range and the proportional limit is as high as 25×10^3 - 30×10^3 lb per sq in. For materials such as cast iron or soft copper the proportional limit is very low, i.e., deviations from Hooke's law may be noticed at a low tensile stress.

In investigating the mechanical properties of materials beyond the proportional limit, the relationship between the strain and the corresponding stress is usually presented graphically by a *tensile test diagram*. Fig. 4a presents a typical diagram for structural steel. Here the elongations are plotted along the horizontal axis and the corresponding stresses are given by the ordinates of the curve OABCD. From O to A the stress and the strain are proportional; beyond A the deviation

from Hooke's law becomes marked; hence the stress at A is the proportional limit. Upon loading beyond this limit the elongation increases more rapidly and the diagram becomes curved. At B a sudden elongation of the bar takes place without an appreciable increase in the tensile force. This phenomenon, called *yielding* of the metal, is shown in the diagram by an almost horizontal portion of the curve. The stress corresponding to the point B is called the yield point. Upon further stretching of the bar, the material recovers its resistance and, as is seen from the diagram, the tensile force increases with the elongation up to the point C, where the force attains its maximum value. The corresponding stress is called the ultimate strength of the material. Beyond the point C, elongation of the bar takes place with a diminution of the load and fracture finally occurs at a load corresponding to point D of the diagram.

It should be noted that stretching of the bar is accompanied by lateral contraction but it is established practice in calculat-

$$\sqrt{a^2(1+2\epsilon_x)+b^2(1+2\epsilon_y)} \approx \sqrt{a^2+b^2}\left(1+\frac{a^2\epsilon_x}{a^2+b^2}+\frac{b^2\epsilon_y}{a^2+b^2}\right)$$

Subtracting from this the initial length $\sqrt{a^2 + b^2}$ and dividing by the initial length, we obtain

FIG. 44.

16. Pure Shear.—Modulus in Shear.—Let us consider the particular case of normal stresses acting in two perpendicular directions in which the tensile stress σ_x in the horizontal direction is numerically equal to the compressive stress σ_y in the vertical direction, Fig. 45*a*. The corresponding circle of stress is shown in Fig. 45*b*. Point *D* on this circle represents the stresses acting on the planes *ab* and *cd* perpendicular to the *xy* plane and inclined at 45° to the *x* axis. Point D_1 represents stresses acting on the planes *ad* and *bc* perpendicular to *ab* and *cd*. It is seen from the circle of stress that the normal stress on each of these planes is zero and that the shearing stress over these planes, represented by the radius of the circle, is numerically equal to the normal stress σ_x , so that

$$\tau = \sigma_x = -\sigma_y. \tag{a}$$

[•] This equation is similar to eq. (26). Thus, a graphical representation of strain (strain circle), similar to Mohr's circle for stress, can be used.

of the beam and taking $x < a_1$, we obtain for the first portion of the beam

$$V = R_1$$
 and $M = R_1 x$. (c)

For the second portion of the beam, i.e., for $a_1 < x < a_2$, we obtain

$$V = R_1 - P_1$$
 and $M = R_1 x - P_1 (x - a_1)$. (f)

For the third portion of the beam, i.e., for $a_2 < x < a_3$, it is advantageous to consider the right portion of the beam rather than the left. In this way we obtain

and

$$M = R_2(l-x) - P_3(l-x-b_3).$$
(g)

Finally for the last portion of the beam we obtain

 $V = -(R_{\rm o} - P_{\rm o})$

$$V = -R_2, \qquad M = R_2(l-x).$$
 (h)

From expressions (e)-(h) we see that in each portion of the beam the shearing force remains constant. Hence the shearing force diagram is as shown in Fig. 67*b*. The bending moment in each portion of the beam is a linear function of *x*. Hence in the corresponding diagram it is represented by an inclined straight line. To draw these lines we note from expressions (e) and (h) that at the ends x = 0 and x = l the moments are zero. The moments under the loads are obtained by substituting in expressions (e), (f) and (h), $x = a_1$, $x = a_2$ and $x = a_3$, respectively. In this manner we obtain for the abovementioned moments the values

$$M = R_1 a_1, \qquad M = R_1 a_2 - P_1 (a_2 - a_1), \qquad M = R_2 b_3.$$

By using these values the bending moment diagram, shown in Fig. 67c, is readily constructed.

In practical applications it is of importance to find the cross sections at which the bending moment has its maximum or minimum values. In the case of concentrated loads just considered, Fig. 67, the maximum bending moment occurs under the load P_2 . This load corresponds in the bending moment diagram to point d_1 , at which point the slope of the diagram

82

5. Determine the ratio of the weights of three beams of the same length under the same M and $(\sigma_z)_{max}$ and having as cross sections, respectively, a circle, a square and a rectangle with proportions h = 2b.

Answer. 1.12:1:0.793.

6. Make a comparison of the section moduli for two beams of the same weight if the first beam is a solid circular beam of diameter d and the second is a circular tube of outer diameter D and inner diameter D₁.

Solution. The cross-sectional area of both beams is $\Lambda = \frac{\pi d^2}{4} =$ $\frac{\pi (D^2 - D_1^2)}{4}$. For the solid beam Z = Ad/8, for the tubular beam $Z_1 = \frac{\pi (D^4 - D_1^4)}{32D} = \frac{AD}{8} \left(1 + \frac{D_1^2}{D^2}\right)$. Observing that $D_1^2 =$ $D^2 - \frac{4A}{\pi}$, we find for the tubular beam $Z_1 = \frac{AD}{8} \left(2 - \frac{4A}{\pi D^2}\right)$, so that

$$\frac{Z_1}{Z} = \frac{D}{d} \left(2 - \frac{4A}{\pi D^2} \right).$$

Thus, for very thick tubes D approaches d and Z_1 approaches Z. For very thin tubes D is large in comparison with d and the ratio $Z_1: Z$ approaches the value 2D/d.

25. General Case of Laterally Loaded Symmetrical Beams. -In the general case of beams laterally loaded in a plane of symmetry, the stresses distributed over a cross section of a beam must balance the shearing force and the bending moment at that cross section. The calculation of the stresses is usually made in two steps by determining first the stresses produced by the bending moment, called the bending stresses, and afterwards the shearing stresses produced by the shearing force. In this article we shall limit ourself to the calculation of the bending stresses; the discussion of shearing stresses will be given in the next article. In calculating bending stresses we assume that these stresses are distributed in the same manner as in the case of pure bending and the formulas for the stresses derived in Art. 23 will be valid. (A more complete discussion of stresses near the points of application of concentrated forces is given in Part II.)

of this strip about Cz is ydA and the total moment for the entire segment is

$$\int_{y_1}^{R} 2\sqrt{R^2 - y^2} \cdot y \, dy = \frac{2}{3} (R^2 - y_1^2)^{\frac{1}{2}}.$$

Substituting this into eq. (64) and taking $2\sqrt{R^2 - y_1^2}$ for *b*, we obtain for the vertical shearing stress component

$$\tau_{zy} = \frac{V(R^2 - y_1^2)}{3I_z},$$
(67)

and the total shearing stress at points p (Fig. 109) is

$$\tau = \frac{\tau_{xy} \cdot R}{\sqrt{R^2 - y_1^2}} = \frac{VR\sqrt{R^2 - y_1^2}}{3I_z}.$$

It is seen that the maximum τ is obtained for $y_1 = 0$, i.e., for the neutral axis of the cross section. Then, substituting $I_s = \pi R^4/4$, we obtain

$$\tau_{\max} = \frac{4}{3} \frac{V}{\pi R^2} = \frac{4}{3} \cdot \frac{V}{A}.$$
(68)

In the case of a circular cross section, therefore, the maximum shearing stress is 33 per cent larger than the average value obtained by dividing the shearing force by the cross-sectional area.

28. Shearing Stresses in I Beams.-In considering the dis-

tribution of shearing stresses in the web of an I beam or WF beam (Fig. 110), the same assumptions are made as for a rectangular cross section; these were that the shearing stresses are parallel to the shearing force Vand are uniformly distributed over the thickness b_1 of the web. Then eq. (64) may be used for calculating the stresses τ_{xy} . For points on the line pp at a distance y_1 from the neutral axis, where the width of the cross section is b_1 , the moment of the shaded por-

tion of the cross section with respect to the neutral axis z is

$$\int_{y_1}^{h/2} y dA = \frac{b}{2} \left(\frac{h^2}{4} - \frac{h_1^2}{4} \right) + \frac{b_1}{2} \left(\frac{h_1^2}{4} - y_1^2 \right).$$

122

CONTENTS

CHAPTER	PAGE
I. TENSION AND COMPRESSION WITHIN THE ELASTIC LIMIT	1
1. Elasticity	1
2. Hooke's Law	2
3. The Tensile Test Diagram	6
4. Working Stress	8
5. Stress and Strain Produced in a Bar by Its Own	
Weight	14
6. Statically Indeterminate Problems in Tension and	
Compression	20
7. Assembly and Thermal Stresses	26
8. Extension of a Circular Ring	31
II. ANALYSIS OF STRESS AND STRAIN	37
9. Stress on Inclined Planes for Simple Tension and	0.
Compression	37
10. Mohr's Circle	40
11. Tension or Compression in Two Perpendicular Di-	44
12 Mohr's Circle for Combined Stresses	46
13. Principal Stresses	40
14. Lateral Contraction	53
15 Strain in the Case of Tension or Compression in Two	55
Perpendicular Directions	54
16 Pure Shear Modulus in Shear	57
17 Working Stresses in Shear	62
18 Tension or Compression in Three Perpendicular Di	02
rections	65
	05
III. Bending Moment and Shearing Force	70
19. Types of Beams	70
20. Bending Moment and Shearing Force	72
21. Relation between Bending Moment and Shearing	
Force	76
22. Bending Moment and Shearing Force Diagrams	78
IV. Stresses in Laterally Loaded Symmetrical Beams .	92
23. Pure Bending	92
24. Various Shapes of Cross Sections of Beams	100

CONTENTS

СНАРТ	ER	
	25. General Case of Laterally Loaded Symmetrical Beams	05
	26. Shearing Stresses in Bending	13
	27. Distribution of Shearing Stresses in the Case of a Circular Cross Section	20
	28 Shearing Stresses in L Beams	20
	20. Dringing Stresses in Bending	22
	27. Ethoropai Stresses in Benuing	20
	50. Stresses in Dunt-up Deams	30
v.	Deflection of Laterally Loaded Symmetrical Beams	37
	31. Differential Equation of the Deflection Curve 1	37
	32 Bending of a Uniformly Loaded Beam	40
	33. Deflection of a Simply Supported Beam Loaded by a	42
	34. Determination of Deflections by the Use of the Bending Moment Diagram. Area-Moment	-13
		47
	35. Deflection of a Cantilever Beam by the Area-Mo- ment Method	.49
	36. Deflection of a Simply Supported Beam by the Area- Moment Method	54
	37. Method of Superposition	.62
	38. The Deflection of Beams with Overhangs 1	67
	39. Effect of Shearing Force on the Deflection of Beams 1	70
VI.	STATICALLY INDETERMINATE PROBLEMS IN BENDING 1	76
	40. Redundant Constraints	76
	41. Beam Built In at One End and Supported at the Other	79
	42. Beam with Both Ends Built In	86
	43. Frames	90
	44. Beams on Three Supports	98
	45. Continuous Beams	202
VII.	SYMMETRICAL BEAMS OF VARIABLE CROSS SECTION.	110
	DEAMS OF I WO WATERIALS	210
	46. Beams of variable Cross Section	210
	4/. Symmetrical Beams of I wo Different Materials 2	217
1	48. Reinforced-Concrete Beams	221
	49. Shearing Stresses in Keinforced-Concrete Beams 2	225
VIII.	BENDING OF BEAMS IN A PLANE WHICH IS NOT A PLANE	
	OF SYMMETRY	227
	50. Pure Bending in a Plane Which Is Not a Plane of	
	Symmetry	227

xii

	CONTENTS	xiii
СНАРТ	ER	PAGE
	51. Bending of Beams Having Two Planes of Symmetry 52. Bending of Beams in a Principal Plane Which Is	233
	Not a Plane of Symmetry	235
IX.	COMBINED BENDING AND AXIAL LOAD. THEORY OF	045
		245
	53. Bending Accompanied by Tension or Compression .	245
	54. Eccentric Loading of a Short Strut	249
	55. The Core of a Section	254
	56. Eccentric Compression of a Slender Symmetrical Column	258
	57. Critical Load	263
	58. Critical Stress; Design of Columns	268
	59. Design of Columns on the Basis of Assumed Inac-	274
	60. Empirical Formulas for Column Design	277
Х.	TORSION AND COMBINED BENDING AND TORSION	281
	61. Torsion of a Circular Shaft	281
	62. Torsion of a Hollow Shaft	287
	63. Shaft of Rectangular Cross Section	289
	64. Helical Spring, Close Coiled	290
	65. Combined Bending and Torsion of Circular Shafts .	295
XI.	STRAIN ENERGY AND IMPACT	301
	66. Elastic Strain Energy in Tension	301
	67. Tension Produced by Impact	305
	68. Elastic Strain Energy in Shear and Torsion	312
	69. Elastic Strain Energy in Bending	316
	70. Deflection Produced by Impact	320
	71. The General Expression for Strain Energy	325
	72. The Theorem of Castigliano	328
	73. Deflection of Trusses.	335
	74. Application of Castigliano Theorem in Solution of	
	Statically Indeterminate Problems	340
	75. The Reciprocal Theorem	351
	76. Exceptional Cases	359
XII.	Curved Bars	362
	77. Pure Bending of Curved Bars	362
	78. Bending of Curved Bars by Forces Acting in the Plane of Symmetry	366
	79 Particular Cases of Curved Bars	368
	80 Deflection of Curved Bars	378
	81 Arch Hinged at the Endo	304
	82 Stracco in a Flywheel	302
		570

xiv CONTENTS	
CHAPTER	PAGE
83. Deflection Curve for a Bar with a Circular Cente Line	er . 401
84. Bending of Curved Tubes	. 405
85. Bending of a Curved Bar Out of Its Plane of Initia	ıl
Curvature	. 410
APPENDIX A	
Moments of Inertia of Plane Areas	. 417
I. The Moment of Inertia of a Plane Area with Respect t	o
an Axis in Its Plane	. 417
II. Polar Moment of Inertia of a Plane Area.	. 420
III. Parallel-Axis Theorem	. 422
IV. Product of Inertia. Principal Axes	. 423
V. Change of Direction of Axes. Determination of th	e
Principal Axes	. 425
APPENDIX E	
Tables of Structural Shapes	. 429
AUTHOR INDEX	. 435
SUBJECT INDEX	. 437

•