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Fig. 1-14. Effects of actions. 

rately are shown in Figs. l-14b and l-14c. In each case there is a displace-
ment at the midpoint of the beam and reactions at the ends. A single prime 
is used to denote quantities associated with the action Au and a double 
prime is used for quantities associated with A2. 

According to the principle of superposition, the actions and displace-
ments caused by At and A2 acting separately (Figs. l-14b and l-14c) can be 
combined in order to obtain the actions and displacements caused by Ax 

and A2 acting simultaneously (Fig. l-14a). Thus, the following equations of 
superposition can be written for the beam in Fig. 1-14: 

RA = R'A + R"A RB = R'B + R'B 

MB = M'B + M'B D = D+ D" 
(1-3) 

Of course, similar equations of superposition can be written for other 
actions and displacements in the beam, such as stress resultants at any 
cross section of the beam and displacements (translations and rotations) at 
any point along the axis of the beam. This manner of using superposition 
was illustrated previously in Art. 1.4. 

A second example of the principle of superposition, in which displace-
ments are the cause, is given in Fig. 1-15. The figure portrays again the 
beam AB with one end simply supported and the other fixed. When end B 
of the beam is displaced downward through a distance A and, at the same 
time, is caused to be rotated through an angle 6 (see Fig. l-15a), various 
actions and displacements in the beam will be developed. For example, the 
reactions at each end and the displacement at the center are shown in Fig. 
1-15a. The next two sketches (Figs. l-15b and l-15c) show the beam with 
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To show the use of the matrix equations given above, consider again 
the beam in Fig. 2-2a. In order to have a specific example, assume that the 
beam has constant flexural rigidity El in both spans and that the actions on 
the beam are as follows: 

pl = 2P M = PL P2 = P P3 = P 

Also, assume that there are no support displacements at any of the supports 
of the structure. 

The matrices to be found first in the analysis are DQ, DQL, and F, as 
mentioned previously. Since in the original beam there are no displace-
ments corresponding to Qx and Q2i the matrix DQ is a null matrix. The 
matrix DQL represents the displacements in the released structure corre-
sponding to the redundants and caused by the loads. These displacements 
are found by considering Fig. 2-2f, which shows the released structure 
under the action of the loads. The displacements in this beam correspond-
ing to Qx and Q2 can be found by the methods described in Appendix A 
(see Example 3, Art. A.2), and the results are: 

n _ 13PL3 _ 91 PL3 

The positive signs in these expressions show that both displacements are 
upward. From the results given above, the vector DUL is obtained: 

DQL " 48£/ I.97J 

The flexibility matrix F is found by referring to the beams pictured in 
Figs. 2-2g and 2-2h. The beam in Fig. 2-2g, which is subjected to a unit load 
corresponding to Qu has displacements given by the expressions 

Fll~3EI Fil"6El 

Similarly, the displacements in the beam of Fig. 2~2h are 

_ 5L3 _ 8L3 

F l 2 " 6EI F*2 " 3EI 

From the results listed above, the flexibility matrix can be formed: 

6EI{5 16J 

The inverse of the flexibility matrix can be found by any one of several 
standard methods,* the result being 

*See, for instance, J. M. Gere and W. Weaver, Jr., Matrix Algebra for Engineers, D. Van 
Nostrand, New York, 1965 
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Fig. 2-13. Flexibilities for beam member. 

the beam member shown in Fig. 2-13a. In this case the yM axis is chosen so 
that bending takes place in the xM-yM plane (a principal plane of bending). 
Two kinds of end-actions are indicated at the k end of the member in Fig. 
2-13a: a shearing force AM\ (positive in the yM direction) and a bending 
moment AMi (positive in the ZM sense). The flexibility matrix of interest 
here is a 2 x 2 array relating AM\ and AM2 to the corresponding displace-
ments DMi (translation in the yM direction) and DMi (rotation in the ZM 
sense). Figures 2-13b and 2-13c show the application of unit loads AM\ = 1 
and AM2 ~ 1 tp obtain the terms in the beam flexibility matrix 

I'M/* as 
follows: 

F\n — 
Fm\ FMn 

FM2\ F\122 

L3 L2 

3EI 2EI 
L2 L 

2EI El 

(2-19) 

These terms were found previously in the example at the end of Art. 1.11. 
The truss member in Fig. 2-14a has only one end-action to be consid-

ered for the purpose of calculating member flexibilities, namely, the axial 
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shown in Fig. 2-3a, due to the force P and moment M acting at the middle of the 
span. The beam has constant flexural rigidity El and length L. Select the reactive 
moments themselves as the redundant actions, and assume these moments are pos-
itive when they produce compression on the bottom of the beam. Take the first 
redundant at end A of the beam and the second at end B. 

2.3-2. Analyze the two-span beam shown in Fig. 2-2a by taking the reactive 
moment at support A and the bending moment just to the left of support B as the 
redundants Qx and Q2, respectively. Assume that these moments are positive when 
they produce compression on the top of the beam. Also, assume that the loads on 
the beam are Pt = 2P, M = PL, P2 = P, P* = P, and the flexural rigidity El is 
constant. 

2.3-3. Analyze the two-span beam of Fig. 2-2a if support B is displaced down-
ward by a small distance s. Select the redundants to be the vertical reactions at 
supports B and C, as shown in Fig. 2-2a, and omit the effects of the loads in the 
analysis. Assume that El is constant for both spans. 

2.3-4. Find the redundant actions for the two-span beam of Fig. 2-2a using the 
released structure shown in Fig. 2-2b. Assume that El is constant for the beam and 
that the loads are P, = P, M = 0, P2 = P, P$ = P. Number the redundants from 
left to right along the beam; also, assume that the redundant moment is positive 
when counterclockwise, and that the redundant force is positive when upward. 

2.3-5. Determine the bending moments at supports B and C of the continuous 
beam shown in the figure, using these moments as the redundants Qx and Q2, 
respectively. Assume that the redundants are positive when they produce compres-
sion on the top of the beam. The beam has constant flexural rigidity El. 
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Prob. 2.3-5. 

2.3-6. Find the bending moments at supports B and C of the continuous beam 
(see figure), using these moments as the redundants Qt and Q2, respectively. 
Assume that Qx and Q2 are positive when they produce compression on the top of 
the beam. The flexural rigidity of the beam is EL 

| - — L — A r — L — 4 H £ / H - £ , / * H 
Prob. 2.3-6. 

2.3-7. Analyze the plane truss shown in Fig. 2~5a by taking the forces in the 
two diagonal members AD and BC as the redundants QA and Q2, respectively. 
Assume that tension in a member is positive, and assume that there are no support 
displacements. All members have the same axial rigidity EA. 
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