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G. J. Minkoff and C. F. H. Tipper, Chemistry of Combustion
Reactions, London: Butterworth, 1962.

J. R. Murdoch, "What is the rate-limiting step of a multistep
reaction?" J. Chemical Education, 58, 32-36 (1981).
This article gives a particularly clear analysis of the
problem of deciding upon a rate-controlling step when
there are a number of consecutive step'~:
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So far we have developed physical chemistry with little regard to the existence of
the fundamental particles that cbmprise all matter. This approach reveals a good
deal about the properties of matter, but much more can be accomplished on the
basis of the laws that govern the behavior of these fundamental particles. During
the 1930s it became apparent that more progress is made by considering the wave
properties of particles, and we will therefore begin by summarizing what is known
about wave motion.

11.1 ELECTROMAGNETIC RADIATION AND THE OLD QUANTUM THEORY _

Wavelength and Frequency

Visible light and many other apparently different types of radiation are all forms of
electromagnetic radiation, and in a vacuum they all travel with the same speed, namely
2.998 x 108 metres per second (m S-I). Electromagnetic radiation i~\ characterized
by a wavelength A and a frequency v. These two physical quantities\are related to
the speed of light c by the equation \

AV = c (11.1)

The SI unit of wavelength is the metre, although multiples such as naMmetres (nm)
are frequently used, especially in spectroscopy (Chapter 13). The SI unit offrequency
is the reciprocal second (S-I), ~hich is also called the hertz (Hz).

Because of this relationship, all electromagnetic radiation can be classified in
terms of either its wavelength or its frequency, as is done in Figure 11.1. We see
that long radio waves and electric waves may have wavelengths of many kilometres
and very low frequencies, whereas y (gamma) rays have very high frequencies and
extremely short wavelengths.

Electromagnetic radiation differs from certain other types of waves in a number
of important respects. Sound waves, water waves, seismic waves, and waves in a
plucked guitar string exist only by virtue of the medium in which they occur, whereas
electromagnetic waves can travel in a vacuum. Sound waves traveling through a gas,
for example, consist of alternating zones of compression and rarefaction, and the
molecular displacements that occur are in the direction in which the wave travels. As
the wave passes a certain region, the gas molecules undergo changes in energy and
momentum which then pass on to the next region. This type of wave propagation is
also found with a seismic wave traveling through the earth.

An electromagnetic wave is essentially different, .since it can travel through
a vacuum, and the medium is not essential. However, when such a wave comes
in contact with matter, there are important interactions that affect the wave and
the material. There is a coupling of the radiation with the medium, and how this
occurs is best considered with reference to Figure 11.2, which shows that the wave
has two components, one an electric field and the other a magnetic field. These
components are in two planes at right angles to each other. A given point in space
experiences a periodic disturbance in electric and magnetic field as the wave passeS by.
A charged particle such as an electron couples its charge with these field fluctuations
and oscillates with the frequency of the wave. A useful analogy is provided by a qork
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and therefore

w = (21l' rad)v

The mathematical form of the displacement y, shown in Figure 11.3b, is

y = A sin(wt)

(11.4)

(11.5)

Phase where the quantity wt (unit: radian) is called the phase. More generally, we can
allow a displacement by the angle 8 before simple harmonic motion begins, as
shown in Figure lI.3c. This displacement 8 is known as the phase constant and this
modification requires that

y = A sin(wt + 8) (11.6)

The corresponding variation of y with t is shown in Figure II.3d. Since the curves
are not superimposable without a phase shift, they are said to be out ofphase.

To obtain the acceleration of point P we differentiate this equation twice:

d2y
-2 = -Aw2 sin(wt + 8)
dt

(11.7)

Elimination of A sin(wt + 8) between these last two equations gives the equation

(11.8)

Simple Harmonic Motion

Hooke's Law

This is the equation for simple harmonic motion.
Any motion obeying Eg. 11.8 is referred to as simple harmonic motion. Such

motion is also found with a mass attached to the end of a spring in which the restoring
force obeys Hooke's law, which means that it is proportional to the displacement y:

(11.9)

where kh is the force constant. According to Newton's second law of motion this
force is the mass m times the acceleration d2y/dt2:

Equating these two expressions for F gives

d2y -kh

dt 2 = ~y

(1LlO)

(1Ll1)

To solve this we need a function y that when differentiated twice gives the func
tion back again. This condition is satisfied by the sine and cosine functions or by
combinations of them. For simplicity we choose the/sine function,

(1Ll2)
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Double differentiatior. gives

d
2
y kh (~h ) kh- = --asin -t +b = --y

dt 2 -m m m
(l1.l3)

Our chosen function has therefore satisfied Eq. 11.11. The choices of a and b in
Eq. 11.l2 are arbitrary and can be determined from initial conditions. Equation 11.l2
becomes identical with Eq. 11.6 if a is the amplitude A, if b is the initial phase angle
8, and if

{k;y;; = w/rad

Substitution into this expression of the value of w from Eq. 11.4 gives

(l1.l4)

(IUS)

This frequency, known as the natural frequency of the simple hannonic motion,
thus varies inversely with the square root of the mass.

EXAMPLE 11.1 Suppose that a hydrogen atom (mass = 1.67 x 10-27 kg) is
attached to the surface of a solid by a bond having a force constant of 5.0 kg S-2.

Calculate the frequency of its vibration.

Solution From Eq. 11.15 it follows that

V=2~~=2~
= 8.70 x 1012 S-1

5.0 (kg S-2)

1.67 X 10-27 (kg)

(l1.l7)

When a body is oscillating, its kinetic energy Ek and its potential energy Ep are
continuously varying, but their sum Elatal is a constant:

Elatal = Ek + Ep (l1.l6)

We have seen (Eq. 1.12) that the potential energy is the work done in moving a mass
from its equilibrium position to a new position; thus for the displacement y from the
equilibrium position

Ep = r (-F) dy = r khy d~ ~.-khy2
Jo Jo' 2

The kinetic energy is ~mu2 where u is the velocity. We can evaluate the total energy
by calculating its value when the oscillator reverses its direction; then u = 0 and
y = A, the maximum amplitude. The potential energy is then ~khA2 (Eq. lU7) and




