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process of reversible heating, whereby only infinitesimal temperature 
gradients existed at any time during the heating process. Thus, 

Jr, T JTl T (9) 

Entropy Changes in an Ideal Gas. If one mole of an ideal gas is brought 
from pv vv Tx to pv vz, T2, the entropy change is determined by following 
an imaginary reversible path from state 1 to state 2, regardless of how 
the change may have actually taken place. While there is a wride choice 
of paths, it will be convenient first to change the temperature a t constant 
pressure and then to change the pressure reversibly and isothermally. 

For the first step, 

51 - J r , T A S 1 = J T -£dT (10) 

In the isothermal reversible change of pressure, the first law is applied: 

d'q = dv + d'we (11) 

The reversible work of expansion, d'we, equals p dv. By definition, an 
ideal gas has the following characteristics: (1) I t follows the simple gas 
law, pv = RT, and (2) its internal energy is a function of temperature 
alone, and is not affected by pressure. Accordingly, 

du = 0 (12) 

(13) 

(14) 

(15) 

Substituting in equat 

p dv -\- v dp 

p dv — —v dp 

ion 11 yields 

d'q= -

= 

= 

Rl 

The entropy change for the second step i 

ASfotal 

2 JPl T 

= Asx + As2 = 

RdT = 0 

-RTdl 
V 

V 
is as follow 

R[ndi = 
JPI P 

-\ -^dT-

s: 

: —Bin 

Rln^ 
Pi 

P2 (16) 

(17) 

An alternative equation developed by first changing temperature at 
constant volume and then changing volume reversibly and isothermally 
is as follows: 

%T2 

JT, T 
A s t o t a l = | ~^dT+RlnV-? (18) 

Vl 
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conditions, it is important to derive specifications which must be fulfilled 
by any system at equilibrium. Such specifications, termed criteria of 
equilibrium, are the foundation for complete relationships among the 
various properties of a system at equilibrium. 

From a thermodynamic standpoint, it is necessary tha t , in a system at 
equilibrium, every possible change tha t might take place to an infinitesimal 
extent shall be reversible, since any irreversible change would result in 
a displacement -which would destroy the original equilibrium. As was 
previously pointed out, reversible processes are accompanied by no change 
in total entropy of the combined system and its surroundings, whereas 
every spontaneous process is accompanied by an increase in total entropy. 
Thus, a universal thermodynamic criterion of equilibrium is tha t , for any 
change tha t takes place, the total entropy of the system and its surroundings 
shall be constant. In a completely isolated system the entropy of the 
system itself is constant a t equilibrium. From equation 1, defining 
entropy, it follows tha t , where heat is added to a system in which all 
changes of state are reversible, d'q — T dS, where S is the entropy of the 
system itself, not including its surroundings. This expression may also 
1M- taken a^ a criterion of reversibility and equilibrium. Since for all 
irreversible changes of state dS > d'qjT, if any incremental addition of 
heat to the system is accompanied by an entropy increase equal to and 
not greater than d'q/T, then all thermodynamic processes within the 
system must be reversible, and it follows tha t the system is in equilibrium. 

Stable and Unstable Equilibrium. A system is in stable equilibrium if 
after a finite displacement it spontaneously returns to its original state 
when the displacing force is returned to its original value. A round 
pencil lying in the bottom of a cylindrical trough is a mechanical example 
of this type of equilibrium. If, however, this pencil is carefully balanced 
on its sharpened point, it will be in a state of unstable equilibrium such 
tha t finite displacement does not lead to a spontaneous return to its 
original conditions. Although, a t equilibrium, any infinitesimal change 
is accompanied by no change in the total entropy of the system and its 
surroundings, thermodynamically a system is in unstable equilibrium if 
a finite displacement involves an increase in total entropy. For example, 
a finite displacement of the pencil balanced on its point results in an 
irreversible process whereby heat is developed and the entropy of the 
pencil and of its surroundings increases. In a system in stable equilibrium 
no finite change can be accompanied by an increase in total entropy. 
Thus, a t stable equilibrium, for any change resulting from a temporarily 
applied extraneous force, not associated with the system or its normal 
surroundings, 

dSt = 0, ASt<LO (47) 
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T A B L E 40 (Continued) 

II. The Four Basic Equations and the Modified dU and dH Equations 

dU = TdS - pdV (96) 

= ~ T ( i ? ) dP-PdV + cPdT <97> 

= - \p + T \dV + CvdT (98) 
[ / ^ (dVldp)Tj 

dH = TdS + Vdp (99) 

= I V ~ \^7 \dP^ °pdT (100) 

= Vdp-T\{^J^\dV+ CvdT (101) 

dA = -SdT -pdV (102) 

dG = -SdT + Vdp (103) 

III. Two dS Equations 

dS = - — dp + — dT (104) 

\azyp • T 

dS= ( * - ) dF + ^ d r (105) 

[(dVldT)p~\ Gv 

= - \— \dV + ~ dT (106) 
l(BVIdp)T] ^ T TV. Four Important Entropy Derivatives 

(£)r(£)F
 (107) 

lds\ ^Cv 

\dTjv- T 

(109) 

(110) 

The 168 partial derivatives involving p, V, T, S, U, H, A, and G may 
be classified into six groups. A standard method of procedure for each 
of the six groups is outlined below. In the discussion tha t follows, the 
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through the use of the equations for dS, dU, dH, dA, and dG as given in 
Table 40. They are then substituted in equation 95. 

Bridgman Table. Table 41 developed by Bridgman3 affords the 
quickest and simplest procedure for setting up the equation for any 
partial derivative involving p, V, T, S, U, H, A, and G in terms of Cv, 
(dVjdT)p, and (dV/dp)T. The items entered in this table are based on 
equation 95 where the special symbol (dz)y is used to designate the 
numerator, and the special symbol (dx)y the denominator. 

(dzldT)p(dyldp)T - (dzldP)T(dylBT)p = (jk± 

(dxJdT)v(dyldp)T - (dxldp)T(dyldf)v (Bx)v 

Bridgman worked out expressions for all the items of the type (dz)y 

that involve the variables p, V, T, S, U, II, A, and G, and then assembled 
them in Table 41. The procedure followed is shown in Illustration 12. 

Illustration 12. Verify the expression for (dS)v given in the Bridgman table. 
According to the system of notation indicated by equation 138: 

\dx)v 

(dS)v 

Substituting equations 109 and 108 in equation (a), gives 

7as \ (dv\ (ds\ (dv\ ' 
(a) 

cv(dv\ l BV\ (dv\ 

(b) 

The use of the Bridgman table follows from equation 138, which indicates 
the significance of the special notation adopted. Illustration 13 demon-
strates the procedure employed. 

Illustration 13. Using Table 41, develop an equation for (dA/dU)9. 

{±A±* (a) 
Ot/)„ 

Expressions for (dA)P and (dU)p are selected from Table 41 and substituted in the 
foregoing equation to yield the following result: 

ldA\ ^ - [S- f 
\du)p- cp-

+ p(dVldT)p] {b) 

p(dVldT)9 

3 P . W. Bridgman, Condensed Collection of Thermodynamic Formulas, Harvard 
University Press, Cambridge, Mass. (1926). This was first published in Phys. 
Rev. (2), 3, 273 (1914). The original article contained two errors involving 
(dA)u and (dA)H. These errors were eliminated in the book published in 1926. 




