
Chap. 1 Problems 15 

1-12 Determine the Fourier series for the sawtooth curve shown in Fig. PI-12. Express 
the result of Prob. 1-12 in the exponential form of Eq. (1.2-4). 
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Figure PI-12. 

1-13 Determine the rms value or a wave consisting of the positive portions of a sine 

wave. 

1-14 Determine the mean square value of the sawtooth wave of Prob. 1-12. Do this two 

ways, from the squared curve and from the Fourier series. 

1-15 Plot the frequency spectrum for the triangular wave of Prob. 1-11. 

1-16 Determine the Fourier series of a series of rectangular pulses shown in Fig. PI-16. 
Plot cn and <f>„ versus n when k = \ . 
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Figure PI-16. 

1-17 Wr i t e the equa t ion for the d isplacement s of the p is ton in the crank-pis ton 

m e c h a n i s m shown in Fig. P l - 1 7 , and de termine the h a r m o n i c componen t s and 

their relat ive magni tudes . If r/l = \ , wha t is the rat io of the second ha rmonic 

c o m p a r e d to the first? 

Figure Pl-17. 

1-18 D e t e r m i n e the mean square of the rectangular pulse shown in Fig. P l - 1 8 for 

k = 0.10. If the ampl i tude is A, what would an rms vol tmeter read? 

Figure Pl-18. \+kr+\ 



28 Free Vibration Chap. 2 

Since 86 is arbitrary, the quantity within the brackets must be zero. Thus the equation 
of motion becomes 

♦ d^u*-r 
where sin 6 s 6 has been substituted. The natural frequency from the preceding 
equation is 
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2.6 VISCOUSLY DAMPED FREE VIBRATION 

Viscous damping force is expressed by the equation 

Fd = ex (2.6-1) 

where c is a constant of proportionality. Symbolically it is designated by a 
dashpot, as shown in Fig. 2.6-1. From the free-body diagram the equation of 
motion is seen to be 

mx + ex + kx = F(t) (2.6-2) 

The solution of the above equation has two parts. If F(t) = 0, we have the 
homogeneous differential equation whose solution corresponds physically to 
that of free-damped vibration. With F(t) # 0, we obtain the particular solution 
that is due to the excitation irrespective of the homogeneous solution. We will 
first examine the homogeneous equation that will give us some understanding 
of the role of damping. 

With the homogeneous equation 

mx + ex + kx = 0 (2.6-3) 

the traditional approach is to assume a solution of the form 

x = e5t (2.6-4) 
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Figure 2.6-1. 



Table of Spring Stiffness (continued) 
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HARMONICALLY 

EXCITED VIBRATION 

When a system is subjected to harmonic excitation, it is forced to vibrate at 
the same frequency as that of the excitation. Comihon sources of harmonic 
excitation are unbalance in rotating machines, forces produced by reciprocat-
ing machines, or the motion of the machine itself. These excitations may be 
undesirable for equipment whose operation may be disturbed or for the safety 
of the structure if large vibration amplitudes develop. Resonance is to be 
avoided in most cases, and to prevent large amplitudes from developing, 
dampers and absorbers are often used. Discussion of their behavior is of 
importance for their intelligent use. Finally, the theory of vibration measuring 
instruments is presented as a tool for vibration analysis. 

3.1 FORCED HARMONIC VIBRATION 

Harmonic excitation is often encountered in engineering systems. It is com-
monly produced by the unbalance in rotating machinery. Although pure 
harmonic excitation is less likely to occur than periodic or other types of 
excitation, understanding the behavior of a system undergoing harmonic 
excitation is essential in order to comprehend how the system will respond to 
more general types of excitation. Harmonic excitation may be in the form of a 
force or displacement of some point in the system. 

We will first consider a single-DOF system with viscous damping, 
excited by a harmonic force F0sin& as shown in Fig. 3.1-1. Its differential 
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