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Then transform the last term of this expression:

d"C _ d-r dl _ 2 d"C _ 2 d-r (1 7)
V1:dt- V1:dfdt- Vl: 'it -v (If. ·

Let us determine the increment of the vector 't in the inter­
val dl (Fig. 4). It can be strictly shown that when point 2
approaches point 1, the segment of the path between them
tends to turn into an arc of a circle with centre at some

o

Fig. 4

point O. The point 0 is referred to as the centre of curvature
of the path at the given point, and the radius p of the cor­
responding circle as the radius of curvature of the path at
the same point.

It is seen from Fig. 4 that the angle <Sa == I dl lip ==
== I ds 1/1, whence

I dsldl I == 1/p;

at the same time, if dl ~ 0, then dT -L 'to Introducing a unit
vector n of the normal to the path at point 1 directed toward
the centre of curvature, we write the last equality in a vec­
tor form:

dxldl == nip. (1.8)

Now let us substitute Eq. (1.8) into Eq. (1.7) and then
the expression obtained into Eq. (1.6). Finally we get

I

dv~ Vi Iw==(jt't+--po. (1.9)
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Generally speaking, the position of the instantaneous axis
varies with time. For example, in the case of a cylinder roll­
ing over a plane surface the instantaneous axis coincides at
any moment with the line of contact between the cylinder
and the plane.

Angular velocity summation. Let us analyse the motion
of a solid rotating simultaneously about two intersecting
axes. We shall set into rotation a cer-
tain solid at the angular velocity 0)' 8
about the axis OA (Fig. 12), and then
we shall set this axis into rotation
with the angular velocity 0)0 about Wo

the axis OB which is stationary in the
K reference frame. Let us find the re­
sultant motion in the K frame.

We shall introduce an auxiliary ref-
erence frame K' fixed rigidly to the Fig.!12
axes OA and OB. It is clear that this
frame rotates with the angular velocity 0)0 while the
solid rotates relative to this frame with the angular
velocity 0)'.

During the time interval dt the solid will turn through
an angle dq/ about the axis OA in the K' frame and simul­
taneously through dq>o about the axis OB together with the
K' frame. The cumulative rotation follows from Eq. (1.12):
dq> == dq>o + dq>'. Dividing both sides of this equality by
dt, we obtain

0) = 0)0 +0)'. (1.20)

Thus, the resultant motion of the solid in the K frame is
a pure rotation with the angular velocity 0) about an axis
coinciding at each moment with the vector 0) and passing
through the point 0 (Fig. 12). This axis is displaced relative
to the K frame: it rotates together with the OA axis about
the axis OB at the angular velocity 0)0.

It is not difficult to infer that even when the angular
velocities 0)' and 0)0 do not change their magnitudes, the
body in the K frame will possess the angular acceleration
p directed, according to Eq. (1.14), beyond the plane
(Fig. 12). The angular acceleration of a solid is analysed in'
detail in Problem 1.10.
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