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are the most important characteristics which determine the rate and type 
of flow and the position at which the metal enters the mould cavity. The 
dimensional characteristics of any gating system are expressed in terms of 
gating ratio, a:b:c where a = cross sectional area 01 sprue or down run-
ner, b = total cross sectional area of runners, and c = total cross sectirnal 
area- of ingates. The gating ratio used in industries varies widely. It mainly 
emphasises the general feature of gating system, i.e. whether the system is 
pressurised in which cross section diminishes towards the casting pro-
viding a choke effect (e.g. gating ratio 1:2:4), or non pressurised in which 
the area increases giving a reverse choke effect (e.g. gating ratio 1:2:1). 

In pressurised systems, the rate and distribution of metal flow are more 
predictable but the metal tends to enter the casting at high velocity giving 
a jet effect. On the other hand, unpressurised system cause irregular flow 
of metal and aspiration of air. These factors should be considered with 
respect to metal cast. However, in general, an ideal system for all purposes 
would be one in which pressure is sufficient to maintain all passages full 
just to avoid aspiration of air. The location and dimensions of the gating 
system are not only important to avoid turbulence, but mould filling is also 
an important objective, particularly for thin castings. In case of thin cast-
ings, the gating system should be so designed as to flush metal rapid iy but 
progressively through sections, otherwise laps and misruns may be caused. 
However, in case of thicker castings preventing of turbulence is more 
important to avoid mould erosion and to obtain proper temperature gra-
dients. Gating system can be computed by the following methods: 

(i) For light metals and alloys such as aluminium, magnesium, titanium, 
etc. and their alloys, the gating system can be designed on the basis 
of feed metal criterion Km which is defined by 

Km = W\t (7.44) 

where W = weight of casting in Kg. with gates and risers 

and t = time of pouring in seconds. 

Experiments show that feeding is adequate for 

(i) aluminium alloys when Km > 0 . 3 \ / ^ Kg/sec and 

(ii) magnisium alloys when Km > 0 . 2 \ / ^ Kg/sec. 

Based on feed metal criterion, the choke area 

ĉhoke can be given by 

_ Km x 1000 2 ( . 
^choke - ^ ^ Cm (7 .45) 

If the rate of metal flow is less than 1-7 Kg/sec, one sprue is sufficient, 
whereas for large castings if the rate exceeds, more than one sprue should 
be used. 

(i) Empirical methods based on stastical treatment of plant data can be 
used to compute the gating system. These methods establish the re 
lationship between the velocity of metal flow, pouring time, and 
choke area. One such system given by Dietert is as following: 
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If the surfaee area of casting is S, the volume of solidified metal (Ksol) 
during the pouring process will be 

^soi = *mS (8.8) 

and liquid metal K, = V0 - Vso] (8.9) 

Assuming the volumetric shrinkage of steel in solidification to be equal 
to approximately 3 pet., the volume of shrinkage cavities in the casting 
(Vcc) is given by 

Vcc = 0.03 (V0 - Vsol) (8.10) 

Similarly shrinkage in the riser (Vcr) will be 

Kcr = 0.03 Vr (8.11) 
where Vr = volume of riser 

If the riser is cylindrical of height h and diameter d9 then 

ird*h 
Vcr = 0.03 - 4 - (8.12) 

The total volume of the shrinkage cavity in the riser ( £ V8e) will com-
prise the volumes of shrinkage cavities in the casting and the riser. Hence 

E Kc « Vcc + Vcr = 0.03 (V0 - KSoI)+
 a 0 3 J ^ (8.13) 

The shape of the shrinkage cavity in riser for steel castings obeys a 
parabolic law and is of conical shape. If n is the ratio between cone base 
and the riser diameter, then 

£ F 5 c = 7 L £ g ^ = 0.03 (V0 - V^) + 0.0075 vd*h (8.14) 

with bottom gating cone base is 0.5 d and with top gating the cone base 7s 
0.6 d. 

Equations (8.7) and (8.8) can be used to solve equation (8.14) for A, 

, 0.0575 (2V0 - k Sy/t ,R « 
* = ( ^ - 0 . 0 9 ) ^ ( 8 ' M 

When pouring time is quite short (for ball or cube shaped castings with 
high V/A ratio), the expression kS^/t tends to zero and can be neglected. 
Then the equation (8.15) gets simplified as 

, 0.115 V0 
n == („2 _ o.09) d2 ( 8 J 6 ) 

In case of large castings of small V/A ratio, the term kS<\/t becomes 
nearer to 2V0 and the numerator of Eq. (8.15) becomes zero. This will 
also occur at slow rates of pouring and hence risers are no longer required. 
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where P =» ratio of the cavity volume in the riser to the riser volume 
(usually 0.1 to 0.13) 

Vc = volume of casting 

atr = combined shrinkage of casting and riwr 

8.3.3 Combined Methods for Calculation of Riser Size 

(i) Merchant's Method 

H.D. Merchant proposed an improvement on the Caine's or N.R.L. 
methods by introducing solidification shrinkage and shape factors for the 
risers. He obtained the general relation as follows : 

25 (4P + 1) _ PD 1.275 fQ „ 
AC "~ ^K ~" ~"& ( y 

where P = diameter to height ratio of riser (H/D) 

n = number of risers needed 

and a = solidification shrinkage in pet. 

(ii) Heine's Method, 

R.W. Heine developed a suitable method of riser calculation for malleable 
iron castings. The method is based on the actual measurement of the pipe 
in a casting and riser system which produces a sound casting. The actual 
measurement of the pipe can be carried out by (a) filling the pipe with 
water and measuring the volume, (b) comparing the weight of the riser with 
the expected weight calculated from the external diamensions, or (c) based 
on prior knowledge of the casting characteristics of the alloy. The procedure 
of calculating the riser size is outlined as below taking reference of Fig. 8.5. 

(a) Find the weight of the casting. 
(b) Find the volume of the feed 

metal required by the castings 
which is. given by 

F8g. 8.5 Illustration of the calculation 
of riser size for maleable iron 
castings 
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required, a further check is necessary to verify that the feed volume from 
the proposed riser will be sufficient under the given conditions. 

The modulus calculations for intricate castings are simplified by employing 
the principle of substitute bodies. The plain shapes are substituted for more 
elaborate shapes of equivalent modulus on the basis that two bodies of 
equal modulus will solidify in the same time. Wlodawer has shown that 
angular and curved bodies of the same ruling dimension have the same 
modulus as shown by sphere, cylinder, and cube (Fig. 8.6). This figure 
shows that calculation can be simplified by replacing an irregularly shaped 
body by one having approximately equivalent mass. Similarly, rings and 
hallow cylinders can be treated equivalent to bars or plates which they 
would form on opening out. A number of generalised formulae tables and 
charts can be used to determine the moduli of the simpler shapes resulting 
from the break down of a complicated shape. 

As shown in Fig. 8.6, the modulus of the most compact bodies 
(sphere, cube and equiaxed cylinder) is same, i.e. d/6 for a ruling 
dimension d. In case of bars and plates having the same ruling dimension, 
J, the ratio of modulus to </increases from the minimum represented by 
most compact bodies towards a limiting value at which end effects become 
negligible. The progressive change in the modulus with decreasing thick-
ness is represented in Fig. 8.7. 
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Fig. 8.7 Progressive change in the monulus with deceasing thickness 
If end effects are absent, the modulus of a bar of given section can be 

calculated from the general formula 
cross sectional area 

or 

A/ = 

M = 

perimeter 

a b 
2(a + b) 

where a and b are the cross-sectional dimensions. 

(8.32) 

(8.33) 


