Contents

Pre	face to	the Sixth Edition	vii
Pre	face to	the First Edition	ix
Lis	t of Sy	mbols	xvii
1.	MAT	ERIALS CONCRETE AND PRESTRESSED CONCRETE	
		UCTURES	1
	1.1	Aggregates and Sand in Concrete	1
	1.2	Portland Cement	6
	1.3	Principal Compounds of Portland Cement	6
	1.4	Physical Properties of Portland Cement	7
	1.5	Types of Portland Cements	11
	1.6	Pozzolanas and Admixtures	15
	1.7	Water Quality in Cement Concrete Construction	17
	1.8	Introduction to Concrete	18
	1.9	Important Properties of Concrete	26
	1.10	Workability of Concrete	26
	1.11	Curing of Concrete	30
	1.12	Shrinkage and Creep of Concrete	33
	1.13	Strength of Concrete	35
	1.14	Durability of Concrete Structures	43
	1.15	Durability Design Considerations	46
	1.16	Fire Protection Specifications	51

	1.17	Quality Assurance in Concrete Structures	52
	1.18	Non-destructive Testing of Concrete Structures	57
	1.19	Definition	61
	1.20	Stress Distribution	64
	1.21	Profile of Tendons	67
	1.22	Load Balancing Method	71
	1.23	Basic Phases of Loading in Prestressed Construction	78
	1.24	Materials	79
2.	PRES	STRESSING SYSTEM AND LOSSES OF PRESTRESS	86
	2.1	Classification	86
	2.2	External or Internal Prestressing System	86
	2.3	Linear and Circular Prestressing	87
	2.4	Pre-tensioning System	87
	2.5	Post-tensioning System	88
	2.6	Partial Prestressed Concrete	88
	2.7	Classification Based on Methods of Prestressing	89
	2.8	Loss of Prestress	91
	2.9	Loss of Prestress due to Creep in Steel	92
	2.10	Loss of Prestress due to Shrinkage of Concrete	92
	2.11	Loss of Prestress due to Creep in Concrete	92
	2.12	Loss of Prestress due to Steam Curing	92
	2.13	Loss of Prestress due to Elastic Shortening of the Member	93
	2.14	Loss of Prestress due to Anchorage Take-up	93
	2.15	Loss of Prestress due to Bending of the Member	93
	2.16	Loss of Prestress due to Friction	94
	2.17.	Terminology	101
3.	WOR	KKING STRESS DESIGN OF SIMPLE BEAMS	106
	3.1	Introduction	106
	3.2	Critical Load Conditions	106
	3.3	Flexural Design Criterion	107
	3.4	Permissible Stresses	112
	3.5	Axially Prestressed Members	115
	3.6	Design of Prestressing Cable for a Given Cross Section	118
	3.7	Dimensionless Design Variables	129

			xiii
	3.8	Solution of the Equations	133
	3.9	Properties of Idealised Sections	135
	3.10	Design Procedure Based on Flexure	137
	3.11	Minimum Weight Design by Computer	144
	3.12	Design by Load Balancing Method	148
	3.13	Multiple Stage Prestressing	152
4.	PRES	STRESSED CONCRETE COMPOSITE BEAMS	158
	4.1	Introduction	158
	4.2	Allowable Stress Considerations	159
	4.3	Non-dimensionalised Allowable Stress Equations	162
	4.4	Solution of the Governing Equations	165
	4.5	Ranges of Non-dimensionalised Parameters	166
	4.6	Shrinkage Stresses	167
5.	CON	TINUOUS BEAMS	176
	5.1	Introduction	176
	5.2	Analysis of Two Span Beam	178
	5.3	Analysis of Two Span Continuous Beam with Eccentricities at	102
	5.4	Outer Supports Fixed End Bending Moments	182 184
	5.5	Application of Moment Distribution Procedure	187
	5.6	Continuous Beams with Variable Section	192
	5.7	Design of Continuous Beams	192
	5.8	Load Balancing Method	203
6.	MISO	CELLANEOUS STRUCTURAL MEMBERS	209
••	6.1	Introduction	209
		Compression Members	209
	6.3	Tension Members	216
	6.4	Prestressed Concrete Pavements	223
7.	LIM	IT STATES DESIGN OF BEAMS	225
	7.1	Introduction	225
	7.2	Types of Prestressed Concrete Structures	232
	7.3	Strength Limit State in Flexure	233
	7.4	Limit State of Strength-Shear Capacity	239

	7.5	. Design for Limit State of Strength in Shear	241
	7.6	Design for Limit State of Strength Torsion	242
	7.7	Limit State Strength at Transfer Condition	245
	7.8	Flanged Sections and Their Moment Capacity	246
	7.9	Limit State of Serviceability—Allowable Stresses	248
	7.10	Limit State of Cracking	250
	7.11	Limit State of Deflection	250
	7.12	Durability Limit State	252
	7.13	Design Procedure	253
	7.14	Design of Short Span Beams	255
	7.15	Short Span Axially Prestressed Beams	271
	7.16	Medium Span Beams	282
	7.17	Long Span Beams	295
8.	ULT	MATE LOAD DESIGN OF PRESTRESSED CONCRETE BEAMS	312
	8.1	Introduction	312
	8.2	Resisting Moment Capacity of a Section	313
	8.3	Moment Capacity of a Section Initiated by Yielding of Tension Steel (Tension Failure)	313
	8.4	Ultimate Moment Capacity in Primary Compression	318
	8.5	Moment Capacity of Unbounded Construction	321
	8.6	Load Factors	321
	8.7	Ultimate Strength Design of Rectangular Cross Sections	323
	8.8	Design of Flanged Sections	326
	8.9	Principal Tensile Stress	329
	8.10	Failure Due to Shear	331
	8.11	Compressive Strength of Concrete Subjected to Combined Bending and Shear	332
	8.12	Ultimate Bending Moment under Combined Moment and Shear (Moment Shear Failure)	334
	8.13	Ultimate Moment under Combined Bending and Shear of I-girder	335
	8.14	Location of Failure Section	337
	8.15	Suggestions from Experimental Investigations	339
9.		T STATE DESIGN OF PARTIALLY PRESTRESSED CONCRETE	
	BEA		343
	9.1	Introduction	343

XV	

	9.2	Balanced Moment Capacity of Rectangular Sections	344
	9.3	Moment Capacity of Flanged Sections	346
	9.4	Design for Shear and Serviceability	348
	9.5	Design Examples	349
	9.6	Comparison of Design Detail by Different Methods	374
10.	DESIG	GN OF PRESTRESSED CONCRETE SLABS	378
	10.1	Introduction	378
	10.2	One-way Slab	378
	10.3	Two-way Slab	384
	10.4	Prestressed Concrete Beam and Slab Construction	388
	10 5	Prestressed Concrete Flat Slab	388
11.	DESI	GN OF FOLDED PLATES AND SHELL STRUCTURES	395
	11.1	Introduction	395
	11.2	Design of Folded Plates	395
	11.3	Introduction to Prestressed Concrete Shells	400
	11.4	Design of Cylindrical Tanks	400
	11.5	Dome-ring Construction	405
	11.6	Introduction to Prestressed Concrete Cylindrical Shell	416
	11.7	Design of Cylindrical Shell Using ASCE Manual 31	416
	11.8	Design of Cylindrical Shells by Using Design Coefficients	438
	11.9	Some Recommended Specifications for Shell and Folded Plate Structures	443
12.	BONI	O IN PRESTRESSED CONCRETE	445
	12.1	Introduction	445
	12.2	Bond in Pre-tensioned Construction	445
	12.3	Bond in Post-tensioned Construction	449
13.	ANCI	HORAGE OF PRESTRESSING CABLES	452
	13.1	Post-tensioned Construction	452
	13.2	Prestressing Cable at the Centroidal Axis	453
	13.3	Symmetric Multiple Cables Causing Axial Thrust	458
	13.4	Cable with Eccentricity	460
	13.5	Inclined Prestressing Cable	461
	13.6	Spalling Stresses	462

14.		E POINT OF INTEREST IN PRESTRESSED CONCRETE	
	CONS	TRUCTION	464
	14.1	High Tensile Steels	464
	14.2	Concrete	465
	14.3	Bond Failure	468
	14.4	Fire Resistance	468
	14.5	Handling and Transportation	469
15.	DESI	GN OF PRESTRESSED CONCRETE BRIDGE	471
	15.1	Introduction	471
	15.2	Materials for Prestressed Concrete Bridge	472
	15.3	Permissible Stresses (N/mm²)	473
	15.4	Limiting Requirements	473
	15.5	Design Example	474
	Appen	dix A—Tables	527
	Table	1 Values of Δ for Full Stress Condition	
	Table	2 Sectional Properties	
	Table	Fixed and Moments Due to Prestressing Force	
	Table	Membrane Forces and Displacements in Simply Supported Cylindrical Shells; Loads Uniformly Distributed Along the Length of the Barrel	
	Table	Membrane Forces and Displacements in Simply Supported Cylindrical Shells; Loads Varying from Zero at the End to Maximum at the Middle	
	Table	Symmetrical Edge Loads on Simply Supported Cylindrical Shells (Force Coefficients)	
	Table	Symmetrical Edge Loads on Simply Supported Cylindrical shells (Displacement of Edge at $\phi = 0$) (Deformation Coefficients)	
	Table	Edge Loads on Simply Supported Cylindrical shell	
	Appen	dix B — Objective Questions on Prestressed Concrete Structures	596
	Appen	dix C — Questions in Prestressed Concrete Structures	625
	Refer	ences	661
	Index		680