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-Mo,

-v= P.

Mo
D=--·

2{32E1,

(11 ')

(12)

in Fig. 6, we can again use the general solution, eq. (b), of the preced-
ing article. Since the deflection and the bend-

r-"4
Mo ing moment approach zero as the distance x\fpff47»)j)7//))))/)h ~ from the loaded end increases, w~ must take

A = B = 0 in that solution. We obtain

FIG. 6. Y = e-fJ%(C cos {3x + D sin (3x). (a)

For determining the constants of integration C and D we have the
conditions at the origin, i.e., under the load P:

Elz (tP~)
dx %-0

Elz (4J~)
dx %-0

S!:~,~tituting from eq. (a) into these equations, we obtain two hnear
el!l.ations in C and D, from which

1
C = 2fl3El

z
(P - /3Mo);

Substituting into eq. (a), we obtain

e-flz
y =~ [P cos {3x - {3Mo(cos {3x - sin (3x)] (11)

2p Elz

or, using notatiorts (6),

~
y = ~ {P8(ftx) - (3Mo[8(px) - t({3x)]}.

Ie

To :.: ~: the deflection under the load we must substitute x == 0 into
eq. ( 1). Then

1
8 = (y)%-o =~ (P - (3Mo).

2p EI,

The expression for the slope is obtained by differentiating eq. (11).
At th(~ ~'nd (x = 0) this becomes

(dY) = _ -2
1

- (P _ 2{3Mo).
\dx %-0 2(j Elz

By using eqs. 01') and (12) in conjunction with the principle of
st~per~)()sition, more complicated problems can be snlved. Take as
an e~I'l1p]e a uniformly loaded long beam on an ela:'1tic foundation,
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Substituting this value into eq. (Ie), we find the reaction at the mid­
dle support of the vertical beam, which intersects the beam AB at
its mid-point. It is interesting to note that this reaction may be­
come negative, which indicates that the horizontal beam actually sup­
ports the vertical beams only if it is sufficiently rigid; otherwise it
may increase the bending of some of the vertical beams.

Problems

1. Find a general expression for the deflection curve for the beam
illustrated in Fig. 12.

Answer.

2P~ cosh ~x cos ~(~ - x) + cosh ~(/ - x) cos ~~
Y =:- .

Ie sinh ~/ + sin {3/

2. Find the deflections at the enq.s and the bending moment at
the middle of the beam bent by two equal and opposite couples Mo,
Fig. 18.

y
Flo. 18.

Answer.

Flo. 19.

2MofJ2 sinh (3/ - sin {3/
Yo == Yb == - -- ,

It sinh {3/ + sin fj/

• fj/ fJ/ {3/ . {j/
sInh - cos - + cosh - sIn -

2 2 2 2'
Me == 2Mo---------..-

sinh {j/ + sin {j/

3. Find the deflection and the bending moment at the middle of
the beam with hinged ends, Fig. 19. The load P is applied at the
middle of the beam.

Answer. Pfj sinh fj/ - sin fjJ
Ye == -. '

21t cosh fj/ + cos {3/

P sinh fj/ + sin fj/
M e --· . •

4~ cosh fJ/ + cos fj/
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left end of the strut is

qf3 tan u - u
=------

24£1 ju3
(32)

The maximum bending moment is at the middle where

q (1 - cos P'\
= E1 2) = qJ2 . 2(1 - cos u) . ~j3)

pi 8 u2 cos U
S cos--

2

By using the solution for the case of a couple together with
the solutions for lateral loads and applying the method of
superposition, various statically indeterminate cases of bend­
ing of struts can be readily solved. Taking as an example the
case of a uniformly loaded strut built in at one end, Fig. 27)

FIG. 27.

we find the bending moment M o at the built-in end from the
condition that this end does not rotate during bending. By
using eqs. (28) and (32) this condition is found to be

ql3 tan u - u Mol (3 3)
- 24£1 iu3 + 3E1· 2u tan 2u - (2U)2 = 0

from which
q/2 4 tan 2u (tan u - u)

Mo
= - 8· u(tan2u =- 2u)

(34)
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