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that is,

FIG. 1-5. Simple harmonic motion: x(t) = X cos wt.

Period T = 21T s/cycle
w

1 w
Frequency f =- =-2 cycle/s, or Hz*
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w is called the circular frequency measured in rad/s.
If x(t) represents the displacement of a mass in a vibratory system, the

velocity and the acceleration are the first and the second time derivatives
of the displacement, t that is,

Displacement x = X cos wt (1-4)

Velocity i = - wX sin wt = wX cos(wt + 90°) (1-5)

Acceleration x= - w 2X cos wt = w 2X cos(wt + 180°) (1-6)

These equations indicate that the velocity and acceleration of a harnlonic
displacement are also harmonic of the same frequency. Each differentia-
tion changes the amplitude of the motion by a factor of wand the phase
angle of the circular function by 90°. The phase angle of the velocity is
90° leading the displacement and the acceleration is 180° leading the
displacement.

Simple harmonic motion can be defined by combining Eqs. (1-4) and
(1-6).

(1-7)

where w 2 is a constant. When the acceleration of a particle with recti-
linear motion is always proportional to its displacement from a fixed
point on the path and is directed towards the fixed point, the particle is
said to have simple harmonic motion. It can be shown that the solution of
Eq. (1-7) has the form of a sine and a cosine function with circular
frequency equal to w.

* In 1965, the Institute of Electrical and Electronics Engineers, Inc. (IEEE) adopted new
standards for symbols and abbreviation (IEEE Standard No. 260). The unit hertz (Hz)
replaces cycles/sec (cps) for frequency. Hz is now commonly used in vibration studies.

t The symbols i and i represent the first and second time derivatives of the function x(t),
respectively. This notation is used throughout the text unless ambiguity may arise~
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FIG. 2-1. Examples of systems with one degree of freedom.

time domain analysis, since the motion of the mass is a time function,
such as the solution of a differen~ial equation with time as the independ-
ent variable. The frequency response method assumes that both the
excitation and the system response are sinusoidal and of the same
frequency. Hence it is a frequency domain analysis. Note that time
response is intuitive but it is more convenient to describe a system in the
frequency domain.
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Assuming ,sO.1 and solving for ',we get

'1.2 == 1±,
• (d2 (dl

Bandwidth = '2 -'1 =---=2'
(dn (dn

A factor Q is also used to define the bandwidth and damping.

Q= 1 1
bandwidth 2'

(2-5~)

(2-60)

(2-61)

Q is used to measure the quality of a resonl'nce circuit in electrical
engineering. It is also useful for determining the equivalent viscous
da-mping in a mechanical system~

2-7 TRANSIENT VIBRATION,

We shall show that the transient vibration due to an arbitrary excitation
F(t) can be obtained by means of superposition. Although the method is
not convenient for hand calculations, it can be implemented readily using
computers.

The equation of motion of the model in Fig. 2-6 for systems with one
degree of freedom and an excitation F(t) is

mi + ~x + kx =F(t) (2-62)

One method to solve the equation is to approximate F(t) by a sequence
of pulses as shown in Fig. 2-20(a). If the system response to a typical
pulse input is known, the response to F(t) can be obtained by superposi-
tion.. In other words, the syste'm response to F(l) is the sum of the
responses due to each of the pulses in the sequence.

F(t)

F(O)
I I~T -+t ,~41'

0 T Time t 0 T Timet

(a) Sequence of pulses (b) Sequence of steps

FIG. 2-20. F(t) app,oximat~d by pulJ~s and steps.
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FIG. 3-3. Equivalent spring.

Similarly, equivalent springs can be calculated. 'Let k'2 be the torsional
stiffness of shaft 2. It can be shown by equating potential energies that the
equivalent stiffnes's 0f shaft 2 referring to shaft 1 is n 2 k,2. The equivalent
spring in a system can assume various forms. We shall illustrate the
equivalent spring with the examples to follow.

Example 3. Equivalent Spring

Figure 3-3 shows that the static deflection Os, of a cantilever beam is due to
the mass m attached to its free end. Find the natural frequency of the
system.

Selution:

The eq~ivalent system is as shown in Fig. 3-3(b) if (1) the cantilever is of
negligible mass and (2) m is small in size compared with L. The static
deflection Os, due to the concentrated force mg at the free end of a beam of
length L is

mgL3

l) =--s, 3El

where El is the flexural stiffness of tile team. The equivalent spring
constant keq is defined as force per unit deflection.

From the equivalent system, the natural frequency is

Example 4. Springs in Series

Springs are said to be in series when the deformation of the equivalent
spring keq is the sum of their deformations. Assume the cantilever in Fig.
3-4(a) is of negligible mass. Show that the 'cantilever and the spring k 2 are
in series.




