
3-18 This problem is much more ambitious than the usual problems,
in the sense that it requires putting together a greater number of parts.
But if you tackle the various parts as suggested, you should find that
they are not, individually, especially difficult, and the problem as a
whole exemplifies the power of the energy-conservation method for
analyzing oscillation problems.

You are no doubt familiar with the phenomenon of water sloshing
about in the bathtub. The simplest motion is, to some approximation,
one in which the w.ater surface just tilts as shown but seems to refllain
more or less flat. t\ ~imilar phenomenon occurs in lakes and is called a
seiche (pronounced: saysh). Imagine a lake of rectangular cross sec
tion, as shown, of length L and with water depth h (<<L). The problem
resembles that of the simple pendulum, in that the kinetic energy is
almost entirely due t« horizontal flow of the water, whereas the potential
energy depends on the very small change of vertical level. Here is a
program for calculating, approximately, the period of the oscillations:

(a) Imagine, that at some instant the water level at the extreme
ends is at ±yOwith respect to the normalleveI. Show that the increased
gravitational potential energy of the whole mass of water is given by

U = f,bpgLY0 2

where b is the width of the lake. You get this result by finding the
increased potential energy of a slice a distance x from the center and
integrating.

(b) Assuming that the water flow is predominantly horizontal,
its speed v must vary with x, being greatest at x = 0 and zero at
x = ±L/2. Because water is incompressible (more or less) we can
relate the difference of flow velocities at x and x + dx to the rate of
change dy/dt of the height of the water surface at x. This is a continuity
condition. Water flows in at x at the rate vhb and flows out at x + dx
at the rate (v + dv)hb. (We are assuming YO« h.) The difference
must be equal to (6 dx)(dy/dt), which represents the rate of increase of
the volume of water contained between x and x + dx. Using this
condition, show that

1 2 dyo
v(x) = v(O) - -x -

hL dt

where

v(O) = ~ dyo
4h dt
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FINDING'THE NORMAL MODES FOR N COUPLED OSCILLATORS

We apply basically the same analytical technique to our N differ
ential equations as we previously used for the two equations.
We seek the normal modes; i.e., we look for sinusoidal solutions
such that each particle oscillates with the same frequency. We set

Yp=Apcoswt (p = 1, 2, ... , N) (5-17)

(p= 1,2, ... , N)

(5-18)

where A p EJ,nd ware the amplitude and frequency of vibration of
the pth particle. If we can find values of A p and w for/which
equations (5-17) satisfy the N differential equations (5-16), then
we have accomplished our purpose. Note that the velocity of any
particle can be obtained from equations (5-17) and is

dyp A'
~ = -w psmwt

Thus, by choosing equations (5-17) as a trial solution, we are
automatically restricting ourselves to the additional boundary
condition that each particle has zero velocity at t = 0; i.e.,
each particle starts from rest.

Substituting equations (5-17) into the differential equations
(5-16), we get

(-w 2 + 2wo2)A 1 7'" wo 2(A2 + Ao) = 0

(-w 2 + 2wo2)A2 - wo 2(A3 + Al) = 0

(-w 2 + 2wo2)AN - wo 2(AN+l - AN_I) = 0

This formidable-looking set of N simultaneous equations can
be written more compactly as follows:

-( -w2 + 2wo2)Ap - wo 2(A p-;-I + Ap+I) = 0

(p = 1, 2, ... , N)

Our earlier boundary condition requiring the ends to be held
fixed means that A 0 = 0 and AN+ 1 = o.

The question we are asking ourselves is whether all J:V of
these equations can be satisfied by using the sa~e value of w2

in each. We saw earlier how t6 tackle such a problem when only
two coupled oscillators were involved. The assumption that a
solution existed (other than the trivial one of having all ampli
tudes equal to zero) led to restrictions on the ratios of the ampli
tudes [as expressed by equations (5-9)]. We have the same situa-
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Fig. 7-18 Displace
ment and exlension
ofa shorl segment of
sIring carrying a
IransrJerse elaslic
warJe.

total energy associated with one complete wavelength of a
sinusoidal wave on a stretched string.

By way of approaching this problem, we shall consider first
a small segment of the string-so short that it can be regarded as
effectively straight-that lies between x and x + dx, as shown
in Fig. 7-18. We shall make the usual assumptions that the dis
placements of the particles in the string are strictly transverse
and that the magnitude of the tension T is not changed by the
deformation of the string from its normal length and configuration.

The mass of the small segment is J.L dx, and its transverse
velocity (uy) is ayjat. Hence, for this segment, we have

kinetic energy = !J.L dx (~)
2

and we can define a kinetic energy per unit lengt~what is called
the kinetic-energy density-for such a one-dimensional medium:

. . . dK 1 (ay)2

kmetlc-energy density == dx = 2 J.L at (7-31)

The potential energy can be calculated by finding the amount by
which the string, when deformed, is longer than when it is straight.
This extension, multiplied by the assumed constant tension T, is
the work done in the deformation. Thus, for the segment, we have

potential energy = T(ds - dx)

where

ds = (dx2 + dl)1/2

[ ( ay) 2J11
2

= dx 1 + ax

If we assume that the transverse displacements are small, so that
ayjax « 1, we can approximate the above expression using the
binomial expansion to two terms, thus getting

its - dx ~ ! (ay)2 dx
2 ax

Therefore,

potential energy ~ tT(:~Y dx

Hence we have

/ dU 1 (ay)2

potentiar-energy density == dx ~ 2T ax (7-32)
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Fig. 8-24 Variation
of amplitude with di
rection in single-slit
diffracrion.
(a= 'lrb sin 8/>',
where 8 is the direc
tion of observation
and b is the slit
width.) (a) Ampli
tude together with
phase (as shown by +
or - value).
(b) Absolute magni
tude ofamplitude.

culation. For a given value of the total phase difference <p, the
vector diagram becomes a circular arc of radius R such that

Ao - Rep

The resultant amplitude A under these conditions is the chord
of this arc and hence is given by

A = 2R sin(<p/2)

Thus we have

A -A sin(ep/2) h ep 'll'b sin 8 (8-25)o ep/2 were 2 ... ->.,-

This variation of resultant amplitude with dire.::tion is thus of the
form (sin a)/a, where a = <p/2. This function (more formally
identified as a Bessel function of order zero) has a zero whenever
<p/2 is an integral multiple of '11'. Its general appearance is shown
in Fig. 8-24(a). In Fig. 8-24(b) it is replotted without regard to
sign, and its close resemblance to the amplitude curve for a
diffraction grating [Fig. 8-20(b)] is then more readily appreciated.

It follows from this' analysis that one slit, alone, can give rise
. to a diffraction pattern with a system of nodal lines, as shown in
Fig. 8-25. It is essentially like the pattern around the central
(zero-order) maximum of a diffraction grating, rather than a

291 Dir~kction/1:>Y a single slit



Contents

Preface ix

I Periodic motions
Sinusoidal vibrations 4
The description ofsimple harmonic motion 5
The rotating-vector representation 7
Rotating vectors and complex numbers 10
Introducing the complex exponential 13
Using the complex exponential 14

PROBLEMS 16

2 The superposition of periodic motions
Superposed vibrations in one dimension 19
Two superposed vibrations of equal frequency 20
Superposed vibrations of different frequency; beats 22
Many superposed vibrations of the same frequency 2.7
Combination of two vibrations at right angles 29
Perpendicular motions with equal frequencies 30
Perpendicular motions with different frequencies;

Lissajousfigures 35
Comparison ofparaUel and perpendicular superposition 38

PROBLEMS 39

3 The free vibrations of physical systems
The basic mass-spring problem 41
Solving the harmonic oscillator equation using compex

exponentials 43

3

19

41

v



Elasticity and Young's modulus 45
Floating objects 49
Pendulums 51
Water in aU-tube 53
Torsional oscillations 54
"The spring ofair" 57
Oscillations involving massive springs 60
The decay offree vibrations 62
The effects ofvery large damping 68

PROBLEMS 70

4 Forced vibrations and resonance
Undamped oscillator with harmonic forcing 78
The complex exponential method for forced oscillations 82
Forced oscillations with damping 83
Effect of varying the resistive term 89
Transient phenomena 92
The power absorbed by a driven oscillator 96
Examples ofresonance 101
Electrical resonance 102
Optical resonance 105
Nuclear resonance ·108
Nuclear magnetic resonance 109
Anharmonic oscillators 110

PROBLEMS lJ2

5 Coupled oscillators and nonnal modes
Two coupled pendulums 121
Symmetry considerations 122
The superposition of the normal modes 124
Other examples ofcoupled oscillators 127
Normalfrequencies: general analytical approach 129
Forced vibration and resonu'.1Ice for two coupled oscillators 132
Many coupled oscillators 135
N coupled oscillators 13,6
Finding the normal modes for N coupled oscil/ators 139
Properties of the normal modes for N coupled oscillators 141
Longitudinal oscillations 144
N very large 147
Normal modes of a crystal lattice 151

PROBLEMS 153

77

119

6 Nomlal nnodes of continuous systems. Fourier analysis 161

The free vibrations ofstretched strings 162
The superposition ofmodes on a string 167
Forced harmonic vibration of a~ stretched string 168

VI



Longitudinal vibrations ofa rod 170
The vibrations ofair columns 174
The elasticity ofa gas 176
A complete spectrum ofnormal modes 178
Normal modes ofa two-dimensional system 181
Normal modes ofa three-dimensional system 188
Fourier analysis 189
Fourier analysis in action 191
Normal modes and orthogonal functions 196

PROBLEMS 197

7 Progressive waves
What is a wave? 201
Normal modes and traveling waves 202
Progressive waves in one direction 207
Wave speeds in specific media 209
Superposition 213
Wave pulses 216
Motion of wave pulses of constant shape 223
Superposition of wave pulses 228
Dispersion; phase and group velocities 230
The phenomenon ofcut-off 234
The energy in a mechanical wave 237
The transport ofenergy by a wave 241
Momentum flow and mechanical radiation pressure 243
Waves in two and three dimensions 244

PROBLEMS 246

201

8 Boundary effects and interference 253

Reflection of wave pulses 253
Impedances: nonreflecting terminations 259
Longitudinal versus transverse waves: polarization . 264
Waves in two dimensions 265
The Huygens-Fresnel principle 267
Reflection and refraction ofplane waves 270
Doppler effect and related phenomena 274
Double-slit interference 280
Multiple-slit interference (diffraction grating) 284
Diffraction by a single slit 288
Interference patterns of real slit systems 294

PROBLEMS 298

A short bibliography 303
Answers to problems 309
Index 313

vii




