$n^{2} + n - 6 = 0$ (n + 3) (n - 2) = 0, n = 2

Overall diameter of the conductor, $D = (1 + 2n) d = (1 + 4) \times 29 = 14.5$ mm

The *equivalent cross-section* of a stranded conductor is the area of cross-section of a solid conductor of the same material and length as the stranded conductor and having the same resistance at the same temperature. For convenience, the conductors are identified by their code names assigned by the manufacturers. Usually names of some animals, birds or flowers are used.

3.2 1 YPES OF CONDUCTORS

Hard-drawn copper, hard-drawn aluminium, and steel-cored aluminium conductors are most commonly used. In addition to these, various other materials are used for making conductors but their use is limited. Some of the important types of conductors are given in the discussion as follows.

3.2.1 Hard-Drawn Copper Conductors

Copper for overhead lines is hard-drawn to give a relatively high tensile strength. It has a high electrical conductivity, long life, and high scrap value. Other properties of hard-drawn copper are given in Table 3.1 along with the properties of hard-drawn aluminium. Copper conductor is most suitable for distribution work where spans are short and tappings are more.

Table 3.1. Electrical and Mechanical Characteristics of Hard-Diawn Aluminium and Copper Wires

	Hard-d-awn alumini-m	Hard-drawn copper
Conductivity at 20°C IACS*	61	97.4
Resistivity at 20°C (microhm-cm)	2.8264	1.774
Resistivity temperature coefficient (microhm-cm °C)	0.0115	0.00681
Constant mass temperature coefficient of resistance per °C at 20°C	0.00403	0.00381
Coefficient of linear expansion per °C	2.3×10^{-5}	1.7×10^{-5}
Density at 20°C (gm/cm ³)	2.703	8.89
Ultimate tensile strength (kgf/mm ²)	16.21	35-47
Final modulus of elasticity (kgf/mm ²)	7000 average	12700 average

* International Annealed Copper Standard

3.2.2 Cadmium Copper Conductor

The tensile strength of copper is increased by approximately 50 per cent by adding about 0.7 to 1.0 per cent cadmium to it. The conductivity is, however, reduced by about 15 to 17 per

Combination of Eqs. (4.11.1) and (4.11.2) gives

$$g_x = \frac{V}{x \ln (R/r)}$$
 V/m ...(4.11.3)

The maximum stress will occur at the smallest radius, i.e., for x = r. The stress is a maximum at the surface of conductor, or in other words, the inner most layer of the dielectric is subjected to a maximum stress. The maximum stress is given by

$$g_{\max} = \frac{V}{r \ln \frac{R}{r}} \quad V/m \qquad \dots (4.11.4)$$

When x = R, the stress will be a minimum which indicates that stress has a minimum value at the sheath. The minimum value is given by

$$g_{\min} = \frac{V}{R \ln \frac{R}{r}} \quad \text{V/m} \qquad \dots (4.11.5)$$

Also,
$$\frac{g_{\text{max}}}{g_{\text{min}}} = \frac{\kappa}{r}$$
 ...(4.11.6)

The electric stress in a belted cable cannot be calculated accurately due to non-uniformity of the dielectric and the distortion in the electrostatic field.

The present day tendency is to design high voltage cables on the basis of a fixed maximum value of operating stress. The stress is usually expressed in kilovolts per millimetre. Eq. (4.11.4) is then utilized to determine the thickness of insulation necessary for a given diameter of conductor. It is clear from Eq. (4.11.4) that greater the value of permissible stress the lesser will be the insulation thickness. It is desirable to choose a higher value of operating stress in order to have a reduced thickness of insulation and, therefore, a reduced size of cable. Since a smaller cable size affords more economy, there is a tendency to increase the operating stresses to their highest values without the failure to cable either under actual operating conditions or during its approval specified tests.

Considerably improvements have been made in developing high strength paper, conductor screening and manufacturing techniques to achieve the objective of operating the cable at maximum stress levels.

Most Economical Size of Cable

Maximum potential gradient,
$$g_{\text{max}} = \frac{V}{r \ln \frac{R}{r}}$$

If V and R are constant and r is made variable the expression for g_{max} has a minimum value when $r \ln (R/r)$ is a maximum. This occurs when

$$\frac{d}{dr} \left(r \ln \frac{R}{r} \right) = 0 ; \qquad \frac{d}{dr} \left(r \ln R - r \ln r \right) = 0$$

$$\ln R - r \cdot \frac{1}{r} - \ln r = 0 ; \qquad \ln \frac{R}{r} = 1 = \ln e ; \qquad \frac{R}{r} = e = 2.718$$

4. Larger and stronger steel pipes are needed for bigger sizes of conductor. The pipes have to withstand gas pressures of the order of 1.725×10^6 N/m².

The pipe may as well be filled with oil, which although more costly than nitrogen gas, permits higher dielectric operating stresses than the cheaper gas filling.

4.28 COMPRESSED GAS INSULATED CABLES (GIC)

In a compressed gas insulted cable, high pressure sulphur hexafluoride (SF_6) gas fills the small spaces in oilimpregnated paper insulation and suppresses the ionization.

The conductors in gas insulated cables consist of hollow aluminium tubes rather than solid rods in order to have greater rigidity, lower electrical surface stress, and lower ac-dc resistance ratio. They are subject to severe mechanical, thermal and electrical stresses. It is, therefore, necessary to hold these conductors in position by spacers. Three types of spacers are used in rigid gas insulted cables. They are (a) disc type, (b) cone type, and (c) post type as shown in Fig. 4.27.

The spacers are made from epoxy resin insulating material. There are two possible configurations :

(a) Isolated phase GIC

(b) Single enclosure type three-phase GIC

In an *isolated phase GIC*, the three phases are enclosed in *separate enclosures*, filled with SF₆ gas at a pressure of 2 to 4 atmospheres $(2 \times 10^5 \text{ to } 4 \times 10^5 \text{ N/m}^2)$ as shown in Fig. 4.28 (a). When all the three phases are put into the same enclosure (pipe or sheath), the configuration is called *single-enclosure three-phase GIC* [Fig. 4.28 (b)]. The enclosure is filled with SF₆ gas at a pressure of 2 to 4 atmospheres. The enclosure is made from an aluminium alloy for greater mechanical strength.

The choice between the GIC configurations is made on space and economic considerations. An isolated phase system requires (a) larger quantity of aluminium for enclosure pipes and (b) wider trenches. The rigid three-phase GIC system provide economies in metal consumption and trench width, but its current-carrying capacity is less than an isolated GIC system.

Most of the gas cables presently in use consist of three separate coaxial lines assembled from rigid pipes of aluminium alloy.

EHV/UHV lines insulated with sulphur hexafluoride (SF₆) gas are being used extensively for voltages above 132 kV upto 1200 kV.

GIC systems are very popular for short lengths, river crossings, and highway crossings, etc.

Fig. 4.27. Spacers used in rigid isolated phase gas insulated cables. (a) Disc, (b) Cone, (c) Post.

Solution

Let C represent the self capacitance of each unit. The capacitances of the link pins to earth and to the line will, therefore, be 0.2C and 0.1C respectively. The capacitances, voltages and currents are shown in Fig. 5.16.

(a) We have

....

Also,

and

$$I_{1} = v_{1} (j \omega C), I_{a} = v_{1} (j \omega) (0.2C)$$

$$i_{1} = (V - v_{1}) j \omega (0.1C)$$

$$I_{2} = I_{1} + I_{a} - i_{1}$$

$$= v_{1} j \omega C + 0.2v_{1} j \omega C - 0.1 (V - v_{1}) j \omega C$$

$$= j \omega C (1.3v_{1} - 0.1V)$$

$$v_{2} = \frac{I_{2}}{j \omega C} = 1.3v_{1} - 0.1V$$

$$I_{b} = (v_{1} + v_{2}) \times 0.2 j \omega C = (v_{1} + 1.3v_{1} - 0.1V) \times 0.2j \omega C = j \omega C (0.46v_{1} - 0.02V)$$

$$i_{2} = v_{3} \times 0.1j \omega C$$

$$I_{3} = I_{2} + I_{b} - i_{2}$$

$$= j\omega C (1.3v_{1} - 0.1V) + j\omega C (0.46v_{1} - 0.02V) - 0.1 j\omega C v_{3}$$

$$= j\omega C (1.76v_{1} - 0.12V - 0.1v_{2})$$

$$v_{3} = \frac{I_{3}}{j\omega C} = 1.76v_{1} - 0.12V - 0.1v_{3}$$

$$v_{3} = \frac{I.76v_{1}}{1.1} - \frac{0.12V}{1.1} = 1.6v_{1} - 0.109V$$

$$v_{1} + v_{2} + v_{3} = V$$

$$v_{1} + 1.3v_{1} - 0.1V + 1.6v_{1} - 0.109V = V$$

$$3.9v_{1} = 1.209V, \quad v_{1} = \frac{1.209}{3.9} V = 0.31V$$

$$v_{2} = 1.3v_{1} - 0.1V = 1.3 \times 0.31V - 0.1V = 0.303V$$

$$v_{3} = 1.6v_{1} - 0.109V = 1.6 \times 0.31V - 0.109V = 0.387V$$
String efficiency $= \frac{V}{3v_{3}} = \frac{V}{3 \times 0.387V} = 0.8613$ pu

(b) With the grading ring

The capacitance of the lower link pin now becomes 0.35C instead of 0.1C. Therefore,

$$i_2 = v_3 \times 0.35 \, j\omega C$$

 $I_3 = I_2 + I_b - i_2 = j\omega C \, (1.76v_1 - 0.12V - 0.35v_3)$

Contents

Pref Pref	face to face to	the Fifth Edition
1	Load	Characteristics
	1.1	Introduction /
	1.2	Advantages of electrical energy 1
	1.3	Load 1
	1.4	Connected load 2
	1.5	Demand 2
	1.6	Demand interval 2
	1.7	Maximum demand (MD) or peak load 2
	1.8	Demand factor (DF) 2
	1.9	Average load or average demand 3
	1.10	Load factor 3
	1.11	Diversity factor F_D 3
	1.12	Load diversity 4
	1.13	Utilization factor F_{μ} 4
	1.14	Plant factor or capacity factor 4
	1.15	Loss factor F_{LS} 5
	1.16	Load curve 5
	1.17	Informations obtained from load curves 5
	1.18	Utility of load curves 6
	1.19	Load-duration curve 6
	1.20	Procedure for plotting the load-duration curve 6
	1.21	Informations available from load duration curve 6

x Contents

2	Supply	y System	s
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	Introduct Basic str Distribut Subtrans Transmis Layout of System i System v Working Choice of Standard Classific Compari 2.13.1 2.13.2	tion 16 ucture of an AC power system 16 ion voltage level 16 mission level 17 ssion level 17 of a power supply network 17 interconnection 18 voltage and transmission efficiency 19 voltage 20 of the next high voltage 20 ization of transmission voltages 21 ation of lines 21 son of conductor costs in various systems 22 Criterion of equal maximum voltage to earth 23 Criterion of equal maximum voltage between line conductors 27
3	Condi	ictors .	
	3.1	Introduct	tion 36
	3.2	Types of	f conductors 37
		3.2.1	Hard-drawn copper conductors 37
		3.2.2	Cadmium copper conductor 37
		3.2.3	Steel-cored copper conductor (SCC) 38
		3.2.4	Copperweld conductor 38
		3.2.5	Hard-drawn aluminium conductor or all-aluminium conductor (AAC) 38
		3.2.6	Aluminium conductor steel reinforced (ACSR) 38
		3.2.7	Smooth body ACSR conductor 39
		3.2.8	Expanded ACSR conductor 40
		3.2.9	All-aluminium alloy conductor (AAAC) 40
		3.2.10	ACAR conductor 40
		3.2.11	Alumoweld conductor 41
		3.2.12	Phosphor-bronze conductor 41
	33	J.Z.13 Resistant	ce 41
	3.5	Skin effe	ect 42
	3.5	Equivale	nt conner section 43
	3.6	Kelvin's	economy law 43
	3.7	Modified	d Kelvin's law 44
	3.8	Graphica	al representation 45
	3.9	Economi	c current density 46
	3.10	Determin	nation of losses 49
	3.11	Limitatio	ons of Kelvin's law 52

4	Power	Cables
	4.1	Introduction 55
	4.2	Cable construction 56
	4.3	Conductors 56
	4.4	Insulation 57
	45	Sheath 58
	4.6	Protective covering 58
	47	Belted cable 59
	4.8	Screened cable 59
	49	Cable impregnation 60
	4.10	Non-drained cables 60
	4.10	Dielectric stress 60
	4.12	Grading of cables 64
	4.13	Cable capacitance 70
	4.14	Charging current or canacitive current 70
	4 15	Canacitances in a three-core belted cable 70
	4.15	Measurement of C, and C, 72
	4.17	Inculation resistance 74
	4.17	Dialactric loss 75
	4,10	4.18.1 Conductivity of insulation 75
		4.18.2 Dialactria hysteresis or dialactria absorption 75
		4.18.2 Dielectric hysicles is of dielectric absorption 75
		4.18.4 Dielectric power loss 76
	4 10	4.16.4 Dielectric power loss 70
	4.19	Sliess distribution in a HyDC cable 76
	4.20	Proximity affect 70
	4.21	Current rating of cables 79
	4.22	4.22.1 Normal or sofe current carrying capacity 70
		4.22.1 Normal of safe current carrying capacity 79
		4.22.2 Over current rating 87
	1 22	4.22.5 Short-cheun failing 62 Thermal breakdown 82
	4.23	Soil thermal resistivity 82
	4.24	Extra high voltage cables 82
	4.25	Oil filled cables 83
	4.20	4.26.1 Advantages of self-contained oil-filled cables . 85
		4.26.2 Advantages of oil-filled cables 85
		4.26.3 Oil for cables 85
	1 27	Gas-pressure cables 86
	7.21	4.27.1 External gas-pressure cables 86
		4.27.2 Internal gas-pressure cables 86
	4.28	Compressed gas insulated cables (GIC) 87
	4.29	Advantages of GIC over oil-filled cables 88
	4.30	Cross-linked polyethylene (XLPE) cables 89
	4.31	Power cable installation 89

5	Line 1	Insulators and Supports
	5.	Introduction 93
	5.2	Types of insulator 95
		5.2.1 Pin type insulator 95
		5.2.2 Suspension insulators 96
		5.2.3 Strain or tension insulators 97
	5.3	V-strings 98
	5.4	Insulator materials 98
		5.4.1 Polymer insulator 99
	5.5	Voltage distribution and string efficiency 99
		5.5.1 Alternative method 101
	5.£	Improving voltage distribution 103
	5.7	Selection of insulation 112
	5.8	Line supports 113
	5.9	Wood poles 1/4
	5.10	Concrete poles 114
	5.11	Steel poles 1/5
	5 12	Supporting towers 115
		5.12.1 Self-supporting towers 115
		5 12 2 Guved or staved towers 1/5
	5 13	Vibration of conductors 117
	5.125	513.1 Resonant vibration 117
		5.13.2 Galloping 1/8
		5.13.3 Dancing and steel-jump 118
	5 1 1	Effects of vibration on the transmission line 118
	5 15	Prevention of vibration 1/9
	5.15	5.15.1 Armour rods 119
		5.15.2 Stockbridge damper 1/9
	5 1 5	Shacing of conductors 120
	5.15	
6	Sag a:	nd Tension
	6.1	Introduction 123
	6.2	Sag and tension 123
	6.3	Parabolic method 124
	6.4	Catenary method 125
	6.5	Accuracy of results 128
	6.6	Loading on conductors 128
	6.7	Conductor clearance from ground 131
	6.8	Erection sag and tension 132
	<i>(</i>)	6.8.1 Factors affecting the sag 133
	6.9	Spans or unequal length 13/
	0.10	Sag and tension charts 138
	0.1	Supports at unequal levels 139
	6.17	Propagation of the sec template 145
	6.14	Method of using the template 145
	6.15	Feenomic span length 147
	0.1.	Lononne span length 177

.

7	Line	Parameters
	7.1	Introduction 151
	7.2	Line inductance 151
	7.3	Inductance of a conductor 152
		7.3.1 Internal inductance 152
		7.3.2 External inductance 154
	7.4	Flux linkages in a group of conductors 155
	7.5	Inductance of a two-wire line 157
	7.6	Inductance of symmetrical three-phase line 159
	7.7	Inductance of unsymmetrical three-phase line 160
	7.8	Method of geometric mean distances 163
	7.9	Two-wire line 165
	7.10	Symmetrical three-phase line 165
	7.11	Inductance of unsymmetrical three-phase line 166
	7.12	Inductance of double-circuit single-phase line 169
	7.13	Inductance of double-circuit three-phase lines 170
	7.14	Special cases of double-circuit lines 172
	7.15	Inductance of bundled conductor lines 174
	7.16	Line capacitance 178
	7.17	Electric field of a long straight conductor 178
	7.18	System of conductors 179
	7.19	Capacitance of two-wire line 180
	7.20	Capacitance of the symmetrical three-phase line 182
	7.21	Capacitance of an unsymmetrical three-phase transposed line 183
	7.22	Capacitance of a three-phase single-circuit untransposed line 186
	7.23	Charging current 187
	7.24	Capacitance by GMD method 188
	7.25	Capacitance of double-circuit three-phase line 189
	7.26	Effect of earth on the line capacitance 190
	7.27	Effect of earth on capacitance of single-circuit three-phase line with transposition 193
	7.28	Capacitance of bundled conductor lines 195
	7.29	Shunt conductance 198
	7.30	Interference between power and communication lines 198
	7.31	Electromagnetic effect 198
	7.32	Electrostatic effect 199
8	Per U	Unit Representation
	8.1	Introduction 213
	8.2	Change of base 216
	8.3	Per unit impedance of a transformer 216
	8.4	Per unit quantities in three-phase systems 219
	8.5	Selection of base values 221
	8.6	Base quantities in terms of KV and MVA 221
	8.7	Per unit load impedance 222

	8.8 8.9 8.10	Advantages of per unit representation 224 One-line diagrams 225 Preparation of impedance diagrams 226
9	Short	and Medium Lines
5	9.1	Introduction 238
	9.2	Classification of lines 238
	9.3	Short single-phase line 239
	9.4	Phasor diagram 240
	9.5	Short three-phase line 241
	9.6	Transmission line as a two-port network 242
		9.6.1 ABCD constants of a short line 243
	9.7	Line regulation 243
	0.0	9.7.1 Line regulation for short lines 243
	9.8	Line efficiency or transmission efficiency 244
	9.9	Medium lines 25/
	9.10	Nominal T model of a medium line 252
	2.1.1	9.11.1 Phasor diagram 253
	9.12	Nominal Π model of a medium line 254
		9.12.1 Phasor diagram 255
	9.13	Calculation of transmission efficiency and regulation of medium
		lines 256
10	Long	Transmission Lines
	10.1	Introduction 266
	10.2	Exact solution of a long line 266
	10.3	Physical interpretation of the long line equations 269
	10.4	Propagation constant 270
	10.5	Wavelength and velocity of propagation 271
	10.6	Characteristic impedance $Z_o = 271$
	10.7	Hyperbolic form of line equations 272
	10.8	Evaluation of ABCD parameters 273
	10.9	Surge impedance leading (SIL) 270
	10.10	Surge Impedance toaunig (SIL) 279
11	Gener	ral Network Constants
	11.1	Introduction 283
	11.2	Cascaded networks 284
	11.3	Relations between ABCD constants 286
	11.4	Output in terms of input 287
	11.5	Typical transmission networks 288
		11.5.1 Series impedence circuit 280
		11.5.1 Series impedance circuit 289 11.5.2 Shunt admittance circuit 289

11.5.3 Half T-network 289

		11.5.4 T-network 290
		11.5.5 П-network 29/
		11.5.6 Ideal transformer 292
		11.5.7 Actual transformer 292
		11.5.8 Transmission line 293
		11.5.9 Transmission line with transformers at both ends 294
	11.6	Networks in parallel 296
	11.7	Equivalent networks 298
	11.8	Equivalent T-network of a line 298
	11.9	Equivalent II networks of a line 299
	11.10	The nominal T- and Π-equivalent network of a line 299
	11.11	Experimental determination of ABCD constants 300
12	Power	Circle Diagrams
	12.1	Introduction 311
	12.2	Receiving-end voltage phasor diagram 311
	12.3	Phasor volt-amperes 312
	12.4	Receiving-end power circle diagram 312
	12.5	Analytical method 316
	12.6	Sending-end voltage phasor diagram 318
	12.7	Sending-end power circle diagram 318
	12.8	Analytical method 321
	12.9	Power transmitted over a line 323
	12.10	Per unit value circle diagrams 324
	12.11	Receiving-end per unit circle diagrams 324
	12.12	Sending-end per unit circle diagrams 326
	12.13	Universal power circle diagrams 327
	12.14	The use of universal power circle diagrams 328
13	Contr	ol of Voltage and Reactive Power
	13.1	Introduction 331
	13.2	Methods of voltage control 332
	13.3	Tap-changing transformers 333
		13.3.1 Off-load tap-changing transformer 333
	12.4	13.3.2 On-load tap-changing transformer 333
	13.4	Shunt reactors 555
	13.5	Sarias companyation 336
	13.0	Location of series canacitors 337
	13.7	Protective schemes for series capacitors 337
	13.9	Problems associated with series capacitors 338
	13.10	Series capacitor versus shunt capacitor 339
	13.11	Synchronous phase modifiers 339
		13.11.1 Rating of a phase modifier 340
	13.12	Static VAr systems (SVS) 347

	13.13 13.14 13.15 13.16 13.17 13.18 13.19	SVS schemes 348 Thyristor controlled reactor (TCR) 348 Thyristor switched capacitor (TSC) 348 FC-TCR type VAr compensator 349 TSC-TCR scheme 350 Advantages of SVS 351 Applications of SVS 351
14	Load	Flow Analysis
	14.1	Introduction 354
	14.2	Load flow problem 354
	14.3	Bus admittance matrix Y _{bus} 356
	14.4	Static load flow equations (SLFE) 363
	14.5	Methods of load flow solution 364
	14.6	Gauss-Seidel method using Y_{bus} 364
		14.6.1 Computation for load buses 366
		14.6.2 Computation for PV buses 367
	147	14.0.3 Acceleration factors 308
	14.7	Newton Rankson method for load flow solution 371
	14.9	Computational procedure for Newton-Raphson method 374
	14.10	Power flow through lines and slack bus power 376
	14.11	Decoupled load flow methods 376
	14.12	Fast decoupled load flow (FDLF) method 377
	14.13	DC load flow method 378
	14.14	Comparison of load flow analysis methods 379
15	Econo	omic Operation of Power Systems
	15.1	Introduction 384
	15.2	Incremental fuel cost 385
	15.3	Economic dispatch neglecting transmission losses 386
	15.4	Transmission loss as a function of plant generation 391
	15.5	General loss formula 393
	15.6	Optimum load dispatch considering transmission losses 394
	15.7	Iterative method of solving coordination equation 398
16	Symm	netrical Faults
	16.1	Introduction 404
	16.2	Effects of faults 405
	16.3	Purpose of fault analysis 405
	16.4	Simplifying assumptions 405
	16.5	Thevenin's equivalent circuit 406
	16.6	Short-circuit capacity, SCC 406
	16.7	short-circuit current 408

Content

	16.8	Star-delta and delta-star transformations 408
	16.9	Transient in a series R-L circuit 409
	16.10	Sudden short-circuit at the armature terminals of a three-phase
		generator 411
	16.11	Consideration of prefault load current 416
	16.12	Current-limiting reactors 417
		16.12.1 Construction of reactors 417
		16.12.2 Location of reactors 417
		16.12.3 Rating of reactors 419
	16.13	Short-circuit MVA in a tie-bus system 419
17	Symm	etrical Components
	17.1	Introduction 431
	17.1	Fortescue's theorem 431
	173	Phase sequence 431
	17.0	α_{-} operator $A32$
	17.5	Symmetrical components of an unbalanced three-phase system 432
	17.5	Component synthesis 433
	17.7	Component analysis 434
	17.7	Graphical method of determining sequence components 436
	17.0	Symmetrical components of current phasors 436
	17.1	Zero-sequence components of voltage 437
	17 11	General nature of zero-sequence currents 438
	17 12	Power in terms of symmetrical components 443
	17.12	Potential of neutral 447
	17.13	Dhase shift in star delta transformers 448
	17.14	Sequence impedences 440
	17.15	Sequence networks for fault calculations 450
	17.10	Sequence impedances of a transmission line 451
	17.17	Sequence impedances of synchronous machines 454
	17.10	Sequence networks of synchronous machines 455
	17.20	Zero-sequence networks of transformers
	17.20	Assembly of sequence networks of a power system 459
		Assembly of sequence networks of a power system (15)
18	Unsyn	nmetrical Faults
	18.1	Introduction 463
	18.2	Assumptions 464
	18.3	Sequence voltages of a generator 464
	18.4	Sequence voltages at a fault point 464
	18.5	General procedure 465
	18.0	Single line-to-ground (LG) fault 400
	10./	Double line to ground (LLC or DLC) foult 471
	10.0	Palanced three phase fault 474
	18.9	Dataticeu untee-phase fault 4/4 Comparison of single line to ground and three phase fault ourrents 400
	10.107	CONTRACTOR OF STREET OF STOLING AND THEE-UNASE FAULT CULTERIN 400

 19 Power System Stability	
 19.1 Introduction 486 19.2 Stability limits and power transmission capability 487 19.3 Infinite bus 487 19.4 Synchronous generator connected to an infinite bus 488 19.5 Power-angle curve 489 19.6 Representation of a T-circuit with a series circuit 490 19.7 Power-angle relations for general network configurations 491 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	6
 19.2 Stability limits and power transmission capability 487 19.3 Infinite bus 487 19.4 Synchronous generator connected to an infinite bus 488 19.5 Power-angle curve 489 19.6 Representation of a T-circuit with a series circuit 490 19.7 Power-angle relations for general network configurations 491 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.3 Infinite bus 487 19.4 Synchronous generator connected to an infinite bus 488 19.5 Power-angle curve 489 19.6 Representation of a T-circuit with a series circuit 490 19.7 Power-angle relations for general network configurations 491 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.4 Synchronous generator connected to an infinite bus 488 19.5 Power-angle curve 489 19.6 Representation of a T-circuit with a series circuit 490 19.7 Power-angle relations for general network configurations 491 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.5 Power-angle curve 489 19.6 Representation of a T-circuit with a series circuit 490 19.7 Power-angle relations for general network configurations 491 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.6 Representation of a T-circuit with a series circuit 490 19.7 Power-angle relations for general network configurations 491 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.7 Power-angle relations for general network configurations 497 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.8 Transfer impedance 492 19.9 Power-angle characteristic of a salient-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
 19.9 Power-angle characteristic of a safett-pole synchronous machine 498 19.10 Steady-state stability criterion 501 19.11 Transient stability 502 19.12 Swing equation 502 	
19.10 Steady-state stability 502 19.12 Swing equation 502	
19.12 Swing equation 502	
17.12 Owing equation 502	
1913 Swing curves 504	
19.14 <i>M</i> and <i>H</i> constants 504	
19.14.1 M constant 504	
19.14.2 H constant or per unit inertia constant 505	
19.14.3 H constant on a common base 506	
19.15 Equivalent system 506	
19.16 Equivalent M constant of two machines 506	
19.17 Equal-area criterion of stability 509	
19.17.1 Application to sudden increase in mechanical power input 511	
19.17.2 One of the parallel lines suddenly switched off 575	
19.18 System fault and subsequent circuit isolation 578	
19.18.1 System fault, circuit isolation and reclosing 527	
19.19 Numerical solution of swing equation (point-by-point solution) 525	
19.20 Methods of hipfoving stability 550	
20 Travelling Waves	3
20.1 Introduction 537	
20.2 Wave equation 537	
20.3 Characteristic impedance 541	
20.4 Energy and power of a surge 543	
20.5 Evaluation of surge impedance 544	
20.6 Velocity of travelling waves 545	
20.7 Incident and reflected waves 546	
20.8 Reflection of waves 547	
20.9 Transmission or retraction of waves 348	
20.10 Open-circuited line 557	
20.12 Line terminated in Z_0 551	

	20.13	Series reactive termination 551
	20.14	Parallel reactive termination 554
	20.15	Line terminated in a capacitor 555
	20.16	Junction of two dissimilar lines 556
	20.17	Effect of cable on surge 560
	20.18	Junction of several lines 561
	20.19	Repeated reflections 563
21	Overv	voltage Protection
	21.1	Introduction 574
	21.2	Internal overvoltages 574
	21.3	External overvoltages 575
	21.4	Mechanism of the lightning discharge 575
	21.5	Frequency of lightning flashovers 576
	21.6	Stroke currents 576
	21.7	Direct and induced strokes 577
	21.8	Wave shapes of stroke currents 577
	21.9	Overvoltage protection 577
	21.10	Overhead earth wire 578
	21.11	Rod gap 579
	21.12	Surge diverters 580
	21.13	Expulsion-type surge diverter 580
	21.14	Valve-type surge diverter 581
	21.15	Metal-oxide gapless surge diverters 582
	21.16	Advantages of ZnO diverters 584
	21.17	Location of surge diverters 584
	21.18	Selection of surge diverters 584
	21.19	Lightning performance of lines 585
	21.20	Basic impulse insulation level or basic insulation level (BIL) 585
	21.21	Volt-time characteristic (curve) 585
	21.22	Insulation coordination 586
22	Coron	a
	22.1	Introduction 589
	22.2	The phenomenon of corona 589
	22.3	Theory of corona formation 590
	22.4	The calculation of potential gradient 590
	22.5	Factors affecting corona 595
	22.6	Disruptive critical voltage 597
	22.7	Visual critical voltage 399
	22.8	Corona power loss OU
	22.9	Kadio and television interference (KI) 004
	22.10	Minimizing corona 004
		22.10.1 Bunaled conductors 003

23	High	Voltage Direct Current (HVDC) Transmission
	23.1	Introduction 608
	23.2	Classification of HVDC systems 609
	23.3	AC interconnection 6/2
	2010	23.3.1 Limitations of AC interconnection 612
		23.3.2 Advantages of DC interconnection 613
	23.4	Stability limits 6/3
	23.5	HVDC cable transmission 6/3
	23.6	Feonomic comparison 6/4
	23.7	Conversion of three-phase AC line to DC line 615
	23.8	Advantages of HVDC transmission 616
	23.9	Economic distances for HVDC transmission 617
	23.10	Components of an HVDC transmission system 6/8
	23.11	Converter station 6/8
	23.12	Converter unit 6/8
	23.13	Converter valves 620
	23.14	Converter transformers 620
	23.15	Filters 621
		23.15.1 AC filters 621
		23.15.2 DC filters 621
		23.15.3 High-frequency filters 621
	23.16	Reactive power source 621
	23.17	Smoothing reactor 621
	23.18	HVDC system pole 622
	23.19	Ground electrodes 622
	23.20	Back-to-back HVDC station (HVDC coupling station) 622
	23.21	Two-terminal HVDC system 623
	23.22	Multiterminal DC (MTDC) system 623
		23.22.1 Advantages of MTDC systems 623
		23.22.2 Application of MTDC systems 623
	23.23	DC circuit breakers 624
	23.24	Limitations of HVDC transmission 624
	23.25	Developments in DC technology 625
	23.26	Applications of HVDC transmission 625
	23.27	HVDC systems in India 625
24	Syster	n Neutral Grounding
	24.1	Introduction 627
	24.2	Ungrounded neutral system 627
	24.3	Arcing grounds 629
	24.4	Advantages of neutral grounding 629
	24.5	Methods of neutral grounding 630
	24.6	Solid grounding 630
	24.7	Resistance grounding 631
	24.8	Reactance grounding 632

.

Conter

	 24.9 Peterson coil grounding 632 24.9.1 Construction of Peterson coil 634 24.9.2 Rating of Peterson coil 634 			
		24.9.3 Advantages of Peterson coil grounding 634		
		24.9.4 Limitations of Peterson coil grounding 634		
	24.10	Grounding transformer 634		
	24.11	Choice of grounding 030		
25	ŝ			
	25.1 Introduction 639			
	25.2	Types of tariffs 640		
		25.2.1 Flat demand rate tariff 640		
		25.2.2 Straight-line meter rate tariff 040		
		25.2.3 Block meter rate tariff 641		
		25.2.4 Two-part tariff 641		
		25.2.5 Power factor tariff 641		
		25.2.6 Seasonal rate tariff 642		
		25.2.7 Peak-load tariff 642		
		25.2.8 Three-part tariff 642		
26	Power	Factor Improvement		
	26.1	Introduction 648		
	26.2	Disadvantages of a low power factor 648		
	26.3	Causes of low power factor 649		
	26.4 Power factor improvement 650			
	26.5	Power factor correction by static capacitors 650		
	26.6	Capacitor rating calculations 651		
	26.7	Power factor correction in three-phase systems 654		
	26.8	Advantages and limitations of static capacitors 657		
	26.9 Location of capacitors 658			
	26.10	Power factor correction by synchronous motors 658		
	26.11	Economics of power factor improvement 661		
		26.11.1 Most economical power factor when kW demand is constant 662		
		26.11.2 Most economical power factor when kVA demand is constant 663		
	26.12	Economics of supply of increased power demand 664		
27	Voltage Stability			
	27.1	Introduction 671		
	27.2	Classification of voltage stability 671		
		27.2.1 Large-distance voltage stability 672		
		27.2.2 Small-distance voltage stability 672		
	27.3	Rotor-angle stability and voltage stability 672		
	27.4	Voltage stability limit 672		

	27.5	Voltage stability analysis 674				
		27.5.1 P-V curves 674				
		27.5.2 V-Q curves 675				
	27.6	.6 Methods of improving voltage stability 675				
		27.6.1 Reactive power compensation 675				
		27.6.2 Load shedding during contingencies 676				
		27.6.3 Use of LTC (load tap changing transformers) 077				
28	8 Flexible AC Transmission Systems (FACTS)					
	28.1	Introduction 678				
	28.2	Basic types of FACTS controllers 079				
		28.2.1 Series controllers 680				
		28.2.2 Shunt controllers 680				
		28.2.3 Combined series-series controllers 680				
		28.2.4 Combined series-shunt controllers 680				
	28.3	STATCOM 680				
	28.4	Static synchronous generator (SSG) 680				
	28.5	Static synchronous series compensator (SSSC) 681				
	28.6	Interline power flow controller (IPFC) 681				
	28.7	Unified power flow controller (UPFC) 682				
	28.8	Thyristor-controlled phase shifting transformer (TCPST) 682				
	28.9	Interphase power controller (IPC) 682				
	28.10	Thyristor-controlled voltage limiter (TCVL) 683				
App	Appendix					
Index						

Example 1.5 The load-duration curve for a system is shown in Fig. 1.2. Determine the load factor.

Solution

From the load-duration curve, the actual energy consumed $= 15 \times 8 + 10 \times 8 + 5 \times 8 = 240$ MWh

240

Average load =
$$\frac{240}{24}$$
 = 10 MW
Maximum demand = 15 MW
Load factor = $\frac{\text{average load}}{\text{maximum demand}}$ = $\frac{10}{15}$ = 0.666

Example 1.6 The yearly load duration curve of a power plant is a straight line. The maximum load is 500 MW and the minimum load is 400 MW. The capacity of the plant is 750 MW. Find (a) plant capacity factor, (b) load factor, (c) utilization factor, (d) reserve capacity.

Solution

Average annual load =
$$\frac{500 + 400}{2}$$
 = 450 MW
Capacity factor = $\frac{\text{average annual load}}{\text{capacity of the plant}}$ = $\frac{450}{750}$ = 0.6
Load factor = $\frac{\text{average load}}{\text{maximum demand}}$ = $\frac{450}{500}$ = 0.9
Utilization factor = $\frac{\text{maximum demand}}{\text{capacity of the plant}}$ = $\frac{500}{750}$ = 0.667

Reserve capacity = plant capacity - maximum demand = 750 - 500 = 250 MW

Example 1.7 A power system had the daily load curve given by the following table :

Time	Load in MW
12.00 night to 2 a.m.	20
2 a.m. to 8 a.m.	10
8 a.m. to 12.30 noon	50
12.30 noon to 1.00 p.m.	40
1.00 p.m. to 6 p.m.	50
6 p.m. to 12 night	70

Plot the following curves :

(a) Chronological load curve

(b) Load-duration curve