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The natural frequency for this systemis then given by
w =k lm
2= /.07 X 3861507
w = 8.31 rad/sec

or

f=132cps. (Ans.)

1.9 AMPLITUDE OF MOTION

Let us now examine in more detail eq. (1.20), the solution describing the free
vibratory motion of the undamped oscillator. A simple trigonometric transfor-
mation may show us that we can rewrite this equation in the equivalent forms,
namely

y=Csin(wt +a) (1.23}
or
y=Ccos (wt - f) (1.24)
where
C=+y? +{vo/w)?, (1.25)
tana = 2% (1.26)
vofw
and
tan § = vo/w‘ (1.27)
Yy

The simplest way to obtain eq. (1.23) or eq. (1.24) is to multiply and divide
eq. (1.20) by the factor € defined in eq. (1.25} and to define « (or f) by eq.
(1.26) [oreq. (1.27)]. Thus

y= C(‘%’- cos wr + voéw sin wt). (1.28)
With the assistance of Fig. 1.9, we recognize that

: Yo
= 1.29
sina="3 (1.29)
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1.11 A system (see Fig. P1.11) is modeled by two treely vibrating masses m
and m, interconnected by a spring having a constant k. Determine for this
system the differential equation of motion for the relative displacement
u=y,-y,; between the two masses. Also determine the corresponding
natural frequency of the system.

P1.11
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The value of the damping coefficient for real structures is much «ss than tie
critical damping coefficient and usually ranges between 2 to 20% of the criticl
damping value. Substituting for the maximum value £ =0.20 into eq. (2.17).

wp =0.98w. (2.25)

It can be seen that the frequency of vibration for a system with as much as a
20% damping ratio is essentially equal to the undamped natural frequency. Thus,
in practice. the ratural frequency for a damped system may be taken to be equal
to the undamped natural frequencv.

26 LOGARITHMIC DECREMENT

A practical method for determining experimentally the damping coefficient of a
system is to initiate free vibration, obtain a record of the oscillatory motion,
such as the one shown in Fig. 2.4, and measure the rate of decay of the ampli-
tude of motion. The decay may be conveniently expressed by the logarithmic
decrement § which is defined as the natural logarithm of the ratio of any two
successive peak amplitudes, v, and y, in free vibration, that is,

§=In —. (2.20)

The evaluation of damping from the logarithmic decrement follows. Consider
the damped vibration motion represented graphically in Fig. 2.4 and given ana-
lytically by eq. (2.21) as

y(0)=Ce ™ cos(wp! - ).
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Fig. 2.4 Curve showing peak displacements and displacements at the points of
tangency.
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decrease 5% on each consecutive cycle of motion. Determine the damping
coefficient ¢ of the system. k = 200 Ib/in and m = 10 Ib - sec?/in.

It is observed experimentally that the amplitude of free vibration of a cer-
tain structure, modeled as a single degree-of-freedom system, decreases
from 1 to 0.4 in 10 cycles. Whkat is the percentage of critical damping?
Show that the displacement for critical and overcritical damped systems
with initial displacement y, and velocity vg may be written as

y=e"“Uyo(1 +wt)+ugt]l for E=1

Yo + yokw

= g0t |:yo cosh wyt +
wWp

where wp = wWVE? - 1.

A structure is modeled as a damped oscillator with spring constant k = 30
Kips/in and undamped natural frequency w = 25 rad/sec. Experimentally
it was found that a force 1 Kip produced a relative velocity of 1.0 in/sec
in the damping element. Find: (a) the damping ratio £, (b) the damped
period Tp, (c) the logarithmic decrement §, and (d) the ratio between two
consecutive amplitudes.

In Fig. 2.4 it is indicated that the tangent points to the displacement curve
correspond to cos (wpt - a)=1. Therefore the difference in wpt be-
tween any two consecutive tangent pointsis 27. Show that the difference
in wpt between any two consecutive peaks of the curve is also 2.

Show that for an underdamped system in free vihration the logarithmic
decrement may be written as

sinh w'D!:I for £>1

Yi
Yivk

1
§=—1In

where k 1s the number of cycles separating two measured peak amplitudes
yiand y; k.

A single degree-of-freedom system consists of a mass with a weight of 386
Ib and a spring of stiffness k = 3000 Ib/in. By testing the system it was
found that a force of 100 Ib produces a relative velocity 12 in./sec. Find,
(a) the damping ratio £, (b) the damped frequency of vibration fp, (c)
logarithmic decrement § , and (d) the ratio of two consecutive amplitudes.

0 Solve Problem 2.9 when the damping coefficient is ¢ = 2 |b sec/in.

A system is modeled by two freely vibrating masses m; and m, intercon-

nected by a spring and a damper element as shown in Fig. P2.11. Deter-
2—» v, a—*y
2 Z
A VAVAVE
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