THE CLASSIFICATION OF MINERALS

148

only these elements whose minerals are described in this book. Other elements represented in nature by rare or unimportant minerals are not considered. This method of grouping is helpful both to the mineralogist determining minerals by some analytical technique, and also to the economic geologist, who may wish to know which various ores are associated with a particular element.

The groups and subgroups obtained from Table 1.8 are dealt with in the order shown in that table, and are set out below:

Group	Ia Ib	lithium, sodium, potassium copper, silver, gold
Group	IIa IIb	calcium, strontium, barium (radium) beryllium, magnesium, zinc, cadmium, mercury
Group	IIIb	boron, aluminium
Group	IVa IVb	titanium, zirconium, [cerium], thorium carbon, silicon, tin, lead
Group	Va Vb	vanadium, niobium, tantalum nitrogen, phosphorus, arsenic, antimony, bismuth
Group	VIa VIb	chromium, molybdenum, tungsten, uranium sulphur, selenium, tellurium
Group	VIIa VIIb	manganese fluorine, chlorine, bromine, iodine
Group	VIIIa VIIIb	iron, cobalt, nickel ruthenium, rhodium, palladium, osmium, iridium, platinum

Formal descriptions of all the minerals are given either in Chapter 8, for the non-silicate minerals, using the Dana subdivisions given earlier, or in Chapter 9, for the silicate minerals, using crystal chemical subdivisions.

As in the previous editions of this book, information on elements and industrial minerals is obtained from the *Mining Annual Review* issued by the *Mining Journal*, and it is worth summarizing the arrangement of industrial minerals used in the *Review*, from which the importance, complexity and variety of mineral products in industry is immediately apparent. The arrangement is as follows:

Precious metals: gold, silver, platinum metals. Older major metals: copper, tin, lead, zinc. New extraction plants on the Dead Sea have increased the amount of potash recovered to over 1.5 million tonnes (Mt) per annum.

The following gives a summary of the potash production in normal years, considered in terms of the minerals exploited. Italy produces a small quantity of leucite. The overwhelming proportion of the production comes from the saline residues, with an annual output of over 29 Mt in 1985. The major producers are the USSR (10.5 Mt), Canada (6.6 Mt), East Germany (3.5 Mt), West Germany (2.6 Mt), France (1.7 Mt) and the USA (1.2 Mt), with Israel, Spain, Jordan, the UK and Italy all producing between 0.1 and 1.0 Mt per annum. Alunite is produced by Korea, Italy, the USSR, Japan, Australia and Spain. Nitre production is largely from India, where it is of organic origin, and Chile, where it is of inorganic origin in the sodium nitrate deposits.

The most important use of potash salts is as fertilizers, taking 95% of total K_2O production. Other uses are in the manufacture of special glasses, soaps and detergents.

Tests. Potassium compounds give a lilac flame coloration, which is, however, masked by sodium and other elements; the flame should be viewed through blue glass or an indigo prism, whereby elements other than potassium are eliminated. Fused potassium compounds give an alkaline reaction with litmus. For the detection of small quantities of potassium compounds in solution, a few drops of platinic chloride produce in such a solution, after prolonged stirring, a precipitate of minute yellow crystals of potassium platinochloride, K₂PtCl₆.

The potassium minerals, other than silicates, dealt with are:

chlorides	sylvine, KCl
	carnallite, KMgCl ₃ .6H ₂ O
	kainite, KCl.MgSO ₄ .3H ₂ O
sulphates	polyhalite, $K_2Ca_2Mg(SO_4)_4.2H_2O$
	alunite, KAl ₃ (SO ₄) ₂ (OH) ₆
nitrate	nitre, KNO ₃

Group Ib Copper, silver and gold

Copper minerals

Copper (Cu) is a widely distributed and abundant element in combination, and is also found in the native state. The metal copper has a specific gravity

 $ZnCO_3$, and hydrozincite, $Zn_5(OH)_6(CO_3)_2$, the hydrated silicate, hemimorphite, $Zn_4Si_2O_7(OH)_2$. H_2O , and sometimes the anhydrous silicate, willemite, Zn_2SiO_4 . In such oxidized zones the hydrated sulphate, goslarite, $ZnSO_4$. $7H_2O$, often occurs as an efflorescence.

In most occurrences of zinc ore, the blende is accompanied by galena. There are several types of zinc deposit. In one very important type, illustrated by the great Tri-State field in the Mississippi Valley, galena and blende occur as metasomatic disseminations or gash, cavity or joint fillings in limestone; the ore is certainly epigenetic, but whether it was derived from below and transported by ascending solutions, or from above and carried down, is a matter for discussion. The important Broken Hill deposits occur in lodes along fault planes in a series of metamorphosed rocks, and are of hydrothermal origin. Other deposits of hydrothermal origin replace limestone and are exemplified by the Leadville field in Colorado. Other zinc-lead deposits are found as contact metamorphic deposits, but these are not very important. The ore of the famous Franklin Furnace deposit of New Jersey is franklinite, (Fe,Zn,Mn)(Fe,Mn)₂O₄, willemite and zincite, ZnO, and occurs as bands and lenses in crystalline limestone; this remarkable deposit is interpreted as of pyrometasomatic origin, but may possibly be a hydrothermal zinc deposit which has been subsequently contact metamorphosed. Finally, the decay of rocks such as limestones in which there are zinc-lead veins and deposits gives rise to residual deposits of these minerals.

Tests. Zinc minerals heated on charcoal give an encrustation which is yellow when hot, white when cold; this encrustation, moistened with cobalt nitrate and strongly reheated, assumes a fine green colour.

The nomenclature of some of the zinc minerals is rather confused; the sulphide is usually called zinc blende or blende in the UK, but is known as sphalerite in the USA; the anhydrous carbonate has been called calamine in the UK, but smithsonite in the USA; the hydrated silicate is hemimorphite (once called calamine in the USA). The zinc minerals considered here are:

element	native zinc (doubtful)
oxides	zincite, ZnO franklinite, (Fe, Zn, Mn)(Fe,Mn) ₂ O ₄
sulphide	blende, sphalerite, ZnS
carbonate	smithsonite, ZnCO ₃

The rare element **hafnium** (Hf) replaces zirconium in up to about 1% of zircon. Hafnium is used mainly in control rods in naval nuclear reactors and also in ceramics, refractories, alloys and in hafnium–columbium carbide cutting tools. About 50 t of hafnium was produced in the USA in 1985.

Rare earth minerals

The rare earth elements (REEs) include cerium, lanthanum, erbium, yttrium, europium and gadolinium. The most important are **cerium** (Ce), **yttrium** (Y), **gadolinium** (Gd), **samarium** (Sm) and **neodymium** (Nd). **Thorium** is associated with this group being common in monazite, a cerium-bearing mineral.

The uses of the REE oxides vary from petroleum catalysts and metallurgical uses to the manufacture of ceramics and glass. Cerium, yttrium and europium oxides are used in cathode ray and colour television tubes, and as a coating on camera lenses. Neodymium is used in high strength neodymium-iron-boron permanent magnets.

Many minerals contain REEs, and in particular orthite or allanite (a cerium-bearing member of the epidote group of rock-forming minerals), monazite (an RE-bearing phosphate containing thorium), bastnaesite (a hydrated RE carbonate), and xenotime (yttrium phosphate).

Rare earth oxides are normally obtained from bastnaesite and monazite. Yttrium is produced from monazite or xenotime. Most REEs in the USA and China are obtained from bastnaesite deposits, and in Australia from monazite deposits.

World production of rare earth ores in 1985 was estimated at 47 000 t, with the principal mineral concentrate producers being the USA (25 310 t bastnaesite), China (12 000 t bastnaesite), Australia (14 000 t monazite), Brazil (6000 t monazite) and India 4000 t monazite). Canada is about to start mining xenotime (for yttrium).

Tests. Satisfactory tests for cerium and other REEs are complicated chemical ones, and are beyond the scope of this book. Rare earth metals can be detected by spectroscopic methods. Under the microscope, the identity of grains of monazite can be established by use of the spectroscopic eyepiece, whereby characteristic absorption bands are observed.

The cerium minerals considered are:

Contents

Pr	eface		<i>page</i> vii
Li	sts of ta	bles	xiii
1	The chemistry of minerals		1
	1.1	States of matter	1
	1.2	Elements, compounds and mixtures	1
	1.3	Atoms and molecules	3
	1.4	Atomic number, valency and atomic weight	6
	1.5	Atomic bonding	9
	1.6	Ion size and ionic radii	15
	1.7	Ionic potential and behaviour of ions in magma	18
	1.8	Periodic classification of the elements	20
	1.9	Oxides, acids and bases, and salts	20
	1.10	Oxidation and reduction	22
	1.11	The electrochemical series of metals	22
	1.12	Chemical analysis	23
2	Phys	ical properties of minerals	26
	2.1	Introduction	26
	2.2	Characters dependent upon light	26
	2.3	Taste, odour and feel	30
	2.4	State of aggregation	31
	2.5	Specific gravity	39
	2.6	Characters dependent upon heat	43
	2.7	Characters dependent upon magnetism, electricity and radioactivity	44

x		CONTENTS	
3.	The elements of crystallography		
	3.1	Introduction	47
	3.2	The internal structure of minerals	48
	3.3	The nature of the crystalline state	57
	3.4	Stereographic projection	62
	3,5	Description of crystals	65
	3.6	The crystal systems	68
	3.7	Crystal drawings	77
	3.8	Simple uses of crystal stereograms	79
4	The optical properties of minerals		81
	4.1	Introduction	81
	4.2	The nature of light	81
	4.3	Reflection	83
	4.4	Refraction	83
	4.5	The petrological microscope	89
	4.6	Isotropic and anisotropic substances	90
	4.7	Isotropic minerals	91
	4.8	Uniaxial minerals	91
	4.9	Biaxial minerals	99
	4.10	Pleochroism	107
	4.11	Thin sections of rocks and minerals	109
	4.12	Systematic description of minerals under	
		the petrological microscope	110
	4.13	The microscopic investigation of ore minerals	115
	4.14	Microchemical tests	116
	4.15	X-ray diffraction studies of minerals	117
5	The occurrence of minerals		118
	5.1	Introduction	118
	5.2	Classification of rocks	118
	5.3	Igneous rocks	119
	5.4	Sedimentary rocks	128
	5.5	Metamorphic rocks	130
	5.6	Mineral deposits	134
	5.7	Earth history	144

		CONTENTS	xi
6	The c	lassification of minerals	147
7	Economic grouping of minerals according to elements		150
	Ia	Lithium, sodium and potassium	150
	Ib	Copper, silver and gold	153
	IIa	Calcium, strontium, barium and radium	159
	IIb	Beryllium, magnesium, zinc, cadmium and mercury	162
	IIIb	Boron and aluminium (gallium, indium)	169
	IVa	Titanium, zirconium, cerium and rare	172
		earth elements, and thorium	
	IVb	Carbon, silicon, tin and lead	176
	Va	Vanadium, niobium and tantalum	182
	Vb	Nitrogen, phosphorus, arsenic, antimony and bismuth	184
	VIa	Chromium, molybdenum, tungsten and uranium	191
	VIb	Sulphur, selenium and tellurium	196
	VIIa	Manganese and rhenium	199
	VIIb	Fluorine, chlorine, bromine and iodine	202
	VIIb	Iron, cobalt and nickel	203
	VIIIb	Ruthenium, rhodium, palladium, osmium, iridium and platinum	209
8	The non-silicate minerals		211
	8.1	Native elements	212
	8.2	Halides	212
	8.3	Sulphides	231
	8.4	Oxides	258
	8.5	Carbonates	288
	8.6	Nitrates	310
	8.7	Borates	312
	8.8	Sulphates	316
	8.9	Chromates	331
	8.10	Phosphates, arsenates and vanadates	332
	8.11	Molybdates and tungstates	334
9	The silicate minerals		348
	9.1	Crystal chemistry of silicate minerals	347

CONTENTS

9.2	Nesosilicates	350
9.3	Sorosilicates	363
9.4	Cyclosilicates	370
9.5	Inosilicates (chain silicates)	374
9.6	Phyllosilicates (sheet silicates)	397
9.7	Tektosilicates (framework silicates)	416
Append	lix A Analysis by the blowpipe	445
A 1	The blowpipe	445
A .2	The two types of flame	445
A.3	Supports	447
A.4	Fluxes	448
A.5	Tube tests	449
A.6	Reactions	450
A.7	Tables of blowpipe analyses	450
Append	lix B Hydrocarbons	458
B .1	Introduction	458
B .2	Coals	458
B.3	Bitumens	461
Bibliogra	aphy	465
Index		466

xii