
in Fig. 6, we can again use the general solution, eq. (b), of the preced-

ing article. Since the deflection and the bending moment approach zero as the distance x from the loaded end increases, we must take A = B = 0 in that solution. We obtain

Fig. 6.
$$y = e^{-\beta x} (C \cos \beta x + D \sin \beta x). \qquad (a)$$

For determining the constants of integration C and D we have the conditions at the origin, i.e., under the load P:

$$EI_{z} \left(\frac{d^{2}y}{dx^{2}}\right)_{x=0} = -M_{0},$$

$$EI_{z} \left(\frac{d^{3}y}{dx^{3}}\right)_{x=0} = -V = P.$$

Substituting from eq. (a) into these equations, we obtain two linear equations in C and D, from which

$$C = \frac{1}{2\beta^3 E I_z} (P - \beta M_0); \qquad D = \frac{M_0}{2\beta^2 E I_z}.$$

Substituting into eq. (a), we obtain

$$y = \frac{e^{-\beta x}}{2\beta^3 E I_z} [P\cos\beta x - \beta M_0(\cos\beta x - \sin\beta x)]$$
 (11)

or, using notations (6),

$$y = \frac{2\beta}{k} \left\{ P\theta(\beta x) - \beta M_0[\theta(\beta x) - \zeta(\beta x)] \right\}.$$

To a the deflection under the load we must substitute x = 0 into eq. (1). Then

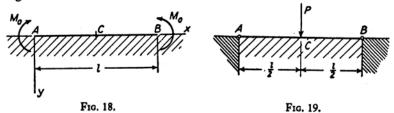
$$\delta = (y)_{z=0} = \frac{1}{2\beta^3 E I_z} (P - \beta M_0). \tag{11'}$$

The expression for the slope is obtained by differentiating eq. (11). At the end (x = 0) this becomes

$$\left(\frac{dy}{dx}\right)_{x=0} = -\frac{1}{2\beta^2 E I_x} (P - 2\beta M_0). \tag{12}$$

By using eqs. (11') and (12) in conjunction with the principle of superposition, more complicated problems can be solved. Take as an example a uniformly loaded long beam on an elastic foundation,

Substituting this value into eq. (k), we find the reaction at the middle support of the vertical beam, which intersects the beam AB at its mid-point. It is interesting to note that this reaction may become negative, which indicates that the horizontal beam actually supports the vertical beams only if it is sufficiently rigid; otherwise it may increase the bending of some of the vertical beams.


Problems

1. Find a general expression for the deflection curve for the beam illustrated in Fig. 12.

Answer.

$$y = \frac{2P\beta}{k} \frac{\cosh \beta x \cos \beta (l - x) + \cosh \beta (l - x) \cos \beta x}{\sinh \beta l + \sin \beta l}.$$

2. Find the deflections at the ends and the bending moment at the middle of the beam bent by two equal and opposite couples M_0 , Fig. 18.

Answer.

$$y_a = y_b = -\frac{2M_0\beta^2}{k} \frac{\sinh \beta l - \sin \beta l}{\sinh \beta l + \sin \beta l},$$

$$M_c = 2M_0 \frac{\sinh \frac{\beta l}{2} \cos \frac{\beta l}{2} + \cosh \frac{\beta l}{2} \sin \frac{\beta l}{2}}{\sinh \beta l + \sin \beta l}.$$

3. Find the deflection and the bending moment at the middle of the beam with hinged ends, Fig. 19. The load P is applied at the middle of the beam.

Answer.

$$y_c = \frac{P\beta}{2k} \frac{\sinh \beta l - \sin \beta l}{\cosh \beta l + \cos \beta l},$$

$$M_c = \frac{P}{4\beta} \frac{\sinh \beta l + \sin \beta l}{\cosh \beta l + \cos \beta l}.$$

left end of the strut is

$$\left(\frac{dy}{dx}\right)_{x=0} = \frac{ql}{2S} \left(\frac{\tan\frac{pl}{2}}{\frac{pl}{2}} - 1\right) = \frac{ql^3}{24EI} \frac{\tan u - u}{\frac{1}{3}u^3}.$$
 (32)

The maximum bending moment is at the middle where

$$M_{\text{max}} = -EI \left(\frac{d^2 y}{dx^2} \right)_{x=l/2}$$

$$= EI \frac{q \left(1 - \cos \frac{pl}{2} \right)}{S \cos \frac{pl}{2}} = \frac{ql^2}{8} \cdot \frac{2(1 - \cos u)}{u^2 \cos u}. \quad (33)$$

By using the solution for the case of a couple together with the solutions for lateral loads and applying the method of superposition, various statically indeterminate cases of bending of struts can be readily solved. Taking as an example the case of a uniformly loaded strut built in at one end, Fig. 27,

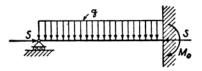


Fig. 27.

we find the bending moment M_0 at the built-in end from the condition that this end does not rotate during bending. By using eqs. (28) and (32) this condition is found to be

$$-\frac{ql^3}{24EI}\frac{\tan u - u}{\frac{1}{3}u^3} + \frac{M_0l}{3EI} \cdot \left(\frac{3}{2u\tan 2u} - \frac{3}{(2u)^2}\right) = 0$$

from which

$$M_0 = -\frac{ql^2}{8} \cdot \frac{4 \tan 2u (\tan u - u)}{u (\tan 2u - 2u)}.$$
 (34)

CONTENTS

CHAPT		PAGE
I.	BEAMS ON ELASTIC FOUNDATIONS	1
	1. Beams of Unlimited Length	1
	2. Semi-infinite Beams	11
	3. Beams of Finite Length on Elastic Foundations	15
II.	BEAMS WITH COMBINED AXIAL AND LATERAL LOADS .	26
	4. Direct Compression and Lateral Load	26
	5. Continuous Struts	37
	6. Tie Rod with Lateral Loading	. 41
	7. Representation of the Deflection Curve by a Trig-	
	onometric Series	46
	8. Deflection of Bars with Small Initial Curvature	54
III.	Special Problems in the Bending of Beams	57
	9. Local Stresses in the Bending of Beams	57
	10. Shearing Stresses in Beams of Variable Cross Section	62
	11. Effective Width of Thin Flanges	64
	12. Limitations of the Method of Superposition	69
IV.	THIN PLATES AND SHELLS	76
	13. Bending of a Plate to a Cylindrical Surface	76
	14. Bending of a Long, Uniformly Loaded Rectangular	
	Plate	78
	15. Deflection of Long Rectangular Plates Having a	
	Small Initial Cylindrical Curvature	84
	16. Pure Bending in Two Perpendicular Directions	86
	17. Thermal Stresses in Plates	90
	18. Bending of Circular Plates Loaded Symmetrically	
	with Respect to the Center	92
	19. Bending of a Uniformly Loaded Circular Plate	96
	20. Bending of Circular Plates of Variable Thickness .	102
	21. Bending of a Circular Plate Loaded at the Center.	103
	22. Bending of a Circular Plate Concentrically Loaded	107
	23. Deflection of a Symmetrically Loaded Circular Plate	
	with a Circular Hole at the Center	109
	24. Bending of Rectangular Plates	114

TENTS

HAPI		PAGE
	25. Thin-walled Vessels Subjected to Internal Pressure	117
	26. Local Bending Stresses in Thin Vessels	124
	27. Thermal Stresses in Cylindrical Shells	134
	28. Twisting of a Circular Ring by Couples Uniformly	
	Distributed along Its Center Line	138
	Distributed along its center Line	100
V.	BUCKLING OF BARS, PLATES AND SHELLS	145
	29. Lateral Buckling of Prismatic Bars: Simpler Cases	145
	30. Lateral Buckling of Prismatic Bars: More Com-	
	plicated Cases	153
	31. Energy Method of Calculating Critical Compressive	
	Loads	161
	32. Buckling of Prismatic Bars under the Action of Uni-	
	formly Distributed Axial Forces	167
	33. Buckling of Bars of Variable Cross Section	169
	34. Effect of Shearing Force on the Critical Load	171
	35. Buckling of Latticed Struts	173
	36. Inelastic Buckling of Straight Columns	178
		170
	37. Buckling of Circular Rings and Tubes under External	186
	Pressure	
	38. Buckling of Rectangular Plates	193
	39. Buckling of Beams without Lateral Supports	199
VI.	DEFORMATIONS SYMMETRICAL ABOUT AN AXIS	205
	40. Thick-walled Cylinder	205
	41. Stresses Produced by Shrink Fit	210
	42. Rotating Disc of Uniform Thickness	214
	43. Rotating Disc of Variable Thickness	223
	44. Thermal Stresses in a Long, Hollow Cylinder	228
	- · · · · · · · · · · · · · · · · · · ·	
VII.	Torsion	235
	45. Shafts of Noncircular Cross Section	235
	46. Membrane Analogy	237
	46. Membrane Analogy	244
	48. Torsion of Thin Tubular Members	247
	49. Torsion of Thin-walled Members of Open Cross Sec-	
	tion in Which Some Cross Sections Are Prevented	
	from Warping	255
	50. Combined Bending and Torsion of Thin-walled Mem-	
	bers of Open Cross Section	267
	51. Torsional Buckling of Thin-walled Members of Open	
	Cross Section	273
	•	

001	TITE !	ma
CON	I H N	

	CONTENTS	$\mathbf{x}\mathbf{v}$
CHAPI	'ER	PAGE
	52. Buckling of Thin-walled Members of Open Cross	
	Section by Simultaneous Bending and Torsion	279
	53. Longitudinal Normal Stresses in Twisted Bars	286
	54. Open-coiled Helical Spring	292
VIII.	Stress Concentration	300
	55. Stress Concentration in Tension or Compression	
	Members	300
	56. Stresses in a Plate with a Circular Hole	301
	57. Other Cases of Stress Concentration in Tension	
	Members	306
	58. Stress Concentration in Torsion	312
	59. Circular Shafts of Variable Diameter	318
	60. Stress Concentration in Bending	324
	61. The Investigation of Stress Concentration with	
	Models	329
	62. Photoelastic Method of Stress Measurements	333
	63. Contact Stresses in Balls and Rollers	339
IX.	Deformations beyond the Elastic Limit	346
	64. Structures of Perfectly Plastic Materials	346
	65. Ultimate Strength of Structures	354
	66. Pure Bending of Beams of Material Which Does Not Follow Hooke's Law	366
	67. Bending of Beams by Transverse Loads beyond the	500
	Elastic Limit	374
	68. Residual Stresses Produced by Inelastic Bending .	377
	69. Torsion beyond the Elastic Limit	381
	70. Plastic Deformation of Thick Cylinders under the	
	Action of Internal Pressure	386
X.	MECHANICAL PROPERTIES OF MATERIALS	393
	71. General	393
	72. Tensile Tests of Brittle Materials	395
	73. Tensile Tests of Ductile Materials	400
	74. Tests of Single-Crystal Specimens in the Elastic	400
	Range	403
	75. Plastic Stretching of Single-Crystal Specimens	407
	76. Tensile Tests of Mild Steel in the Elastic Range	411
	77. Yield Point	417
	78. Stretching of Steel beyond the Yield Point	-100
	79. Types of Fractures in Tension	430

xvi	CONTENTS	
CHAPTER		PAGE
80.	Compression Tests	. 435
	Tests of Materials under Combined Stresses	
	Strength Theories	
	Impact Tests	
	Fatigue of Metals	
	Fatigue under Combined Stresses	
	Factors Affecting the Endurance Limit	
	Fatigue and Stress Concentrations	
	Reduction of the Effect of Stress Concentrations in	
	Fatigue.	
89.	Surface Fatigue Failure	
	Causes of Fatigue	
	Mechanical Properties of Metals at High Tempera	
	tures	
92.	Bending of Beams at High Temperatures	
	Stress Relaxation	
	Creep under Combined Stresses	
	Particular Cases of Two-dimensional Creep	
	Working Stresses	
AUTHOR I	NDEX	. 559
SUBJECT I	NDEX	. 565