Then transform the last term of this expression:

$$v_{\tau} \frac{d\mathbf{\tau}}{dt} = v_{\tau} \frac{d\mathbf{\tau}}{dt} \frac{dl}{dt} = v_{\tau}^2 \frac{d\mathbf{\tau}}{dt} = v^2 \frac{d\mathbf{\tau}}{dt}.$$
 (1.7)

Let us determine the increment of the vector τ in the interval *dl* (Fig. 4). It can be strictly shown that when point 2 approaches point 1, the segment of the path between them tends to turn into an arc of a circle with centre at some

Fig. 4

point O. The point O is referred to as the centre of curvature of the path at the given point, and the radius ρ of the corresponding circle as the radius of curvature of the path at the same point.

It is seen from Fig. 4 that the angle $\delta \alpha = |dl|/\rho = |d\tau|/1$, whence

$$| d\mathbf{\tau}/dl | = 1/\rho;$$

at the same time, if $dl \rightarrow 0$, then $d\tau \perp \tau$. Introducing a unit vector **n** of the normal to the path at point *I* directed toward the centre of curvature, we write the last equality in a vector form:

$$d\mathbf{\tau}/dl = \mathbf{n}/\rho. \tag{1.8}$$

Now let us substitute Eq. (1.8) into Eq. (1.7) and then the expression obtained into Eq. (1.6). Finally we get

$$\mathbf{w} = \frac{dv_{\tau}}{dt} \tau + \frac{v^2}{\rho} \mathbf{n}. \tag{1.9}$$

Generally speaking, the position of the instantaneous axis varies with time. For example, in the case of a cylinder rolling over a plane surface the instantaneous axis coincides at any moment with the line of contact between the cylinder and the plane.

Angular velocity summation. Let us analyse the motion of a solid rotating simultaneously about two intersecting axes. We shall set into rotation a cer-

tain solid at the angular velocity ω' about the axis OA (Fig. 12), and then we shall set this axis into rotation with the angular velocity ω_0 about the axis OB which is stationary in the K reference frame. Let us find the resultant motion in the K frame.

We shall introduce an auxiliary reference frame K' fixed rigidly to the axes OA and OB. It is clear that this

Fig.**§1**2

frame rotates with the angular velocity ω_0 while the solid rotates relative to this frame with the angular velocity ω' .

During the time interval dt the solid will turn through an angle $d\varphi'$ about the axis OA in the K' frame and simultaneously through $d\varphi_0$ about the axis OB together with the K' frame. The cumulative rotation follows from Eq. (1.12): $d\varphi = d\varphi_0 + d\varphi'$. Dividing both sides of this equality by dt, we obtain

$$\boldsymbol{\omega} = \boldsymbol{\omega}_0 + \boldsymbol{\omega}'. \tag{1.20}$$

Thus, the resultant motion of the solid in the K frame is a pure rotation with the angular velocity ω about an axis coinciding at each moment with the vector ω and passing through the point O (Fig. 12). This axis is displaced relative to the K frame: it rotates together with the OA axis about the axis OB at the angular velocity ω_0 .

It is not difficult to infer that even when the angular velocities ω' and ω_0 do not change their magnitudes, the body in the K frame will possess the angular acceleration β directed, according to Eq. (1.14), beyond the plane (Fig. 12). The angular acceleration of a solid is analysed in detail in Problem 1.10.

Then transform the last term of this expression:

$$v_{\tau} \frac{d\mathbf{\tau}}{dt} = v_{\tau} \frac{d\mathbf{\tau}}{dt} \frac{dl}{dt} = v_{\tau}^2 \frac{d\mathbf{\tau}}{dt} = v^2 \frac{d\mathbf{\tau}}{dt}.$$
 (1.7)

Let us determine the increment of the vector τ in the interval *dl* (Fig. 4). It can be strictly shown that when point 2 approaches point 1, the segment of the path between them tends to turn into an arc of a circle with centre at some

Fig. 4

point O. The point O is referred to as the centre of curvature of the path at the given point, and the radius ρ of the corresponding circle as the radius of curvature of the path at the same point.

It is seen from Fig. 4 that the angle $\delta \alpha = |dl|/\rho = |d\tau|/1$, whence

$$| d\mathbf{\tau}/dl | = 1/\rho;$$

at the same time, if $dl \rightarrow 0$, then $d\tau \perp \tau$. Introducing a unit vector **n** of the normal to the path at point *I* directed toward the centre of curvature, we write the last equality in a vector form:

$$d\mathbf{\tau}/dl = \mathbf{n}/\rho. \tag{1.8}$$

Now let us substitute Eq. (1.8) into Eq. (1.7) and then the expression obtained into Eq. (1.6). Finally we get

$$\mathbf{w} = \frac{dv_{\tau}}{dt} \tau + \frac{v^2}{\rho} \mathbf{n}. \tag{1.9}$$

Generally speaking, the position of the instantaneous axis varies with time. For example, in the case of a cylinder rolling over a plane surface the instantaneous axis coincides at any moment with the line of contact between the cylinder and the plane.

Angular velocity summation. Let us analyse the motion of a solid rotating simultaneously about two intersecting axes. We shall set into rotation a cer-

tain solid at the angular velocity ω' about the axis OA (Fig. 12), and then we shall set this axis into rotation with the angular velocity ω_0 about the axis OB which is stationary in the K reference frame. Let us find the resultant motion in the K frame.

We shall introduce an auxiliary reference frame K' fixed rigidly to the axes OA and OB. It is clear that this

Fig.**§1**2

frame rotates with the angular velocity ω_0 while the solid rotates relative to this frame with the angular velocity ω' .

During the time interval dt the solid will turn through an angle $d\varphi'$ about the axis OA in the K' frame and simultaneously through $d\varphi_0$ about the axis OB together with the K' frame. The cumulative rotation follows from Eq. (1.12): $d\varphi = d\varphi_0 + d\varphi'$. Dividing both sides of this equality by dt, we obtain

$$\boldsymbol{\omega} = \boldsymbol{\omega}_0 + \boldsymbol{\omega}'. \tag{1.20}$$

Thus, the resultant motion of the solid in the K frame is a pure rotation with the angular velocity ω about an axis coinciding at each moment with the vector ω and passing through the point O (Fig. 12). This axis is displaced relative to the K frame: it rotates together with the OA axis about the axis OB at the angular velocity ω_0 .

It is not difficult to infer that even when the angular velocities ω' and ω_0 do not change their magnitudes, the body in the K frame will possess the angular acceleration β directed, according to Eq. (1.14), beyond the plane (Fig. 12). The angular acceleration of a solid is analysed in detail in Problem 1.10.

CONTENTS

Preface	7 9 1
PART ONE CLASSICAL MECHANICS	
Chapter 1. Essentials of Kinematics 1 § 1.1. Kinematics of a Point 1 § 1.2. Kinematics of a Solid 2 § 1.3. Transformation of Velocity and Acceleration on Transition to Another Reference Frame 3 Problems to Chapter 1 3	44:1 104
Chapter 2. The Basic Equation of Dynamics	1
§ 2.1. Inertial Reference Frames	140261
Chapter 3. Energy Conservation Law	2
 § 3.1. On Conservation Laws § 3.2. Work and Power § 3.3. Potential Field of Forces § 3.4. Mechanical Energy of a Particle in a Field § 3.5. The Energy Conservation Law for a System Problems to Chapter 3 	249044
Chapter 4. The Law of Conservation of Momentum 11	4
§ 4.1. Momentum. The Law of Its Conservation	14 10 16 16 19
Chapter 5. The Law of Conservation of Angular Momentum 14	17
 § 5.1. Angular Momentum of a Particle. Moment of Force 14 § 5.2. The Law of Conservation of Angular Momentum 15 § 5.3. Internal Angular Momentum	i7 i4 i0 i4 i8

PART TWO RELATIVISTIC MECHANICS

Chapter 6. Kinematics in the Special Theory of Relativity . 1	89
 § 6.1. Introduction	89 94 98 07 10 17 21
Chapter 7. Relativistic Dynamics	27
 § 7.1. Relativistic Momentum	27 31 33 38 42
Problems to Chapter 7	49
Appendices	57
1. Motion of a Point in Polar Coordinates 2 2. On Keplerian Motion 2 3. Demonstration of Steiner's Theorem 2 4. Greek Alphabet 2 5. Some Formulae of Algebra and Trigonometry 2 6. Table of Derivatives and Integrals 2 7. Some Facts About Vectors 2 8. Units of Mechanical Quantities in the SI and CGS 2 9. Decimal Prefixes for the Names of Units 2 10. Some Extrasystem Units 2 11. Astronomic Quantities 2	57 58 60 62 62 63 64 66 66 66 67 267
Index	269