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Then transform the last term of this expression:
dv dv dl __ , dv dv (.7
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Let us determine the increment of the vector T in the inter-

val dl (Fig. 4). It can be strictly shown that when point 2

approaches point 7, the segment of the path between them

tends to turn into an arc of a circle with centre at some
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Fig. 4

point O. The point O is referred to as the centre of curvature
of the path at the given point, and the radius p of the cor-
responding circle as the radius of curvature of the path at
the same point.
It is seen from Fig. 4 that the angle 8a = |dl |/p =
= | dv |/1, whence
| de/dl | = 1/p;

at the same time, if d/ — 0, then dv _|_ =. Introducing a unit
vector n of the normal to the path at point 7 directed toward
the centre of curvature, we write the last equality in a vec-

tor form:
dt/dl = n/p. (1.8)

Now let us substitute Eq. (1.8) into Eq. (1.7) and then
the expression obtained into Eq. (1.6). Finally we get

- (1.9)
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Generally speaking, the position of the instantaneous axis
varies with time. For example, in the case of a cylinder roll-
ing over a plane surface the instantaneous axis coincides at
any moment with the line of contact between the cylinder
and the plane.

Angular velocity summation. Let us analyse the motion
of a solid rotating simultaneously about two intersecting
axes. We shall set into rotation a cer-
tain solid at the angular velocity o’
about the axis OA (Fig. 12), and then
we shall set this axis into rotation
with the angular velocity , about
the axis OB which is stationary in the
K reference frame. Let us find the re-
sultant motion in the K frame.

We shall introduce an auxiliary ref-
erence frame K’ fixed rigidly to the Fig.§12
axes OA and OB. It is clear that this
frame rotates with the angular velocity ®, while the
solid rotates relative to this frame with the angular
velocity ’.

During the time interval d¢ the solid will turn through
an angle d¢’ about the axis OA in the K’ frame and simul-
taneously through dg, about the axis OB together with the
K’ frame. The cumulative rotation follows irom Eq. (1.12):
dp = dg, + d¢’. Dividing both sides of this equality by
dt, we obtain

0=0y+ 0. (1.20)

Thus, the resultant motion of the solid in the K frame is
a pure rotation with the angular velocity @ about an axis
coinciding at each moment with the vector © and passing
through the point O (Fig. 12). This axis is displaced relative
to the K frame: it rotates together with the OA4 axis about
the axis OB at the angular velocity o,.

It is not difficult to infer that even when the angular
velocities @' and @, do not change their magnitudes, the
body in the K frame will possess the angular acceleration
B directed, according to Eq. (1.14), beyond the plane
(Fig. 12). The angular acceleration of a solid is analysed in
detail in Problem 1.10.
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