. 

i2 =V3 x 0.35 jOOC 

and h =h + Ib - i2 =jOOC (1.76v, - 0.12V - 0.35v3) 
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10 Electrical Power Systems 

Example 1.5 The load-duration curve for a system is shown 
15

in Fig. 1.2. Determine the load factor. 

Solution ~ 10 

From the load-duration curve, the actual energy consumed .:: 
l:J 

=15 x 8 + lO x 8 + 5 x 8 =240 MWh .3t1l 
5 

240 
A verage load = 24 =10 MW 

o 8 16 
Maximum demand = 15 MW Time in hours 

Load factor = a:erage load =lQ =0.666 Fig. 1.2. 
maxImum demand 15 

Example 1.6 The yearly load duration curve of a power plant is a straight line. The maximum 
load is 500 MW and the minimum load is 400 MW. The capacity of the plant is 750 MW. 
Find (a) plant capacity fac tor, (b) load factor, (c) utilization factor, (d) reserve capacity. 

Solution 

500 +400
A verage annual load = 2 =450 MW 

. f average annual load 450 O ' 
Capaclty actor = --: = - = .b 

capacIty of the plant 750 


Load factor = a:erage load = 4:50 = 0.9 

maxImum demand 500 


TJ '1' . f - max imum demand - 500 - - ' 67 

tt lzatlOn actor - . f h i ' - 750 - U.ocapacIty 0 U.e p am 

Reserve capacity = plant capacity - maximum demand = 750 - 500 '= 250 MW 

Example 1.7 A power system had the daily load curve given by the following table: 

Time 

12.00 night to 2 a.m. 

2 a.m. to 8 a.m. 

8 a .m. to 12.30 noon 

12.30 noon to 1.00 p.m. 

1.00 p.m. to 6 p.m. 

6 p.m. to 12 night 

Plot the following curves : 

(a) Chronological load curve 

(b) Load-dt.:ration curve 

Load in MW 

20 

10 

50 

40 

50 

70 


