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range and the proportional limit is as high as 25 X 103-30 X 
103 lb per sq in. For materials 
such as cast iron or soft copper the 
proportional limit is very low, i.e., 
deviations from Hooked law may 
be noticed at a low tensile stress. 

In investigating the mechanical 
properties of materials beyond the 
proportional limit, the relationship | 
between the strain and the corre-
sponding stress is usually presented 
graphically by a tensile test diagram. 
Fig. 4a presents a typical diagram 
for structural steel. Here the elon-
gations are plotted along the hori-
zontal axis and the corresponding 
stresses are given by the ordinates 
of the curve OABCD. From 0 to c 
A the stress and the strain are pro-
portional; beyond A the deviation 
from Hooke's law becomes marked; hence the stress at A is 
the proportional limit. Upon loading beyond this limit the 
elongation increases more rapidly and the diagram becomes 
curved. At B a sudden elongation of the bar takes place with-
out an appreciable increase in the tensile force. This phenom-
enon, called yielding of the metal, is shown in the diagram by 
an almost horizontal portion of the curve. The stress cor-
responding to the point B is called the yield point. Upon fur-
ther stretching of the bar, the material recovers its resistance 
and, as is seen from the diagram, the tensile force increases 
with the elongation up to the point C, where the force attains 
its maximum value. The corresponding stress is called the 
ultimate strength of the material. Beyond the point C, elonga-
tion of the bar takes place with a diminution of the load and 
fracture finally occurs at a load corresponding to point D of 
the diagram. 

It should be noted that stretching of the bar is accompanied 
by lateral contraction but it is established practice in calculât-
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V«2(l + 2cx) + b2{\ + 2«„) 
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+ \ + «» + *» + *» + W 
Subtracting from this the initial length \ V + ? and dividing by 
the initial length, we obtain 

e ■= «, cos2 a -f- tv sin2 a.9 

EMI 

Fio. 44. 

16. Pure Shear,—Modulus in Shear.—Let us consider the 
particular case of normal stresses acting in two perpendicular 
directions in which the tensile stress <rx in the horizontal direc-
tion is numerically equal to the compressive stress ay in the 
vertical direction, Fig. 4Sa. The corresponding circle of stress 
is shown in Fig. 45b. Point D on this circle represents the 
stresses acting on the planes ab and cd perpendicular to the 
xy plane and inclined at 45° to the x axis. Point D\ represents 
stresses acting on the planes ad and be perpendicular to ab and 
cd. It is seen from the circle of stress that the normal stress 
on each of these planes is zero and that the shearing stress 
over these planes, represented by the radius of the circle, is 
numerically equal to the normal stress <rxy so that 

r = <rx = —<ry. (ß) 

•This equation is similar to eq. (26). Thus, a graphical representation 
of strain (strain circle), similar to Mohr's circle for stress, can be used. 
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of the beam and taking x < au we obtain for the first portion 
of the beam 

V^RX and M = Rxx. (e) 

For the second portion of the beam, i.e., for ax < x < a2y we 
obtain 

V= Rx- Px and M - Rxx - Px(x - ax). ( / ) 

For the third portion of the beam, i.e., for a2 < x < az, it is 
advantageous to consider the right portion of the beam rather 
than the left. In this way we obtain 

V= - ( Ä 2 - P * ) 
and 

M « R2{1 - x ) - P3(I - x - i3>. (f) 

Finally for the last portion of the beam we obtain 

V « - Ä 2 , M « R2(I - x). (A) 
From expressions (e)-(h) we see that in each portion of the 
beam the shearing force remains constant. Hence the shearing 
force diagram is as shown in Fig. 61b. The bending moment 
in each portion of the beam is a linear function of x. Hence in 
the corresponding diagram it is represented by an inclined 
straight line. To draw these lines we note from expressions 
(e) and (A) that at the ends x = 0 and x « / the moments are 
zero. The moments under the loads are obtained by substi-
tuting in expressions (*), ( / ) and (A), x = au x — a2 and 
x — Ä3, respectively. In this manner we obtain for the above-
mentioned moments the values 

M - Rxau M = Rxa2 - Px(a2 - ax)f M « R2bz. 

By using these values the bending moment diagram, shown in 
Fig. 67r, is readily constructed. 

In practical applications it is of importance to find the cross 
sections at which the bending moment has its maximum or 
minimum values. In the case of concentrated loads just con-
sidered, Fig. 67, the maximum bending moment occurs under 
the load P3» This load corresponds in the bending moment 
diagram to point dXy at which point the slope of the diagram 
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5. Determine the ratio of the weights of three beams of the same 
length under the same M and (<rx)max and having as cross sections, 
respectively, a circle, a square and a rectangle with proportions 
A« V>. 

Answer. 1.12:1:0.793. 
6. Make a comparison of the section moduli for two beams of 

the same weight if the first beam is a solid circular beam of diameter 
dzxià the second is a circular tube of outer diameter D and inner 
diameter D\. 

rd2 

Solution. The cross-sectional area of both beams is A » — « 
4 

T(Z)2 - Di2) 
. For the solid beam Z « Ad/S, for the tubular 

T ( D 4 - D I 4 ) AD/ D A . , 
beam Zx » — — \\ + —J. Observing that ZV -

D2 , we find for the tubular beam Z\ ■» —- (2 5 ) , so 

that „ _ # , ^v 

Zi D / Ä 4/f\ 
7(J 

ir D2/ 

Thus, for very thick tubes D approaches d and Z1 approaches Z. 
For very thin tubes D is large in comparison with d and the ratio 
Zi:Z approaches the value ID Id. 

25. General Case of Laterally Loaded Symmetrical Beams. 
—In the general case of beams laterally loaded in a plane of 
symmetry, the stresses distributed over a cross section of a 
beam must balance the shearing force and the bending moment 
at that cross section. The calculation of the stresses is usually 
made in two steps by determining first the stresses'produced 
by the bending moment, called the bending stresses, and after-
wards the shearing stresses produced by the shearing force. 
In this article we shall limit ourself to the calculation of the 
bending stresses; the discussion of shearing stresses will be 
given in the next article. In calculating bending stresses we 
assume that these stresses are distributed in the same manner 
as in the case of pure bending and the formulas for the stresses 
derived in Art. 23 will be valid. (A more complete discussion 
of stresses near the points of application of concentrated forces 
is given in Part II.) 
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of this strip about Cz is ydA and the total moment for the entire 
segment is 

f W#-y*-ydy « i(R> -yi2)*. 

Substituting this into eq. (64) and taking IwR2 — yx
2 for b, we 

obtain for the vertical shearing stress component 

Txy 

V(R2-yi2) 

31, 
(67) 

and the total shearing stress at points p (Fig. 109) is 

■R FRVR2 - yx
2 

VR2 - yi1 37« 

It is seen that the maximum r is obtained for yx = 0, i.e., for the 
neutral axis of the cross section. Then, substituting I, = rR*/4, 
we obtain 

4 V 4 V 

3TR2 3 A 
(68) 

in the rase of a circular cross section, therefore, the maximum shear-
ing stress is 33 per cent larger than the average value obtained by 
dividing the shearing force by the cross-sectional area. 

28. Shearing Stresses in I Beams.—In considering the dis-
tribution of shearing stresses in the 'web of 
an I beam or WF beam (Fig. 110), the same 
assumptions are made as for a rectangular 
cross section; these were that the shearing 
stresses are parallel to the shearing force V 
and are uniformly distributed over the thick-
ness bx of the web. Then eq. (64) may be 
used for calculating the stresses rxy. For 
points on the line pp at a distance y\ from 
the neutral axis, where the width of the cross 
section is bu the moment of the shaded por-

tion of the cross section with respect to the neutral axis z is 

J[>-Ï(?-TV!Œ-*')-

FIG. 110. 
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