INTRODUCTORY 3

Subsequently i, decays exponentially as before. The current
following circuit switching is therefore ¢+ = 7, 4 i,, giving

i = (V) 2Z) [sin (wt — ) — sin (wty — 0) . exp (— RIL)(t — ¢,)].

1r. machine circuits R is often much smaller than X so that
Z ~ X and 6 ~ 90°. For these conditions, app.roximately,

1 > (v,]X)[— cos wt + cos wt, . exp (— R|L)(t — ty)).

If whe voltage is switched on at a zero ({, = 0, 7jw, 27fw . . .), the
transient term has its greatest value »,,/ X, and the resultant current
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starts from zero with complete asynructry, Fig. 1 (b). In contrast,
if the switch is closed on peak voltage, the resuitant current attains
steady state instantaneously without any transient, Fig. 1 (c). The
current in (b) has an amplitude nearly double that in (c), an example
of the doubling effect. Intermediate switching instants give partial
asymmetry, with smaller transierv components.

TRANSIENT aND STEADY STATES. It is usual to develop circuit
theory on a steady-state basis, using complex algebraic treatment
with complexor or “vector” diagrams. The consideration of tran-
sient conditions demands a rewurn to more basic concepts.

STEADY-STATE CONVENTIONS. A complexor* voltage V., of mag-

nitude V and drawn at an arbitrary angle « to a horizontal datum,
can Le variously described as

V="Vke=V +jV,=7V(cosa+jsina)= V.exp (ja)

“ Voliages and currents are not vectors in the true physical sonse, and are
hiore called “‘complexors.”” However, in deference to common usage the term
“‘vector” i3 also ocrasionally used in the text.
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If another circuit (the secondary) be in the vicinity of the first
(the primary), it will link some of the magnetic lux produced by
the primary (Fig. 7). With an alternating primary current (and
therefore flux) the changing linkages will produce in the secondary
an e.m.f.

_aN

by = dt“ volts

where N,, represents the linkages in the T turns of the secondary
winding with that part- @,,, of the flux @, produced by the primary
s that links the secondary. If the second-

™\ \tﬁ’l / // ary coil is suitably shaped and favour-
//—-\\\\ L T A ably placed relatively to the primary,
| 1Y Npy ~ T)®y,,: in general Ny, will differ
\ RN from this simple product as it is not
ST ANT possible to secure that all the flux

. | “o_ L . ®uy links all the turns 7, completely.
- ﬂ#ﬁ The e.m.f. e,,, is said to be produced
P | &\ Secondary by reason of the mutual induction of
’ Y N the primary and secondary circuits. A

|

N similar effect will naturally take place
' if the respcctive roles of the two circuits
Fia. 7. MurtuaL Insucrion are interchanged, and it is shown in
. textbooks of electrical technology that
the mutual inductance is the samo irrespective of which circuit is
primary and which secondary, in any given case. The coefficient
of mutual inductance L, in henrys may be defined as the e.m.f. in
volts induced in one circuit when the current in the other is changed
at the rate of 1 A. per sec.; or the energy in the common magnetic
field in joules when each circuit carries 1 A,

The mutually induced e.m.f. in the secondary circwmit will, if the
circuit be closed through a load. circulate current in the load and
dissipate energy therein. This energy can comes only from the
primary, to which the whole operation is due. Thus energy is being
transferred from primary to secondary by means of the mutual
magnetic field. This is important, and is the priniciple underlying
the transformer effect. The process briefly ia: the primary produces
a pulsating magnetic field in which encrgy is stored and restored
periodically. The e.m.f. e,, and the current i, associatea with it. in
the secondary circuit abstract energy from the common field and
pass it on .o the secondary load. Tf there is no uecondary load the
mauynetic field energy passes into and out of the primary circuit as a
continual puisation of energy from electrical to and from maguetio
form

The more closely the primary aad sscondary circuits are mutually
linked, the more direcl becomwes the exchange of energy oetween them.
If the two circuits link a comimon iron core, Fig 8, the effects are—
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Leakage between primary and secondary could be eliminated if
the windings could be made to occupy the same space. This, of
course, is physically impossible, but an approzimation to it is
achieved if the coils of primary and secondary are sectionalized and
interleaved : such an arrangement leads to a marked reduction of
the leakage reactance. If, on the other haiid, the primary and
. secondary are kept separate and widely spaced, there will be much
more room for leakage flux and the leakage reactance will be greater.
It is thus possible to control the reactance within limits. The
calculation of reactance is detailed in Chapter VII, §7.

TrE EQuivaLENT CmrculT. The transformer shown diagram-
matically in Fig. 15 (@) can be resolved into an equivalent circuit
(b) in which the resistance and leakage reactance of primary and
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Fi16. 15. EqQuivarLenT CrrculT

secondary respectively are represented by the ‘‘lumped ” r,, ,, 7, and
z,, as if these were external to a transformer of which the windings
were without resistance and leakage. Similarly a shunt circuit r,
and z, can be introduced such that E,fr, == I,, and E\fx, = I,,.the
two quadrature components of the magnetizing current. The
windings of the transformer are now “ideal,” and represent the
seat of the induced e.m.f’s E, and £,, which are related by the
expression E,|E, = T\[T,, the turn-ratio.

Suppose 7, = T,, then E, = E,, and the two sides of the trans-
former may be joined in parallel (c), and the ene.gy transmitted
from primary to secondary without a transforrer at all (d). The
circuit, Fjg. 15 (d), represents exactly the electrical characteristics
of a transformer with unity turn-ratio: that is, the resistance and
reactance voltages, no-load currenv, core and I2X losses, are re-
produced and give the same characteristics as the transformer.

An equivalent circuit is useful for calculations of regulation,
parallel operation, etc. Since in the majority of cases the turn-
ratio is not uhity, it is necessary to imagine the actual secondary
winding of 7, turns replaced by an equivalent winding of T, turns.
for which the I?R loss and the per-unit or percentage reactance
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¢, the regulation given by eq. (19) is (BC + CD)JOA = ﬁ/(ﬂ
The true regulation is BA[OA, so that it is necessary to make the
small addition DA[OA. This term is

DA _ FD* _ (FH — DH)* _ (I,X,cos¢ — I,R,sing)?

04 2042 2042 2V, i
wheace eq. (20). In Fig. 21, (a) is drawn in primary and (b) in
secondary terms: both naturally lead to the same result.
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Eq. (19) indicates tha: the regulatioi. on full load varies with the
power factor at the secondary terminals. It will be a maximuip
when ¢ = arc tan (¢,/¢,), as can be seen from Fig. 21 (a), where the
greatest difference between V, and V,” will occur when the angle ¢
coincides with the internal angle arc tan (X,/R,) = arc tan (g[¢,) of
the total imnpedance. The regulation will be zero when ¢, cos ¢
+ &,8in¢ = 0, i.e. when tan ¢ = — (¢,/¢,), giving ¢ = — arc tan
(e,/e.) corresponding to a negative (leading) angle. At leading
power factors below this the regulation will be negative, i.e. the
secondary terminal voltage will rise between no load and full load.
The full-load regulation at various power-factors is shown for a
typical case in Fig. 22; while Fig. 20 provides a vectorial explana-
tion, the impedance drop Iy(z, + 23') = 1,Z, being exaggerated for
clarity.

The numerical values ¢, and ¢, are readily calculable from the
short-circuit test, a8 described in Chapter VI, §7.

Regulation is a numeric, not a complex quantity, so that the
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