
Sets andfunctions

1.1. Sets and elements

By a set we mean a collection ofobjects ofobjects ofany type wharsoever. The objects in a

set are called is elenzents or points. Note that we have not really defined the terms

set and element (Since we did not define "Collection" or "Object"); rather, we have

taken (hem as intuilive notions on yvhich all our other notions will be based.

Insread of ('Set" we sometimes use one of the follo'A'ing : class, falnily, aggregate."

All these words (in this book) have the same meaning.

It is often useful to denote a set by putting braces around its elements. For

example, {a) b) c} denotes the set consisting of the three elements a, band c. With

judicious use of dots we can even illustrate in this way sets with infinitely many

elements (\vhatever that means-see Section 1.5D). For example, the set of all

positive integers may be denoted by {I, 2, 3, ... }. Another kind of set notation

(:onsists of braces around a description of the set. The firSt quadrant of the Cartesian

plane may (hus be denoted {<X~ 0/11> I x 2: 0, Y. ~ 0}-the set of all points <x) y> such

(hat x is nonnegative and y is nonnegative. Similarly, [0, 1] = {x I 0 ~ x ~ I}.

DEFlNITION. If b is an element of the set A, we write b ~ A. If b is not an element

of A, we write b E A.

Thus a ~ {a, b, c} but d ~ {a, b, c}. As mother illustration, suppose we define a

baseball term as the set of its players ane! define the American. League to be the set

of its ten members teams. Then, in the notations we have just introduced,

American League {Yankees, White Sox, , Senators},

Yankees = {Maris, Mande, , Berra}

Yankees ~ American League

Mantle ~ Yankees.

Note that the elements of the American League are themselves sets, which illustrates

the fact that a set can be an element of another set. Note also that although Mantle

plays in the American League he is not an elements of the American League as \ve

have defined. Hence

Mantle e American League.
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."';;x.~Tcises 1.1

Methods of Real Analysis

1. Describe the following sets of real numbers geometrically:

A = {x (x < 7},
B = {x (Ixl :2: 2},
C = {x Ilxl = I}.

2. Describe the following sets of points in the plane geometrically:

A = {(x,y) Ix2 +y2 = L},
B = {(x,y) Ix :5:Y},
C = {(x,y) Ix +y ~,2}.

3. Let P be the set of prime "integers. Which of the follo~'lng are true?
(a) 7 E P.
(b) geP.
(c) 11 ¢ P.
(d) 7,547,193· 65,317 E P.

4. Let A = {I, 2, {3}, {4, 5}}. Are the following true or false?
(a) 1 eA.
(b) 3 EA.
How many elements does A have?

1.2 Operations on sets

In grammar-scQooI arithmetic the "elementary operations" of addition, sub­
traction, multiplication, and division are used to make new numbers out of old
numbers-that is, to comhine two numbers to create a third. In grammar-school
set theory there are ·also elementary operations-union, intersection, complem~nta­
tion-which correspond, more or less, to the arithmetic operations of addition,
multiplication, and subtraction.

1.2A. DEFINITION. If A and B are sets, then A U B (read "A union B" or "the
union of A and B") is the set of all elements in either A or B (or both). Symbolically,

A u B = {x Ix E A or x E B}.
Thus if

A = {I, 2, 3},

then A u B = {I, 2, 3, 4, 5}

B = {3, 4, 5}, (1)

1.2B. DEFINITION. If A and B ar~ sets J then A " B (read "A intersection B" or

"the intersection of A and B") is the set of all elements in both A and B. Symboli­
cally,

A " B = {x Ix E A and x E B}.

Thus if A, B are as in (I) of Section 1.2A, then A r\ B = {3}. (Note the distinct~0tl
between {3} and 3. Since.-4 fl B is the set whose only element is 3, to be consistent
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we must write A n B = {3}. This distinction is rarely relevant, and ~e often ignore
it.)

When A and B are sets with no elements in common, A (l B has nothing in it at
all. We would still like, however, to call A fl B a: set. We therefore make the
following definition.

1.2C. DEFINITION. We define the empty set (denoted by 0) as the set which has
no elements.

Thus {I, 2} (l {3, 4} = 0. Moreover, for any set A we have A u 0 = A and
A (l 0 = 0 (verify!).

1.2D. DEFINITION. If A and B are sets, then B - A (read "B minus A") is the set
of all elements of B which are not elements of A. Symbolically,

B - A == {x Ix E B, .( ¢ A}.

Thus if A, B are as in' (1) of Section 1.2A, B - A = {4,5}.
There are rolations for sets that correspond to the ~ and ~ signs in arithmetic.

We now define them.

1.2E. DEFINITION. If every element of the set A is an element of the set B, we
''Irite ~4 c B (read "A is contained in B" or "A is included in B") or B :::> A (read
"B contains A"). If A c B, we say that A is a subset of B. A proper subset of B is a
subset A c B such that A =1= B. '

Thus if

A = {I, 6; 7}, B = {I, 3, 6, 7, 8}, C = {2, 3,4, 5, ... ~/-100}, (1)

then A ~ B but B ¢ C (even though C has 99 elements and B h,t only 5). Also
o c D and D c D for any set D.

1.2F....DEFlNITION• We say that two sets are equal if they cont~.in:precisely the same
.eleI1\ents.

Thus A = B if and only if A c Band B c A (verify!).
: ~ote that for Band C iIi (~of 1.2E, none of the relations I? c C, C c B, C = B

·\lold.

1.2G. It is often the case that all sets A, B, C, ... in a given discussion are supsets
of a "big" set S. Then S - A is called the complement of A (relative to S), the phrase
in parenthesIs sometimes being omitted. For example, the set of rationa~ numbers
is the complement of the set of irrational numbers (relative to the reals). When
there is no atrbiguity as to what S is we write S - A = A'. Thus A" [mearling
(A')'] is equal tp ,4. Moreover, S = A u A'.

We now prov~1opr first theorem.

1.2H. THEOREM. If A, B are subsets of S, then

and
(A U B)' = A' n B'

(A n B)' = A' u B'.

(I)

(2)
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PROOF: If x E (A u B)', then x ¢ A u B. Thus x is an element of neither A nor
B so that x E A' and x E B'. Thus x E A' n B'. Hence (A U B)' c A' fl B'. Con­
versely, if./ E A' fl B'~ then _Y E A' and y E B', so that y ¢ A and y ¢ B. Thus y ¢
A u B, an6 soy E (A u B)'. Hence A' fl B' c (A u B)'. This establishes (1).

Equation. (2) may be proved in the same manner or it can be deduced from (1)
as follows, In (1) replace A, B by A', B' respectively, so that A', B' are replaced by
A" = A and B" = B. We obtain (A' U B')' = A ·n,B. Now take the complement
of both sides.

Exercises 1.2
'\
~

1. Let A be th~ set of letters in the word "trivial," A = {a, i, l, T, t, v}. Let. B be the
set of letters' in the word "difficult." Find A 10,B, A \ () B, A - B, B - A. If S
is the set of all 26 letters in the alphabet ahd A' = S - A, B' = S - B, find
A', B', A' n B'. Then verify that A' n B' = (A u B)'.

2. For the sets A, B, C in Exercise 1 of section 1.1, describe geolnetrically A n B,
BnC;AnC.

3. Do the san1e for the sets A, B, C of Exercise 2 of section 1.1.

4. For any sets A, B, C prove that

(A u B) u C = A u (B u C)

This is .an associative law for sets and shows that A u B u C may be written

without parentheses.

5. Prove, for any sets A, B, C that

(A n B) n C = A n (B n C).

6. Prove that distributive law

A n (B u C) = (A n B) u (A n C).

7. Prove
(A U B) - (A fl B) = (A - B) U (B - A).

8. True or fAlse (that is, prove true for all sets A, B, C, or give an example to

show false) :
(a) (it...·U B) - C =: A U (B' - C).
(b) (A U B) - A :sr-B. .\\1\ \ \

(c) (A fl,B), U (B fl C) u (A n C) ~ :f 0JB (1 c.
(d.) (A U B) n C = A U (B n C). . \ '

True or False :

(a) A c Band B c C, then A c C. 1', l.r:.III~'II!t, \. I

(b) If A .= C and Bee: th'en A,u:B'q:,C'
(c) [0, ~] ::J (0, 1). \ '. I

(d) {x I Ixl ~ 4} n {y I lrl ~ 4}, = {z I Izi ~ 4}.
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I.3A. In the cruder calculus texts we see the following definition: "If to each .t

(in a set S) there corresponds one and only one value ofy, then we say thaty is a
function of x." This "definition," although it embodies the essential idea of the
function concept, does not conform to our purpose of keeping unde·fined terms to a
minimum. (What does "correspond" mean?)

In other places we see a function defined as a graph. Again, this is not suitable
for us since "graph" is as yet undefined. However, since a plane graph (intuitively)
is a certain kind of set of points, and each point is (given by) a pair of numbers, this
will lead us to an acceptable definition of function in Section 1.3C.

1.3~. DEFINITION. If A, B are sets, then the Cartesian product of A and B (denoted
A x B) is the set of all ordered pairs· (a, h) where a E A and b E B. ,

Thus the Cartesian product of the set of real numbers with itself gives the set
of all ordered pairs of real numbers. We usually call this last set the plane (after
we define the distance between pairs).

The lateral surface of a right circular cylinder can be regarded as the cartesian
product of a line segment and a circle. (Why?)

We are now in position to define function.

1.3e. DEFINITION. Let A and B be any two sets. Afunctionffrom (or on) A into B is
a subset of A x fJ (and hence is a set of ordered pairs (a, b») with the property that
p~ch a e A belongs to precisely one pair (a, h). Instead of (x,y) ejwe usually write

=j (x). Theny is called the image of x under f The set A is called the domain off
rc2nge of/.is the.set {b eB Ib =j(a) for some a}. That is, the range ofjis the

bset of B'cortsisting of all images of elements of A. Such a function is sometimes
Jlec.' a mapping of A into B.
If G· c B, thenf-l(C) is defined as {a E A If(a) E C}~ the set of all points i~ the

t.1'Jmain off whose images are in C. If C has only one point in it, say C = {y}, we
u~ually writef-l(y) instead ofj-l({y}). The setj-l(C) is called the inverse image ofC
lt1.derf (Note that no definition has been given for the,symbolf-l by itself.)

If DcA, thenf(D) is defined as {f(x) IxED}. The setf(D) is called the image
of D -underJ.

For example, the set f = {(x, x2 ) I - 00 < x < oo} is the function usually de-
scrioed by the equation '

f(x) '7 I x2 :, ( --:- 00 < X < (0).
!. I ~: I

The domain of this f is the wholerealliq.e. The range off is [0, 00). In addition,
. 'f(2)' = 4,

f-l(4) = {-2, 2},
.J-l(-7) = 0,

f({x IXl = 9}) = {9},
f([O, 3)) = [0, 9).

• To keep the record clear we had better define "ordered pair." What is needed is a set with tJ

and b mentioned in an asymmetrical fashion. How about defining (a, b) to be {{a}, {a, b}}?
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In the definition offunction neither ..:1 nor B need be a set ofnumbers. For example,
if ~4 is the American League (see Section 1.1) and B is the set of the fifty states
togeth'er with the District of Columbia, then the equation

f(x) == state (or district) containing home ball park of x(x E A)

defines a function from A into B v,"hich consists of ten ordered pairs.
Although an acceptable definition of function must be based on the set concept,

the set notation is clearly more cumberSOITle than the classical notation. Note,
however, that we make a notational distinction between j (the function) and f(x)
(the image of x under f).

It must be emphasized that an equation such asf(x) = 1 + x3 does not qefine a
~unction until tpe domai? is explicitly specified. Thus the statements

and
j(x) == I + x3

g(x) == 1 + x3

(l~xs3)

(1 s:x ~4)

define different functions according to our definition.
It is useful, hovvever, to introduce terminology to describe pairs of functions that

are related in the same way asfand g. In general, supposefand g are two functions
with respective domains X and Y. If '

Xcy
and if

f(x) = g(x) (x EX), \

we say that g is an extension or.! to Y or ~hat f is the restriction of g to X. That is, g IS

an ~xtensionofjif the domain ofg contains the domain ofjand if the images under j
and g coincide at all points in the do~ain off.

l.3D. DEFINITION. Hjis a fu~ction f~pm A into B, we writei:A - B. If the range
ofjis all of B, we say that~is a function from A onto B. In this case we sometimes
writef:A ~B.

Thus ifj(x) = x2 ( -'00 < X < (0) and g(x) = x3 ( - 00 < x < 00), tltlen

f: (- 00, (0) -+- (- 00, (0),

g:(-co, (0) ~(-oo, 00).

We nO~.give three theorems on images and inverse images ofsets.

1.3E. THEOREM. Ifj:A -+ B and if X c B, Y c B, ,then

f-l(X U Y) = f~l(X) U f~l(Y),. (1)
.' ,

In words, the inverse image of the union of two setsl(is':,the union of the inverse. \ ' .

1mages. \."". I \, I

PROOF: S'tPpose a E II (X U Y). Theh:[.(a), E XuK, Hence either f(a) E X or

(a) E_ Y so that either a E f-I(X) or a E f~\f). But thiS sflys.a E j-I(X) U II (Y).
Thus f-I (K u Y) c f-I(X) U f-I(y). Cbnverse1y, if b E j'-I(X) U f-I(y), then
either b E f-1(X) or b E f-I(y). Hence either f(b) E X or Y so that f(b) E Xu 1':
Th-us b E f~l(X U Y), and so f-I(X) U f-l(y) C j-l(X U Y). This proves (1).
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The next theorem can be proved in exactly the same way.

I.3F. THEOREM. Ifj:A -. B and if X c: B, Y c B, then

f-l(X (\ Y) =f-l(X) nf-l(Y).

In words, the inverse image of the intersection of two sets is the intersection of the
inverse images.

PROOF: The proof is left as an exercis~.

The last two results concerned inverse images. Here is one about images.

1.3G. THEOREM. Ifj:A -. B and X c A, YeA, then

f(X U Y) =j(x) uj(Y).

In words, the image of the union of two sets is the union of the images.
PROOF: If b Ef(X \J Y), then b = f(a) for some a EX U Y. Either a E X or

a e Y. Thus, either b Ef(X) or b Ej(Y). Hence b Ef(X) uf(Y) which shows
f(X u·Y) cj(X) uf(Y). Conversely, if C Ef(X) uf(Y) then either C Ef(X) or
c ef(Y). Then c is the image of some point in X or c is the image of some point in Y.
Hence cis the image ofsome point in X u Y,thatis,c Ej(X U Y).Sof(X) uf(Y) C

f(X u Y).

1.3H. Conspicuously absent from this list of results is the relation

f(X fl Y) = f(X) rtf(Y) for X c A, Y c A.

Prove that this relation need not hold.

1.31. DEFINITION," (THE COMPOSITION OF FUNCTIONS). Ifj:A -. B andg:B -. C, then
we define the function g 0 jby

go f(x) = g[f(x)] (x E A).

That is, the image of x under g of is defined to be the image of f(x) under ,g.

The function g of is called the composition of j with g. [Some people write g(f)
instead of g 0 j.]

Thus g 0 f: A -. C. For example, if

f(x) = 1 + sin x (-00 < x < 00),

g(x) = x2 (0 ~ X < 00),
then

Exercises 1.3

g 0 f(x) = 1 + 2 sin x + sin2 x (-00 <x < 00).

1. We have defined a function as a certain kind of set. Show that two functions f
and g are equal (as sets) if and only iff and g have the same domain A and

f(x) = g(x) (x E A).

In other words,f = g if and only ifjis "identically equal to g" in the sense of
functions.
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2. Let
oJf(x) = log x (0 < x < (0).

(a) What is the range ofj?
(b) If A = [0, IJ and B = [1,2], findf-l(A),j-l(B),j-l(A U B),j-l(A (") B),

j-l (A) U j-l (B), and i-I (A) (") j-l (B). Do your results agree with Sections
I.3E and I.3F?

3. Consider the sine function defined by

f(x) = sin x (-00 < x < (0).

(a) What is the image of 17/2 under f?
(b) Findf-l(l).
(c) Findf([O, 17/6]),j([7T/6, 17/2]),f([0, 17/2]).
(d) Interpret the result of (c) using Section 1.3G.

. (e) Let A = [0, 1T/6], B = ·'[517/6, 1T]. Doesf(A (") B) =j(A) nf(B)?
4. Consider the functionj defined by

f(x) = tan x

(a) What is the domain off?
(b) What is the range off?
(c) Let A = (-7T/2, -1T/4), B = (1T/4,1T/2). Does

f(A tl B) = f(A) tlf(B)?

5. Can you give a geometric interpretation for the cartesian product of
(a) A line segment and a triangle?
(b) A large circle and a small circle?

6. Let A = (- 00, (0) and let B be the plane. L.et j :A. --+ B ·be defined by

f(x) = (cos x, sin x) (-00 <x < 00).

j(x) = arcsin x (-1 ~ x ~ 1),
g(x) = tan x (-00 <x < (0),

and h = g of,. write a simple formula for h. What -are the domain and range
of h?

(a) What is the range ofj?
(b) Findf-l[(O, 1)].

':. Let A ~ B =. ( - 00, (0). Which of the following functions map A onto B?
(a) f(x) = 3 (- 00 < x < (0),
(b) f(x) = [x] = greatest integer not exceeding x( - 00 < x < 00),
(c) j(~) = x6 + 7x + 1 (- 00 < x < 00),
(d) j(x) :- ~ ( - co < x < (0),
(e) f(x) = sinh x (- CX) < x < (0).

8. Let A = {I, 2, ... , n} and let B = {a, I}. How,many functions are there which
map A into B? How many of these functions map A onto B?

9. If
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10. Let I denote .the set of positive integers,

I = {I, 2, 3, ...}. If
f(n) = n + 7 (n E I),

g(n) = 2n (n E I),

what is the range off 0 g? What is the range of g 0 f?
11. Iff:A -+ B, g:B -+ C, h:C -+ D, prove that

h 0 (g 0 f) = (h 0 g) 0 f.

11

12. For which of the following pairs of functions f and g is g an extension Qff?
(a) f(x) = x (0 ~ x < 00),

g(x) = Ixl (-00 < x < (0).
(b) f(x) = 1 (-1 ~x ~ 1),

g(x) = 1 (0 ~ x < (0),
(c) f(x) = sin x (0 ~ x ~ 21T),

.g(x) =VI'-cos2x(-00<x< 00).

1.4. Real-valuedfunctions.

1.4A. In later chapter~ it is most often the case that the range of a given function
j is contained in the set of all real numbers. (We hencefort4 denote the set of all
real numbers by R.) Iff:A -+R we calif a real-valuedfunction. lfx EA, thenf(x)
(heretofore called the image of x under f) is also called the value off at x.

We now define the sum, difference, product, and quotient of real-valued func­
tions.

1.4B. DEFINITION. If f:A -+ Rand g:A -+ R, we define f + g as the function
whose value at'x E A is equal tof(x) + g(x). That is,

In set notation
(1 + g) (x) = f(x) + g(x) (x E A).

f+g = {(x,f(x) +g(X»IXEA}.

It is clear thatf + g:A -+ R.
Similarly, we define f - g and fg by

(1 - g) (x) = f(x) - g(x)
(fg) (x} =f(x)g(x)

(x E A),
(x E A).

Finally, if g(x) =1= 0 for all x E A, \A'e can defineflg by

(I) (x) = f(x),
g g(x)

(x E A).

The sum, differenc~, product, and" quotient of two' real-yal~ed functions with
the same domain are again real-valued functions~ What permits us to d~fine the

I
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sum of two real-valued functions is the fact that addition of real numbers is defined.
In general, iff:A ~ B, g:A -+ B, there is no way to define.! + g unless there is a
"plus" operation in B.

1.4C. DEFINITION. Ifi:A -+ Rand c is a oreal number (c E R), the function if is
defined by

(if) (x) = c[f(x)] (x E A).

(x E A),

Thus the value of 3f at x is 3 times the value off at x.

1.4D. For a, h real numbers let max (a, h) denote the larger and min (a, h) denote
the smaller of a and h. [If a = b, then max (a, b) = min (a, b) = a = h.] Thert we
can define max (1, g) and min (f, g) for real-valued functions1, g.

DEFINITION. Ifj: A -+ R, g: A -+ R, then max (1, g) is the function defined by

max (1, g) (x) = max [f(x) , g(x)]

and min (1, g) is the function defined by

min (1, g) (x) = min [f(x) , g(x)] (x E A),

Thus ifj(x) = sin x (0 ~ x ~ 1T/2) , g(x) = cos x (0 ::;: x ~ 71/2) and Jz = max (1, g),
then

h(x) = cos x

(x) = sin x

(0 ~ x ~ ~),

(i < x ~ ;).

DEFINITION. Ifj:A -+ R, then III is the function defined by

Ifl(x) = Ij(x) 1 (x E A).

If a, b are real numbers, the formulae

max (a, h) =,a - hi : a + h ,

. (h) -fa - bl + a + b
mIn a, = 2 '

are easy to verify. (Do so.) From them "follow. immediately the fonnulae

( 1') If - gl + f + g
max J,g = 2 '

-If-gl +f+g
min (1, g) = 2

fOf/real-valued functions!, g.

1.4E. In this section we consider sets which are all subsets of a CCbig" ·set S. If
A c S, then A' = S - A (Section -1.2G). For each A ~. S we ·define a function
%..4 as follows. . -
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DEFINITION. If A c S, then X...-t (called the characteristic function of A) is defined as

XA(X) = 1

X.A(x) = 0

(x E A),

(x E A').

The reason for the name "characteristic function" is obvious-the set A is
characterized (completely described) by X..4. That is, A := B if and only if XA = XB.
The reader should verify the following useful equations for characteristic functions
where A, B are subsets of S.

XAuB = max (XA' XB), (1)

loA r'\B = min (XA' lB) = X.AXB,

X..4.-B = XA - 'lB (provided B c A),

lA' = 1 -" X.d.' *
Xs = 1,

X0 = O·t
For example, to establish (1), suppose x E A u B. Then XAUB(X) = 1. But

either x E A or x E B (or both), and so either X.4.(x) 1 or Xn(x) = 1. Thus
max (X.t1, XB)(x) = 1. Hence

(x E A u B) (2)

It x ~ A u B, then XAUB(X} = o. But x E A' ('\ B' by (1) of Section 1.2H and
hence' x E A' and x E B' so that X..4. (x) = 0 = XB(X). Thus max (lA, XB) (x) = o.
Hence

o = X..4. UB(X) = max (X..4' XB) (x)

Equation (1) now follows from (2) and (3).

Exercises 1.4

(3)

1. Let.f(x) = 2x( - 00 < x < 00). Can you think of functions g and h which
satisfy the two equations

g of = 2gh,

h of = h2 - g2?

2. If f(x) = x2
(- 00 < x < 00) and X is the characteristic function of [0, 9], of

wh~t subset of R is X 0 f the characteristic function?
3. If f: A --+- Band XE is the characteristic function of E c B, of what subset of A

is X"B 0 f the characteristic function?

• We are using 1 here to denote the real-valued function whose value at each % E S is equal to
the number 1 (that is, here 1 is the "function identically 1"). Thus the symbol 1 has two c;lifferent
meanings--one a number, the other a function. The reader will be~ ible to tell from the context
which meaning to assign.

t The 0 denotes the f\hlction identically O.
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•4. Use whatever concept of continuity you possess to a"nswer this question and the
next one.

Is there a characteristic function on R that is continuous?
Do there exist three such functions?

5. Draw the" graphs of two continuous functions f and g with the same domain.
Would you guess that max (1, g) and min (1, g) are continuous?

1.5. Equivalence. Countability

According to the definition of function, iff: A -. B then each element a E A h3$
precisely one imagef(a) E B. It often happens, however, that some element b in the
range of f is the image of more than one element of A. For example, if f(x) =

x2 ( - 00 < x < 00), then 4 is the image of both -2 and +2. In this section \\'e
deal with functions f with the property that each b in the range off is the image
of precisely one a in the domain off.

I.SA. DEFINITION. Ifj:A -. B, thenfis called one-to-one (denoted 1-1) if

f(al) = f(a2) implies al = a2 (ai, a2 E A).

Thus, iff is 1-1 and b = f(a t ) , then, b =1= f(a 2) for any a2 E A distinct from ale
'l'hus the function f defined by f(x) = x2 ( - co < x < 00) is not 1-1 but the func­
tion g defined by" g(x) = x2(O ~ X < 00) is 1-1.

Statec;l otherwise, a function f is I-I if f-l(b) contains precisely one element
for each b in the range off. In this case, j-l itself is a function. More precisely,

I.5B. -DEFINITION. Ifj:A -. B andfis I~I, then the functionj-l (called the inverse
function for f) is defined as follows:

Ifj(a) = h, thenj-l(b) a= a (b in range off). (1)

Thus the domain O[j-l is the range off and the range ofl-1 is A (the domain off).
The definition of the function j-l is consistent with the definition of inverse image
in Section 1.3e. For iff is I-I and f(a) = b, then the inverse image of {b} is {a}.
That is,j-l({b}) = {a}. Ifwe omit the braces, we obtain (1).

For example, if g(x) = x2 (0 ~ X < (0), then g-l(X) = '\1'-; (0 ~ x < (0). For,

j"f b = g(a) = a2, then a = Vb = g-l(b). Also, if h(x) = r( - 00 < x < (0), then
h--l(x) = log x (0 < x < (0). For, if b = h(a) = 1", then a = log b = h-l(b).

From the definition of inverse function it follows that

f-l[j(a)). = a (a E A),

f[j-l(b)] = h (b in range off).

1.5e. A function that is both I-I and onto (Section I.3D) has a special name.

DEFINITION. Iff: A => B andfis I-I, thenfis called a 1-1 correspondence (between
...4 dnd B). If there exists a I-I correspondence between the sets A and B, then A
and B are called equivalent.
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1"'hus any t,-vo sets containing exactly seven elements are equivalent. The r~ader

should not find it difficult to verify the following.

1. Every set A is equivalent to itself.
2. If A and B are equivalent, then B and A are equivalent.
3. If A and Bare eqtiivalent and Band C are equivalent, then A and Care

equivalent.

We shall see presently that the set of all integers and the set of all rational num­
bers are equivalent, but that the set of all integers and the set of all real numbers
are not equivalent. First let us talk a little bit about "infinite sets."

1.5D. The set ...4 is said to be infinite if, for each positive integer n, A contains a
subset wi th precisely n elements. *

Let us denote by I the set of all positive integers-

1 = {I, ~, ...}.

Then I is clearly an infinite set. The set R of all real numbers is also an infinite set.
The reader should convince himself that if a set is not infinite it contains precisely
n elements for some nonnegative integer n. A set that is not infinite is called finite.

I.t will be seen that there are many "sizes" of infinite sets. The smallest size is called
c()~n{able.

1.5E. DEFINITION. The set A is said to be countable (or denumerable) if A is
equivalent to the set I of positive integers. An uncountable set is an infinite set
which is not countable.

Thus A is countable if there exists a 1-1 functionjfrom /onto A. The elements
.of A are then the i,mages j'( 1), f(2), ... , of the positive integers-

A = {f(I),f(2), .0 •. },

[where the f( i) are all distinct from one another].
Hence, saying that A is countable means that its elements can be "counted"

(arranged with "labels" 1, 2, ...). Instead of f(I), f(2), ... , we usually write

aI' a2, • • • •

For example, the set of all integers is countable. For by arranging the integers
as 0, -1, + 1, -2, +2, ... , we give a scheme by which they can be counted. [The
last sentence is an imprecise but highly intuitive way of saying that the function!
defined by

n - 1
f(n) =-­

2

-n
f(n) =-

2

(n = 1, 3, 5, ...),

(n = 2,4, 6, ...),

• If n is a positive integer, then the statement "B has 1: elements" means "B is equivalent to the
set {I, 2, ... , n}."
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1-1 correspondence between I and the set of all integers. For J(l), J(2), ... is the
same as 0, -1, 1, -2, 2, ....]

This example shows that a set can be equivalent to a proper subset of itself:
The same reasoning shows that if A and B are countable then so is A n B. For A

can be expressed as A = {ai' a2' •..} and similarly B = {b l , b2, ...}. Thus aI' bl,
a2' b2, a3, b3, ..• is a scheme for "counting" the elements of A u B. (Of course, we
must remove any bi which occurs among the a/s so that the same element in A u B
is not counted twice.

The following theorem' gives a much stronger result.

1.SF. THEOREM. If AI, A2, ••• are countable sets, then* U;=IA,1 is countable.
In words, the countable union of countable sets is countable.

PROOF: We may write Al = {aI, ai, aj, ...}, A2 ={af, a~, a;, ...}, ...) An =
{a~, a~) a;, ...}, so that at is the kth element of the set Ai. Define itb.e height of at
to be j + k. Then aI is the only element of height 2; likewise ai and at are the only
el~ments of height 3; and so on. Since for any positive integer m ~ 2 there are

only m - 1 elements of height m, we may arrange (count) the elements of U;;'=IA,1
according to their height as

1211234
al , al ' a2 , a3 , a2 , al ' al ' ... ,

being careful to remove any at that has already been counted.

Pictorially, we are listing the elements of .U;;=l A,z in the following array and
counting them in the order indicated by the arrows:

1 1 1 1al a2--..a3 a4 . · .
+2/ 2/ 2/ 2
al a2 a3 a4···
a3~3/a3 a3...
t~/~ 3 4
at a2 •••

The fact that this counting scheme eventually counts every at proves that U~=1An
is countable.

We obtain the following important corollary.

I.SG. COROLLARY. The set of all rational numbers'is countable.
PROOF: The set of all rational numbers is the union U;= I E'l where Ell is the set

of rationals which can be written with denominator n. That is, En = {Oln, - lIn,
lIn, -21n, 21n, ...}. Now each Ell is clearly equivalent to the set of all integers
and is thus countable.. (Why?) Hence the set of all rationals is the countable union
of countable sets. Apply I.SF.

It seems clear that if we can count the elements of a set we can count the elements
of any subset. We make this precise in the next theorem.

I.SH. THEOREM. If B is an infinite subset of the countable set A, then B is
countable.

* We have not used the symbol U;= t A
7l before. It means, of course, the set of all elemen ts in at

least one of the An-
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PROOF: Let A = {aI' a2' ...}. Then each element of b is an ai' Let ni be the
smallest subscript for which all E B, let n2 be the next smallest, and so on. Then

1
B = {anI' an2 , • • .}. The elements of B are thus labeled with 1, 2, ..., and so B is
countable.

1.51. COROLLARY. The set of all rational numbers in [0, 1] is countable.
PROOF: The proof follows directly from I.5G and I.SH.

Exercises 1.5

1. Which of the following define a 1-1 function?
(a) I(x) = ~(-oo < X < 00),
(b) I(x) = ~2(-oo < X < 00),
(c) I(x) = cos x (0 ~ x < n),
(d) I(x) = ax + b(-oo < X < 00), a, b E P.

2. (a) If f: A ~ Band g : ·B ~ C and both f and g are 1-1, is g 0 I also 1-1 ?
(b) If I is not 1-1, is it still possible that g 0 I is 1-1 ?
(c) Give an example in which lis 1-1, g is not 1-1, but go/is 1-1.

3. Let Pn be the set of polynomial functions f of degree n,

I(x) = a~ + a1XZ-1 + ... + an" + an'

where n is a nonnegative integer and the coefficients ao, al) ... , an are all
integers. Prove that P'l is countable. (Hint: Use induction.)

4. Prove that the set of all polynomial functions with integer coefficients IS

countable.
5. Prove that the set of all polynomial functions with rational coefficients is

countable. (Hint: This can be done by retracing the methods used in the
preceding two problems.) However, also try this: Every polynomial g with
rational coefficients can be written g = (1/N) I where I is a polynomial with
integer coefficients and N is a suitable positive integer. (Verify.) The set of all
g that go with a given N is countable (by Exercise 4 of Section 1.5). Finish the
proof.

6. We are assuming that every (nonempty) open interval (a, b) contains a rational
(Introduction). Using this assumption, prove that every open interval contains
infinitely many (and hence countably many) rationals.

7. Show that the intervals (0, 1) and [0, 1] are equivalent. (Hint: Consider
separately the rationals and irrationals in the intervals.)

8. Prove that any infinite set contains a countable subset.
9. Prove that if A is an infinite set· and x E A", then A and A - {x} are equivalent.

(This shows that any infinite set is equivalent to a proper subset. This property
is often taken as the definition of infinite sets.)

10. Show that the set of all ordered pairs of integers is countable.
11. Show that if A and B are countable sets, then the cartesian product A x B

is countable.
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12. (a) IfJis a I-I function from A onto B, show that

f-IoJ(X) =X (xEA), and Jof-l(y) =y

(b) If g:C ~ A and h =fo g, shovv that g =/-1 0 h.

1.6. Real numbers

(y E B).

This section is out of logical order. We shall .not at this time define the terms
"decimal expansion," "binary expansion," and so on; rather, we rely here on the
reader's experience and intuition. These terms, and the assumptions concerning
them, are discussed carefully in Chapter 2. Insofar as the logical development of
this book is concerned, this section <;ould be ignored: Insofar as examples and
understanding are concerned, however'~ this section should definitely not be ignored.

We have not as yet given an exanlple of an infinite set that is not countable.
'tVe shall soon see that the set R of all real numbers provides such an example.

We shall assume that every real number x can be written in decimal expansion.

. al a2 a3
\x = b.al a2a3 · .. = bi + 10 + 102 + 103 + · .. ,

where the ai are integers, 0 ::;: ai ~ 9. This expansion is unique except for cases
such as x = ! which can be expanded

! = 0.500000 · .. and ! = 0.49999 · · · .

Every number x E [0, 1] can thus be expanded x = 0.al a 2a3 • ••• Conversely, we
assume that every decimal of the form

b.a1a2a3 . · .

is the decimal expansion for some real number. (We have not defined the real
numbers. Hence we now take these relations bet\\Teen decimal expansion and
real numbers as assumptions. As we presently show, however, they are consequences
of the more basic axiom 1.7D.)

1.6A. THEOREM. The set [0, 1] = {x lOs x. ::;: I} is uncountable.
PROOF: Suppose [0, 1] were countable. Then [0, 1] = {Xl' X2, ••• } ''',There every

number in [0, I] occurs among the Xi. Expanding each Xi in decimals we have

Xl = O.ala~a~ · ..
X2 = 0.aia~a5 · · ·

X n = O.a~a~a~ • .. a~; ...•
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Let hI be any integer from 0 to' 8 such that hI =F a~. Then let b2 be any integer from
o to 8 such that b2 =1= a~. In general,. for each n = 1, 2, ... , let bn be any integer
from 0 to 8 such that bn =1= a~~. Lety = 0.b1b2 ••• bn • •.• Then, for any 1l, the deci­
mal expansion for y differs from the decimal expansion for X n since bn =1= a~. More­
over, the decimal expansion for )' is unique since no bn is equal to 9. Hence y ¥= xn

for every nand 0 ~y ::;: 1, ~'hich contradicts the assumption that every number in
[0, 1] occurs among the Xi. This contradiction proves the theorem.

1.6B. COROLLARY. The set R of all real numbers is uncountable.
PROOF: By 1.5H, if R \-vere countable, then [0, 1] would be countable, contra-

dicting 1.6A. Hence R is uncountable.

Here is another proof of 1.6B. Suppose R were countable-R = {Xl' X2, ••• }.

Let 11 be the interval (Xl - t, Xl + 1), let 12 be the interval (x2 - 1, X2 + 1), and
in general, for each positive integer n, let In denote the interval (xn - 2-n

- l ,

X n + 2- n
- l ). Then the length of In is 2- n so the sum of the lengths of all the In is

2-1 + 2-2 + 2-3 + · .. = 1. But X n E In so that R = U"~=l {xn} C U:=l In. But
then the whole real line (whose length is infinite) would be covered by (contained in)
a union of intervals whose lengths add up to 1. This seems to be a contradiction.
Is it?

] .6C. In addition to decimal expansions it is useful to consider binary and ternary
expansions for real numbers.

The binary expansion for a real number x uses only the digits 0 and 1. For example
0.a1a2a3 • • • means a l /2 + a2/2 2 + aa/2a + . · · so that

! = 0.10000 · · · (2),
1 = 0.01000 · · · (2),

i6- = 0.00010 · · . (2),
~: = ! + ! + fa = 0.1101000··' (2),

where the (2) denotes binary expansion..
Similarly, the ternary expansion of a real x uses the digits 0, 1, 2. Thus

x = 0.h1b2ba . · · (3)
means

For example,
! = 0.1000 · · · (3),
! = 0.0222 · . . (3),
! = 0.111111 ... (3),

t=I+!=0.2111I···· (3).

The ternary expansion for a real number x is unique except for numbers such as 1
with two expansions, one ending in a string of 2's, the other in a string of O's.

1.6? The following set serves as a useful example later on.

DEFINITION. The Cantor set K is the set of all numbers x in [0, 1] which have a
ternary expansion without the digit 1.
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Thus the numbers ! = 0.0222 · .. (3) and i = 0.20000 · .. (3) are in K, but
any x such that! < x < i is not in K. [For such an x can only be expanded x =

O.lb2ba • • • (3).]
For x = 0.b1b2ba • · • (3) in K (where each bi is 0 or 2), letf(x) = Y = 0.a1a2aS · · ·

(2) where ai = bi /2. For example,. if x = ! = 0.0222 · .. (3), then j(x) = Y =
0.0111··· (2) = 1. Then 0 ~y ~ 1, andfis a function from K into [0,1]. It
is not difficult to see thatfis actually onto [0,1], and it follows immediately that
K is not countable. (See Exercise 1 of Section 1.6.)

On the other hand, we have already observed that (1, i) c K' where K ' =
[0, 1] - ·K. Similarly, the interval II = (t, f) (which is the open middle third of
[0, !]) .and the interval /2 = (~, i) (which is the open middle third of [1, I]) are
subsets of K' since any nun1ber in 11 or 12 must have a 1 as the second digit in
its ternary expansion. Thus the Cantor set K can be obtained in the following
way.

1. From [0, I] remove the open middle third leaving [0, l] and [l, i].
2. From each of [O,!] and [t, i] remove the open middle third leaving [0, t],

[f, l], [t, t], [i, t].
n. Continue in this manner so that, at the nth step the open middle third is removed

from each of 2ft
-

1 intervals of length .3- n+1• The total of the lengths removed at
the nth step is thus 2 71

-
1 • 1 · 3-71+1 = 2"-1/3 ft

• There then remain 2ft intervals
each of length :i-ft. During this nth step the numbers removed' are .precisely
thos~ with a 1 as the nth digit in their ternary expansion.

i. t is clear that what remains of [0, 1] after this process is continued indefinitely
is precisely the set K. Note that the sum of the lengths of the intervals in "K' is
1 +'2 · t + · · · + 2ft

-
113 ft + · · · = 1. Thus K c [0, 1] and is the complement of

the union of open intervals whose lengths add up to 1. (This seems to say that K is "small"
in contrast to the uncountability ·of K which seems to say that K is "big." That is
why K is interesting.) -

1.6E. We have seen that the set R is "bigger" than the set I in the sense that I is
(equivalent to) a subset of R but I is not equivalent to R itself. It is natural to ask
whether there exists a set that is "bigger" than R. We shall now show that the
class S of all subsets of R is "bigger" than R.

The elements of S are thus the subsets of R-that is, A E S if and only if A c R.
In particular, if r E R then {r} E_S and so S contains as a subclaes the class.
{{r} IrE R} of subsets of R containing one element. Clearly, R is equivalent to this
subclass.

On the other hand, R is not equivalent to S. For suppose the cont~ai;r.· Then
there would be a 1-1 functionjfrom R onto S. For each x E R, then,j(x} is a subset
of R and every subset of R is equal to j(x) for some x E R. A given x E R mayor
may not be an element of the image sul.)setj(x). Let

A = {x E R Ix ;/(x) }..
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Then A c R and so A E S. Hence A = f(xo) for some Xo E k. Now we arrive at a
contradiction. For either Xo E A or'xo ~ A. But .

1. If Xo E A then Xo ¢f(xo) (by definitton of A), and so Xo¢ A [since A = f(xo)].
2. If Xo ¢ A then Xo flf(xo) [since A =f(xo)], and so Xo E A (by definition of A).

Thus both Xo E A and Xo ¢ A are impossible. The contradiction proves that R is
not equivalent to S.

It is clear that no properties special to R were used. The argument therefore
applies to any set B. We have thus shown that B is not equivalent to the class of
subsets of B. In particular, there is no "biggest possible" set.

Exercises 1.6

I. If f: A ~ B and the range of j is uncountable, prove that the domain of j is
uncountable.

2. Prove that if B is a countable subset of the uncountable set A then A - B is
uncountable.

3. Prove that the set of all irrational numbers is uncountable.
4. Prove that the set of all characteristic functions on I is uncountable.
5. A real number x is said to be an algebraic number if x is a root of some poly.

nomial functionfwith rational coefficients [that is,f(x) = 0]. A transcend'ental
number is a real number that is not an algebraic number.

'Assume that a polynomial of degree n has at most n roots. Prove that the
set of all transcendental numbers is uncountable. (See Exercise 5 of Section 1.5.)

6. For the functionjin 1.6D show thatf(l) =f(I). More generally, show that if
(a, h) is anyone of the open intervals removed in the construction K, sho\\·
thatf(a) =f(b). (Hint.· Show that a and h can be written a = 0.a1a2 ••• anI,
b = O.a1a2 • • • an 2, where each ai is 0 or 2. Then rewrite the expansion for a
u'sing only 0 and 2.)

7. Show that if x,y E K, x '<Y';i~ndf(x) =f(y) (wherefis as in 1.6D), then (x,y)
is one of th~ in~ervals (a, ~): of the preceding exercise. (This shows that if we
removed all such b's from the Cantor set, the f would be 1-1 function fr':>ffi
what remains of K onto [0, 1].) ,

8. Prove that the Cantor set is equivalent to [0, ~]~

9. For each t E R, let E, be a subset c;>f R~ Suppose that.if s < t then E,.is a proper
subset of E,. (That is, E,' 'c E,,' .E, ,-# E,.) Must UtER E, be uncountable?

(Answer: No.)
. I

1.7. Least upper bounds

The proofs of many of the ~asic theorems of elementary calculus--existence of.
maxima and minima, the' intermediate value theorem;' Rolle's' theorem, the mean­
value ..theorem, and so on-depend strongly on the so-called completeness property
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of the real numbers R. There are many ways to formulate this property. We do so
~il 1.7D with the "least upper bound axiom." First we have to define bounded sets
aAln upper bounds.

1.7A. DEFINITION. The subset A c R is said to be bounded above if there is a
number .lv E R such that x ~ N for every x E A. The subset A c R is said to be
bounded below if there is a number MER such that M ~ x for every x EA. If A
is qoth bounded below and bounded above, we say that A is bounded.

Thus A' is bounded if and only if A elM, NJ for some interval [M, N] of finite
length. The set 1 of positive integers is bounded below but not abov~. Hence I is
not bounded. 1'he interval [0, 1] is bounded. Thois shows that the boundedness of a
set has nothing to do with countability.

1.7B. DEFII'ITION. If A c R is bounded above, then N is called an upper bound
for A if x s N for all x E A. If A c R is bounded below, then M is called a lower
bound for A if M ~ x for every x E A.

We often abbreviate upper bound and lower bound by u.b. and l.b. respectively.
Thus -7 is an l.b. for I. The number I is an u.b. for the set B = {I, 1, 1, ... ,
(2 n

.- 1) /2 n
, ••• }. Note that infinitely many numbers greater than -7 are lower

bounds for I, but that there is no number less than I which is an upper bound fo!
B. This leads us to the concept of least upp~r bound ~pd great~st iowe.r bound.

1.7e. DEFINITION. Let the subset A' of R be bounded above. The number L is
called the least upper bound for A if (1) L is an upper bound for' A, and (2) no
number smaller than L is an upper bound for A.

Similarly, l is called the greatest lower bound for the set A bounded below, if l
is a lower bou,nd for A and no number greater than l is a low~r bound for A.

We abbreviate "least upper bound" as l.u.b. (or l.u.b.~.A x), and "greatest
lower bohnd" as g.l.b. It is immediate that a set .£4 can have no more than one
l.u.b. Fo~ if L = l.u.b. for A and M < L, then, by (2), M is not an tipper bound
for A. Moreover, if M > L~then M cannot be a l.u.b. for A since L is an u.b. and
L:.< M. Similarly, no set c~ti have more than one g.l.b.

) It is not _;it all obvious that a nonempty set A\ W;hich is bounded above necessarily
.has a l.u.b. This is the subject of the least upper bound axiom to be given shortly.
F~st we give some examples. _ \,' ',' .

IfB = {i-, f, ... , (2 ft
- 1)/2", ...}.theng.l.b.~BX~'la~dl.·u.b.~B%= 1. (Verify!)

Note that the g.l.b. for 1J is an element ofB b~~,,~h~t the l.u.b. for B is not an elelll:ent
of B. The set (3, 4) (open interval) does dOf,:G6~ta.,in 'either its g.l.b. or its l.u.b.,
which are 3 and 4 respectively. ' , '

The g.l.b. for 1 is.l. There is no I.u.b. since I is not bounded al>ove.
T~e g.l.b. and the l.u.b. for {O} are both equal to o.
According to our definitions, the empty set f(J is bounded since 0 C [M, N]

f~.)r any interval [M,-N]. Thus every number N E R is an u.b. for (l1 ~nd so {(1 does
not have a l.u.o.
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The following axiom would be a theorem if we were to develop set theory carefully
and then construct the real numbers from the definition. Since we 'are not doing
this we call it an axiom.

1.7D. LEAST UPPER BOUND AXIOM. If A is any 'nonempty subset ofR that is bounded
above, then A has a least upper bound in R.

This axiom says roughly that R (visualized as a set of points on a line) has no
holes in it. The set of all rational numbers does have holes in it. (That is, the l.u.b.
axiom does not hold if R is replaced by the set of all rationals.) For example, if
A = {I, 1.4, 1.41, t.414, ...}, then (in R) the l.u.b. for A is V2 which is not in the
set of rationals. Thus, if we had never heard of irrational numbers, we would say
that A had no l.u.b.

Our assumptions about the relation between real numbers and decimal expan­
sions are consequences of the l.u.b. axiom 1.7D. We show how to deduce them in
the next chapter.

The statement for g.l.b. corresponding to 1.7D need not be taken as an axiom.
It can be deduced from 1.7D.

1.7E. THEOREM. If A is any nonemp~ subset of R that is bounded below, then A
has a greatest lower bound in R.

PROOF: Let B c R be the set ofall x E R such that -x E A. (That is, the elements
of B are the negatives of the elements of A.) If M is a lower bound for A, then -M
is an upper bound for B. For, if x E B then j..Lx E A and so M'~ -x, x ~ -M.
Hence B is bourided above so that, by 1.7D,.B has a l.u.b. If Q is the l.u.b. for B
tLen -Q is the g.l.b. for A. (Verify.)

Exercises 1. 7

1. Find the g.l.b. for the following sets.
(a) (7, 8).
(b) {7T + 1, 1T + 2,_ 7T + 3, . . .}.
(c) {7T + 1,71 + 1,7T + 1,1T + 1, ...}.

2. Find the l.u.b. for the following sets.
(a) (7, 8).
(b) {7T + I, 1T + 1, 7T + 1, · · .l.'
(c) The complement in [0, I] of the. Cantor set. "

3. Give an example of a countable bounded subset A of R whose g.l.b. ~d 'l.u,.b.
are both in R - A. , .

4. If A is a nonempty b,Q~n4~d subset of R, and B is the set'ofall upper bounds for
A, prove ", I -. ,. .-

g.l.b.y = l.u.b. x
,EB eeA

5. If A is anonempty bOQ~ded subset ofR, and the g.l.h. for Ais equal to the l.u.b.
for A:,-what can you say about A?
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