	Intro	duction: assumptions and notations	1
1.	Sets and functions		3
	1.1.	Sets and elements	3
	1.2.	Operations on sets	4
	1.3.	Functions	7
	1.4.	Real-valued functions	11
	1.5.	Equivalence. Countability	14
	1.6.	Real mambers	18
	1.7.	Least upper bounds	21
2.	Sequences of real numbers		24
	2.1.	Definition of sequence and subsequence	24
	2.2.	Limit of a sequence	26
	2.3.	Convergent sequences	30
	2.4.	Divergent sequences	32
	2.5.	Bounded sequences	34
	2.6.	Monotone sequences	35
	2.7.	Operations on convergent sequences	38
	2.8.	Operations on divergent sequences	44
	2.9.	Limit superior and limit inferior	45
	2.10.	Cauchy sequences	52
	2.11.	Summability of sequences	52
	2 12	Limit superior and limit inferior for sequences of s	55

3.	Serie.	s of real numbers	67
	3.1.	Convergence and divergence	67
	3.2.	Series with nonnegative terms	69
	3.3.	Alternating series	71
	3.4.	Conditional convergence and absolute convergence	73
	3.5.	Rearrangements of series	76
	3.6.	Tests for absolute convergence	80
	3.7.	Series whose terms form a nonincreasing sequence	85
	3.8.	Summation by parts	88
	3.9.	(C, 1) summability of series	90
	3.10.	The class l^2	93
	3.11.	Real numbers and decimal expansions	96
4.	Limits and metric spaces		98
	4.1.	Limit of a function on the real line	98
	4.2.	Metric spaces	105
	4.3.	Limits in metric spaces	lOf
5.	Continuous functions on metric spaces		113
	5.1.	Functions continuous at a point on the real line	113
	5.2.	Reformulation	116
	5.3.	Functions continuous on a metric space	118
	5.4.	Open sets	121
	5.5.	Closed sets	124
	5.6.	Discontinuous functions on R ¹	128
6.	Connectedness, completeness, and compactness		133
	6.1.	More about open sets	133 o
	6.2.	Connected sets	134
	6.3.	Bounded sets and totally bounded sets	138
	6.4.	Complete metric spaces	141
	6.5.	Compact metric spaces	145
	6.6.	Continuous functions on compact metric spaces	148
	6.7.	Continuity of the inverse function	150
	6.8.	Uniform continuity	152

7.	Calcu	lus	156
	7.1.	Sets of measure zero	156
	7.2.	Definition of the Riemann integral	157
	7.3.	Existence of the Riemann integral	163
	7.4.	Properties of the Riemann integral	165
	7.5.	Derivatives	170
	7.6.	Rolle's theorem	177
	7.7.	The law of the mean	181
	7.8.	Fundamental theorems of calculus	183
	7.9.	Improper integrals	189
	7.10.	Improper integrals (continued)	196
გ.	The elementary functions. Taylor series		202
	8.1.	Hyperbolic functions	202
	8.2.	The exponential function	204
	8.3.	The logarithmic function. Definition of x^a	206
	8.4.	The trigonometric functions	203
	8.5.	Tayor's theorem	214
	8.6.	The binomial theorem	221
	8.7.	L'Hospital rule	222
9.	Sequences and series of functions		231
	9.1.	Pointwise convergence of sequences of functions	231
	9.2.	Uniform convergence of sequences of functions	234
	9.3.	Consequences of uniform convergence	238
	9.4.	Convergence and uniform convergence of series of functions	243
	9.5.	Integration and differentiation of series of functions	247
	9.6.	Abel summability	250
	9.7.	A continuous, nowhere-differentiable function	256
10.	Three famous theorems		259
	10.1.	The metric space $C[a, b]$	259
	10.2.	The Weierstrass approximation theorem	261
	10.3.	Picard exisatence theorem for differential equations	260
	10.4	The Arzela theorem on equicontinuous families	268

11.	The Lebesgue integral	271
	11.1. Length of open sets and closed sets11.2. Inner and outer measure. Measurable sets	
	11.3. Properties of measurable sets	278
	11.4. Measurable functions	
	11.5. Definition and existence of the Lebesgue integral for bounded functions	289
	11.6. Properties of the Lebesgue integral for bounded measurable	
	functions	294
	11.7. The Lebesgue integral for unbounded functions	300
	11.8. Some fundamental theorems	308
	11.9. The metrix space $L^2[a, b]$.	
	11.10. The integral on (- ¥, ¥) and in the plane	320
12.	Fourier series	
	12.1. Definition of Fourier series	328
	12.2. Formulation of convergence problems	331
	12.3. The (C, 1) summability of Fourier series	335
	12.4. The \mathcal{L}^2 theory of Fourier series	337
	12.5. Convergence of Fourier series	342
	12.6. Orthonormal expansions in $L^2[a, b]$	347
	Index of Special Symbols	355
	Index	357