Contents of Volumes 1 and 2

Volume 1

Section | General Physiology

- 1. Cell Physiology: Structure and Functions of Cell Organelle
- 2 Homeostasis
- Transport Across Cell Membrane 3.
- Membrane Potential Body Fluids and Blood Volume 4. 5.
- Clinical Case Scenario

Section II Blood

- 6. Composition and Functions of Blood
- Specific Gravity of Blood
- 8 Plasma Proteins
- Viscosity and Erythrocyte Sedimentation Rate (ESR) Coagulation of Blood 9
- 10
- 11
- Bone Marrow Red Blood Corpuscles (Erythrocytes) 12.
- Haemoglobin 13
- Inc. Moscoption, Transport, Storage and Excretion
 Anaemia, Polycythemia, Osmotic Fragility and Blood Indices
- White Blood Cells and Platelets
- 16. Blood Groups and Blood Transfusion 17.
- 18. Formation of Tissue Fluids
- 19. Immunity
- Clinical Case Scenario

Section III Nerve and Muscle

- 20. Structure and Functions of Neuron
- Properties, Classification of Nerve Fibres and Nerve Action Potential 91
- 99 Neuromuscular Junction
- Classification of Muscular Tissue 23. 24. Structure of Skeletal Muscle
- 25. Muscle Contraction
- 26. Properties of Skeletal Muscle Cardiac Muscle 97
- 28. Smooth Muscles
- Clinical Case Scenario

Section IV Cardiovascular System

- 29. Introduction to Cardiovascular System
- Initiation and Spread of Cardiac Impulse 30.
- Properties of Cardiac Muscle 31.
- 32. Cardiac Cycle
- Haemodynamics of Circulatory System and Pressure and Volume 33. Changes during Cardiac Cycle
- 34. Electrocardiogram
 35. Innervations of Heart and Heart Rate
- Cardiac Output
 Blood Pressure
- Velocity of Blood Flow and Radial Pulse 38
- 39. Regional Circulation
- 40. Physiology of Exercise
- Applied Cardiovascular Physiology: Haemorrhage, Heart Failure, 41. Hypotension, Hypertension and Shock Clinical Case Scenario

- Section V Respiratory System 42. Functional Organization of Respiratory System
 - 43. Mechanics of Breathing
 - Pulmonary Volumes and Capacities (Spirometry) 44.
 - 45. Alveolar Ventilation and Gases Exchange in Lungs
 - Ventilation and Perfusion in Lungs 46.
 - 47. Transport of Oxygen and Carbon Dioxide in Blood
 - Regulation of Respiration 48.
 - Hypoxia 49.
 - 50. Compressed Air Sickness and Deep Sea Diving
 - Respiration in Abnormal Conditions 51.
 - 52 Artificial Respiration or Resuscitation
 - 53. Acclimatisation
 - 54. Underwater Physiology
 - 55. Vocalisation
 - Clinical Case Scenario

Section VI Gastro-intestinal Tract

- 56. General Outline of Digestive System
- 57. Digestive Juices
- 58. Mechanism of Secretion of Various Digestive Juices
- 59. Movements of Alimentary Canal
- 60. Digestion and Absorption of Foodstuffs
- 61. Gastro-intestinal Hormones
- Clinical Case Scenario

Section VII Renal Physiology

- 62. Functional Anatomy of Excretory System
 63. Urine Formation by Kidneys: Renal Blood Flow and their Control
 64. Urine Formation by the Kidney: Glomerular Filtration Rate and their
- Control 65. Tubular Reabsorption and Tubular Secretion (Urine Formation): Water
- and Electrolytes Balance and Counter-current Mechanism 66. Renal Function Test, Urine, Urinary Characteristic and its Mechanism
- of Formation
- 67. Micturition
- 68. Skin, Body Temperature and its Regulation
- 69. Regulation of Reaction of Blood and Disturbances in Acid–Base Regulation Clinical Case Scenario
- Multiple Choice Questions and Vice Voce

Volume 2

Section VIII Endocrines

- 70. Introduction to Endocrine Gland, Endocrine Hormones and Endocrine Disorders
- Hypophysis (Pituitary Gland) 71
- 72. Thyroid Gland
- 73. Calcium Homeostasis: Role of Parathyroid Gland
- 74 Pancreas
- 75. Adrenal (Suprarenal) Glands
- 76. Local Hormones
- 77. Thymus
- 78. The Pineal Body
- Clinical Case Scenario

84. Foetal Circulation

Clinical Case Scenario

Synapse

Brainstem

Thalamus

104. Cerebrum

108. Sleep

109. Emotion

Speech

Cerebellum

Section X Nervous System

Reflex Action

Sensory Systems

The Basal Ganglia

102. Vestibular Apparatus

110. Cerebrospinal Fluid

Section XI Special Senses

117. Physiology of Vision

112. Hypothalamus

113. Neurosecretion

114. Cranial Nerves Clinical Case Scenario

115. Sense of Taste

Clinical Case Scenario

118. Hearing

111. Autonomic Nervous System

116. Sense of Smell (Olfaction)

Multiple Choice Questions and Vice Voce

101. Muscle Tone and Posture

103. Path of Vestibular Impulse

105. Limbic Lobe and Limbic System

107. Neurophysiology of Learning and Memory

The Reticular Formation

Section IX Reproductive System

79. Gonads and Reproduction

85. Development of Breast and Lactation

87. Introduction to Nervous System

Nerve Endings and Receptors

86. Controlled Reproduction and Family Planning

General Principles of the Nervous System

The Ascending and Descending Tracts

Mammillary Bodies and Internal Capsule

Arrangement of Grey and White Matters in the Spinal Cord

- 80. Male Reproductive Organs
- 81. Female Reproductive Organs 82. Pregnancy
- 83. Parturition

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98

99 100.

106.

Contents

Preface to the Fifteenth Edition Preface to the First Edition Index of Competencies

Section I General Physiology

1.	Cell Physiology: Structure and Functions of Cell Organelle2
	Introduction 2
	Cell Structure 2
	Cell Membrane 2
	Cytoplasm and its Organelles 4
	Nucleus 6
	Chromatin 7
	Chromosomes 7
	Applied Physiology 7
	Intercellular Communication and Mode of
	Communication 7
	Special Structural Features of Cell and Intercellular
	Communication 7
	Molecular Motors 9
	Apoptosis 9
	Applied Physiology 9
	Methods used to Demonstrate the Functions of the Cells
	and its Product 10
	Exam-oriented Questions 13

2. Homeostasis

14

Introduction 14 Role of Various Systems of Body in Homeostasis 14 Role of Neuroendocrine Reflex in Homeostasis 14 Feedback Homeostasis Regulations 15 Examples of Negative Feedback Mechanism 15 Examples of Positive Feedback Mechanism 16 Internal Factors Influencing Homeostasis 17 External Factors Influencing Homeostasis 17 Exam-oriented Questions 17

3. Transport Across Cell Membrane

18

Introduction 18 Introducing to Key Terms and Concepts 18 Important Concepts in Transport Mechanism 18 Ion Channels 18 Types of Transport Mechanism 19 Characteristic Features 21 Osmosis 21 Membrane Transport: Active Transport 22 Primary Active Transport 22 Secondary Active Transport 23 Vesicular Transport Mechanisms 25 Transport through Cellular Sheets 26 Applied Physiology 26 Exam-oriented Questions 26

4.	Membrane Potential 27
	Introduction 27
	Role of Ion in Generating Membrane Potential 27
	Ionic Mechanisms of Resting Potentials 27
	Physico-chemical Principles Involved in Generating RMP 27
	Nernst Potential 27
	Goldman-Hodgkin and Katz (GHK) Equation 27
	Gibbs-Donnan Membrane Equilibrium 27
	Recording of Membrane Potential 28
	Graded Potential and Action Potential 28
	Introduction 28
	Terms Associated with Membrane Potential 29
	Graded Potential 29
	Local Response of Graded Potential 29
	Types of Graded Potential 29
	Summation of Graded Potential 29
	Action Potential 29
	Characteristics of Action Potential 30
	Nerve Stimulation and Phases of Action Potential 30
	Ionic Basis of Action Potential 31
	Cardiac Action Potentials 31
	Property of Action Potential 32
	Ion Channel Studies 33
	Procedures 33
	Exam-oriented Questions 33
5.	Body Fluids and Blood Volume 34
	Introduction 34
	Total Body Water and its Distribution 34
	Extracellular Fluid Compartment 34
	Blood Volume 35
	Methods of Determination of Blood Volume 35
	Blood Volume 35
	Measurement of Plasma Volume 35
	Measurement of Interstitial Fluid Volume 35
	Interstitial Fluid (IF) 35
	Intracellular Fluid Compartment (ICF) 35
	Measurement of Body Fluid Compartments 36
	Total Body Water 36
	Extracellular Fluid Volume 36
	Intracellular Fluid Measurement 36
	Hydrogen Ion Concentration of the Body Fluids 37
	Regulation of Body Fluid Volume 37
	Exogenous and Endogenous Water Input 37
	Water Excretion and its Daily Output 37
	Maintenance of Electrolyte Balance 37
	Potassium Conc and its Balance 37
	Disorders of Fluid Volume 38
	Exam-oriented Questions 38
	Clinical Case Scenario 39
	General Physiology 39

V

vi

xix

Sect	tion II Blood	
6.	Composition and Functions of Blood	42
	Introduction 42	
	Properties of Blood 42	
	Composition of Blood 42 Functions of Blood 42	
	Relative Volume of Corpuscles and Plasma 43	
	Exam-oriented Questions 44	
7.	Specific Gravity of Blood	45
	Introduction 45	
	Rise in Specific Gravity 45	
	Fall in Specific Gravity 45 Method of Determination 45	
	Exam-oriented Questions 45	
0		10
8.	Plasma Proteins Introduction 46	46
	Plasma Proteins Varieties 46	
	Origin of Plasma Proteins 46	
	Rate of Regeneration of Plasma Proteins: Whipple's	
	Experiment 46 Whipple's Experiment 46	
	Relation of Diet to Plasma Proteins 46	
	Functions of Plasma Protein 47	
	Exam-oriented Questions 47	
9.	Viscosity and Erythrocyte Sedimentation	
	Rate (ESR)	48
	Introduction 48 Viscosity: Characteristics 48	
	Suspension Stability of Blood (Erythrocyte Sedimenta	ation
	Rate or ESR) 48	
	ESR Increased and Decreased 49 Significance of ESR 49	
	Physiological Variations in ESR 49	
	Exam-oriented Questions 49	
10.	Coagulation of Blood	50
	Introduction 50	
	Importance of Coagulation of Blood 50	
	General Characteristics of Coagulation 50	
	Blood Coagulation Factors 51 Factor I or Fibrinogen 51	
	Factor II or Prothrombins 51	
	Factor III or Thromboplastin 51	
	Factor IV or Calcium 51 Factor V or Labile Factor Accelerator Globulin or	
	Proaccelerin 51	
	Factor VII or Stable Factor or Proconvertin 51	
	Factor VIII or Antihaemophilic Factor (AHF) or Antihaemophilic Globulin (AHG) or Platelet Cofactor I 51	
	Factor IX or Christmas Factor or Plasma Thrombo	plastin
	Component (PTC) or Platelet Cofactor II 52 Factor X or Stuart Factor 52	
	Factor XI or Plasma Thromboplastin Antecedent	
	(PTA) 52	
	Factor XII or Hageman or Surface Factor 52	ctor
	Factor XIII or Fibrin-stabilising or Laki-Lorand Fa (LLF) 52	C101
	Fitzgerald Factor also known as High Molecular	
	Weight Kininogen 52 Fletcher Factor also known as Prekallikrein 52	
	Other Important Factors Participating in Coagulation	L
	Mechanism 52	

Thrombomodulin 52 Protein C 52 Protein S 52 Anti-thrombin III 52 Tissue Factor Pathway Inhibitor 52 Extrinsic and Intrinsic Mechanisms of Coagulation of Blood 52 Clot Retraction 53 Fibrinolysis 54 Plasminogen 54 Natural Inhibitors of Coagulation 55 Antithrombin Activities Remove Thrombin from Blood 55 Intravascular Clotting or Thrombosis 55 Thrombus 55 Heparin as an anticoagulant 55 Characteristics 55 Applied Physiology 55 Coagulation Disorders 55 Bleeding Disorders 56 Exam-oriented Questions 58

11. Bone Marrow

Done	
Introd	luction 59
Ke	y Points 59
Re	d Bone Marrow 59
Ye	llow Bone Marrow 59
Vascu	lar Arrangement in the Bone Marrow 59
Functi	ions of Bone Marrow 59
For	rmed Elements of Blood 59
Pre	ecursors of Blood Cells 60
Ap	pplied Physiology: Bone Marrow Biopsy 62
Exam-	-oriented Questions 62

59

69

12. Red Blood Corpuscles (Erythrocytes)

63 Introduction 63 Size, Volume, Thickness, etc. of Red Blood Corpuscles 63 Cytoplasm of the Red Cells 63 Normal Red Cell Count 63 Variations of Red Cell Count under Various Physiological Conditions 63 Abnormal Forms of Erythrocytes 63 Stages of Blood Formation in the Embryo and Foetus 64 Site of Development 64 Important Factors Controlling Erythropoiesis 64 Maturation of Red Blood Cells 64 Stages of Development 64 Factors Regulating Erythropoiesis 66 Energy Metabolism of RBC 66 Key Points 66 Functions of Red Blood Corpuscles 68 Exam-oriented Questions 68

13. Haemoglobin

Introduction 69 Chemistry 69 Structure of Haemoglobin 69 Properties 70 Haemoglobin Varieties 70 Haemoglobin and its Variant 70 Synthesis of Haemoglobin 70 Amount of Haemoglobin in Normal Blood 70 Variations of Hb under Different Physiological Conditions 71 Derivatives of Haemoglobin 71 Exam-oriented Questions 72

viii

14. Iron Absorption, Transport, Storage and Excretion Introduction 73 Daily Requirement 73 Distribution of Iron 73 Absorption and Transport 72

73

76

81

Absorption and Transport 73

Key Points 73
Iron in Blood 73
Storage of Iron 73
Excretion 74
Functions of Iron 74
Applied: Iron Deficiency Anaemia 75
Exam-oriented Questions 75

15. Anaemia, Polycythemia, Osmotic Fragility and Blood Indices

Introduction 76
Other Causes 76
Sickle Cell Anaemia 76

Thalassemia 76
Alpha Thalassemia 78
Beta Thalassemia 78
Glucose-6-Phosphate Dehydrogenase Deficiency 78
Congenital Spherocytosis 78
Blood Indices and Morphological Classification of Anemia 78
Determination of Osmotic Fragility of Red Blood Cells 79
Principle 79
Procedure 79
Precautions 79
Applied Physiology: Haemolysis and Osmotic Fragility 79
Polycythemia 80
Exam-oriented Questions 80

16. White Blood Cells and Platelets

White Blood Cells 81 Variations in Normal Count of White Blood Corpuscles 81 Classification and Differential Count of White Blood Corpuscles or Leucocytes 81 Granular Leucocytes or Granulocytes 82 Neutrophil 82 Arneth Count or Arneth Index (Modified by von Bonsdorff and Later by Cooke) 82 Eosinophil (1-4%) 83 Basophil (0–1%) 83 Lymphocytes (20-40%) 83 Small Lymphocyte 83 Large Lymphocyte 83 Monocytes (Large Mononuclear Cell, Transitional Cell, etc.) (2-8%) 84 Characteristic Features 84 Development of Leucocytes 84 Development of Granular Leucocytes or Granulocytes 84 Development of Lymphocytes 85 Role of Lymphocyte in Immunology 86 Development of Monocytes 86 Life and Fate of Leucocytes 86 Functions of WBC 86 Applied Physiology: WBC Disorders 86 Platelets 87 Properties 87 Total Number and its Variations 87 Methods of Counting of Platelets 88 Development of Platelets 88 Functions of Platelets 88 Exam-oriented Questions 89

17.	Blood Groups and Blood Transfusion	90
	Blood Groups 90	
	A, B and O Groups 90	
	Rh Antibodies and Rh Incompatibility 91	
	Erythroblastosis Foetalis 91	
	M and N Factors: Medicolegal Significance 91	
	H Blood Group System and Bombay Phenotype 92	
	Blood Transfusion: Blood Groups 92	
	Indications for Blood Transfusion 92	
	Autologous Transfusion 92	
	Mismatched Blood Transfusion 93	
	Blood Bank 93	
	Blood Storage 93	
	Exam-oriented Questions 93	
	Exam offented Questions 75	
18.	Formation of Tissue Fluids	94
	Introduction 94	
	Composition of Tissue Fluid 94	
	Functions of Tissue Fluid 94	
	Oedema and its Causes 95	
	Aggregation of Tissue Fluid 95	
	Lymph and Lymphatics 95	
	Characteristic Features 95	
	Properties of Lymph 95	
	Composition of Lymph 95	
	Solids 95	
	Rate of Flow 95	
	Factors Responsible for Formation of Lymph 97	
	Functions of Lymph 98	
	Lymph Node 98	
	Structure of Lymph Node 98	
	Functions of Lymph Node 99	
	Structure of Spleen 99	
	Splenic Pulp 99	
	Marginal Zone 100	
	Functions of Spleen 101	
	Classification, Varieties and Distribution of RE Cells	102
	Functions of the Reticuloendothelial System 103	
	Exam-oriented Questions 103	
19.	Immunity	104
		-

Introduction 104 Innate Defenses 104 Complement 105 Adaptive Defenses 106 Development of the Acquired Immune System 106 Humoral Immunity 107 Acquired Humoral Response: Formation of Primary and Secondary Antibodies 107 Types of Acquired Immunity 107 Antibody Mediated Humoral Response 108 Cell-mediated Immune Response 108 T Cell Activation 109 Function of T Helper Cells, Cytotoxic T Cells and Suppressor T Cells 109 Organ Transplant 110 Severe Combined Immunodeficiency (SCID) Syndrome 110 Acquired Immune Deficiency Syndrome (AIDS) 110 Hypersensitivity 110 Exam-oriented Questions 111 Clinical Case Scenario 112 Blood 112 Recent Advances: Innate Immunity 113

Contents

İХ

2008 Nobel Prize for Physiology and Medicine: HIV Virus 114 Notable Contributions: Diseases, Drugs, Immunity and Recovery 114

Section III Nerve and Muscle

20. Structure and Functions of Neuron 118

Introduction 118 Histological Structure 118 Neuron 118 Structure of Nerve Fibres 118 Neuroglia 120 Functions of Neuroglia 120 Axonal Transport and Nourishment of Neurons 121 Role of Neurotrophins in Neuronal Development 121 Exam-oriented Questions 121

122

21. Properties, Classification of Nerve Fibres and Nerve Action Potential

Introduction: Properties of Nerve Fibres 122 Excitability 122 Generation of Action Potential and Excitability of the Nerve 122 Ionic Basis of Excitability of Nerve 122 Excitability Depends upon Following Factors 124 Compound Action Potential 124 Conductivity 124 Factors Affecting Conductivity and Excitability 125 All-or-none Law 126 Refractory Period 126 Summation 126 Adaptation 126 Accommodation 126 Unfatigability 126 Heat Production in Nerve Fibre 126 Classification of Nerve Fibres 127 Mechanism of Conduction of the Nerve Impulse 127 Saltatory Conduction in the Myelinated Nerve Fibre 128 Physiological Properties of the Nerve Fibres 129 Degeneration and Regeneration of Nerve 129 Sunderland Classification of Nerve Injury 129 Regeneration 130 Degeneration and Regeneration of Nerve 130 Transneuronal Degeneration 130 Applied Physiology 130 Cathode Ray Oscilloscope (CRO) 130 Exam-oriented Questions 131

Human Physiology

 Exam-oriented Questions 131
 132

 22. Neuromuscular Junction
 132

 Introduction 132
 132

 Neuromuscular Junction 132
 132

 Presynaptic Terminal 132
 132

 Synaptic Cleft 133
 Post-synaptic Membrane 133

 Synthesis of Acetylcholine in Motor Neuron 133
 133

 Neuromuscular Blockers 134
 134

 Applied Physiology 134
 135

23. Classification of Muscular Tissue 136

Introduction 136 Muscle Classification 136 Exam-oriented Question 137

24.	Structure of Skeletal Muscle	138
	Introduction 138	
	Distribution 138	
	Origin and Development 138	
	General Features 138	
	Histological Structure of Muscle Fibres 138	
	Myofibrils: Characteristic Features 138	
	Myosin Filaments 139	
	Actin Filament 140	
	Sarcotubular System 141	
	Blood Vessels, Lymphatics and Nerves of Skeletal Muscle 141	
	Ending of Muscle in Tendon 141	
	Exam-oriented Questions 142	
25.	Muscle Contraction	143
	Introduction 143	
	Mechanism of Contraction 143	
	Molecular Mechanism of Muscle Contraction (Slid	ing
	Filament Theory of AF Huxley and HE Huxley) 143
	Changes during Muscular Contraction 146	
	Role of Creatine Phosphate or Phosphagen and	
	Adenosine Triphosphate (ATP) 146	
	Muscular Contraction and its Relationship with th Breakdown of ATP 147	e
	Oxygen Utilization and CO ₂ Production 147	
	Cori Cycle 147	
	Thermal Changes 148	
	Electrical Changes 148	
	Strength–Duration Relationship—Chronaxie and Rheobase 148	
	Muscular Disorders 149	
	Exam-oriented Questions 149	
26.	Properties of Skeletal Muscle	150
	Introduction 150	
	Excitability and Contractility 150	
	Refractory Period 154	
	Tonicity 154	

Conductivity 154 Extensibility and Elasticity 154 Contraction of Skeletal Muscle 154 Exam-oriented Questions 155 27. Cardiac Muscle 155 27. Cardiac Muscle 156 Blood Vessels, Lymphatics and Nerves of Cardiac Muscle 158 Exam-oriented Questions 159 28. Smooth Muscles 160 Introduction 160 Histology 160 Contractile Mechanism 161

Properties of Plain (Smooth) Muscles 161
Excitability and Contractility 161
Functions of the Muscular Tissue 163
Rigor Mortis 163
Exam-oriented Questions 163
Clinical Case Scenario 165
Nerve Muscle 165
Recent Update: A Newly Discovered Muscle: The Tensor of
the Vastus Intermedius 166

Х

Section IV Cardiovascular System

29. Introduction to Cardiovascular System 170

Introduction 170 Anatomical Considerations of the Heart 171 Kev Points 171 Valves of the Heart 172 Action of the Valves 173 Histology of the Cardiac Muscle 174 Valves of the Veins 176 Blood Vessels (Vasa Vasorum) 176 Factors that Maintain Circulation 176 Special Junctional Tissues 176 Sino-atrial Node (Keith and Flack, 1907) 177 Atrioventricular Node (Tawara, 1906) 177 Bundle of His 178 Bundle Branch 178 Purkinje Fibres 179 Exam-oriented Questions 179

30. Initiation and Spread of Cardiac Impulse 180

Origin of the Heartbeat 180 Initiation of Impulse and Localisation of Pacemaker 180 Conduction Over Atrial Muscle 180 Conduction Over AV Node 180 Conduction Over Bundle of His and the Right and Left Bundle Branches 181 Conduction through Purkinje Systems 181 Conduction through Ventricular Muscle 181 Heart Block 181 Exam-oriented Questions 182

31. Properties of Cardiac Muscle

Introduction 183 Rhythmicity 183 Excitability 183 Conduction 184 Contraction 185 All-or-none Response 185 Staircase Phenomenon 185 Refractory Period 185 Tone 185 Functional Syncytium 186 Exam-oriented Questions 186

32. Cardiac Cycle

187

183

Introduction 187 Cardiac Cycle Time 187 Summary of the Sequence of Events in Cardiac Cycle 190 Time Relations of the Various Events 191 Summary of the Time Relations 191 Exam-oriented Questions 192

33. Haemodynamics of Circulatory System and Pressure and Volume Changes during Cardiac Cycle 193

Haemodynamics of Circulatory System 193 Blood Flow through Vessel 193 Structural Overview 193 Overall Blood Flow in Circulation 193 Pattern of Blood Flow 193 Blood Flow Resistance (Peripheral Resistance) 194 Velocity of Blood Flow 194 Lumen of the Blood Vessel 194 Effect of Gravity on Mean Blood Pressure 194 Regulation of Blood Flow 195

Acute Control of Local Blood Flow 195 Long-term Control of Local Blood Flow 195 Role of Humoral Vasoconstrictors and Vasodilators 195 Pressure Volume Changes 196 Methods of Study 196 Pressure Changes 196 Intraventricular Pressure Changes and Assessment 196 Ventricular Systole 196 Ventricular Diastole 196 Intra-atrial Pressure Changes 197 Jugular Pressure Tracing (Venous Pulse) 197 Ventricular Volume Changes 198 Composite Representation of the Sequential Changes in the Pressure and Volume events in the Heart and Blood Vessels during the Cardiac Cycle Correlating with Phonocardiogram and Electrocardiogram 198 Heart Sounds 199

202

Exam-Oriented Questions 201

34. Electrocardiogram

Introduction 202 Methods of Recording Electrocardiogram 202 Electrocardiographic Leads Used both Clinically and Experimentally 203 Unipolar Limb Leads 205 Augmented Unipolar Limb Leads 206 Normal ECG Recorded in Chest Leads 207 Significance of Various Leads and their Limitations 207 Electrocardiographic Appearances under Certain Cardiac Disorders 208 ECG Changes in Atrial Tachycardia, Atrial Flutter and Atrial Fibrillation 208 Ventricular Premature Beat or Extra Systole 209 Ventricular Paroxysmal Tachycardia 209 Ventricular Fibrillation 209 Wolff-Parkinson-White Syndrome 209 Myocardial Infarction 210 Myocardial Infarction: Coronary Ischaemia and Current Injury 210 Mean Electrical Axis of the Heart 210 Determination of Electrical Axis 210 Ventricular Conditions that may Cause Axis Deviation 211 Exam-oriented Questions 212

35. Innervations of Heart and Heart Rate 213

	Introduction 213	
	Nerves of the Heart and their Action 213	
	Vagus Nerves 213	
	Tonic Action of the Vagus Nerves 214	
	Sympathetic Nerves 214	
	Cardiac Centres 214	
	Heart Rate 214	
	Factors Affecting Heart Rate 214	
	Regulation of Heart Rate 215	
	Applied Physiology 217	
	Exam-oriented Questions 217	
36.	Cardiac Output	218
	Introduction 218	
	Normal Values: 5–6 Litres/Minute 218	
	Important Terminology and Definitions 218	
	Distribution of Cardiac Output 218	
	Cardiac Reserve 218	
	Factors Affecting Cardiac Output 219	
	Control of Cardiac Output 219	
	Preload Depends on Ventricular Filling and Venou	15

Contents

Cardiac Contractility 219 Afterload 220 Methods of Measuring Cardiac Output 221 Dye Method: Stewart and Hamilton's Dye Dilution Method 221 Employing for Measuring Cardiac Output Fick Principle Using O₂ and CO₂ 221 Physical Method: Ballistocardiography 222 Thermo-dilution Method (Cold Saline Method) 222 Applied Physiology 222 Doppler Echocardiography 222 Calculation 222 Exam-oriented Questions 222

37. Blood Pressure

223

237

Introduction 223 Basal Blood Pressure 223 Physiological Variations 223 Significance of Blood Pressure 224 Systolic Pressure 224 Diastolic Pressure 224 Pulse Pressure 224 Physiological Significance of Blood Pressure 224 Measurement and Recording of Blood Pressure 224 Arterial Blood Pressure 224 Venous Pressure 226 Determinants of Blood Pressure 226 Adjustment of Blood Pressure 226 Efferent Pathways of this Self-adjustment or Homoeostasis of Blood Pressure 227 Vasomotor System 227 Afferent Pathways 228 Role of Sino-aortic Mechanism in the Regulation of Normal Blood Pressure 228 Sino-aortic Mechanism 228 Chemoreceptors Location 229 Aortic Bodies 230 Vascular Receptors other than Sino-Aortic for the Control of Blood Pressure and Flow 230 As Chemoreceptors 231 Mechanism of Regulation of Blood Pressure 231 Short-term Regulating Mechanisms 231 Intermediate Mechanism of Regulation of Blood Pressure 232 Long-term Regulation of Blood Pressure 232 Role of other Hormone in Regulation of Blood Pressure 232 Role of Humoral Vasoconstrictors and Vasodilators 232 Humoral Vasoconstrictors 232 Humoral Vasodilators 233 Chemical Control of Blood Pressure Influenced by Vasomotor Mechanism 233 Exam-oriented Questions 233 38. Velocity of Blood Flow and Radial Pulse 234

Introduction 234 Velocity of Blood 234 Methods of Measurement of Velocity of Blood 234 Radial Pulse 234 Pressure Pulse 235 Recording of Radial Pulse 235 Clinical Features of Radial Pulse 235 Special Varieties of Pulse 235 Applied Physiology 236 Exam-oriented Questions 236

39. Regional Circulation

Introduction 237 Coronary Circulation 237

Anatomical Considerations 237 Venous Drainage 238 Methods of Study 238 Normal Values 238 Variations of Coronary Inflow during Different Phases of Cardiac Cycle 239 Coronary Inflow 239 Factors Influencing Coronary Circulation 240 Circulatory Status of the Cardiac Muscle under Certain Diseased Conditions 241 Aortic Stenosis 241 Pulmonary Hypertension 241 Aortic Insufficiency 241 Mitral Stenosis 241 Aortic Coarctation 241 Hypertensive Cardiovascular Disease 241 Ischaemic Heart Disease 241 Coronary Spasms and Intercoronary Reflexes 241 Pathological Physiology of Angina Pectoris and Acute Myocardial Infarction 241 Cerebral Circulation 241 Anatomical Considerations 241 Method of Study: Nitrous Oxide Method: Fick Principle 242 Vasomotor Supply 242 Normal Values of Cerebral Circulation 242 Regulation of Cerebral Circulation 243 Existence of Auto-regulation of Cerebral Blood Flow 243 Key Points 243 Factors Controlling Cerebral Circulation 243 Cerebrovascular Resistance 243 Pulmonary Circulation 244 Anatomy of Circulation 244 Method of Recording Pulmonary Arterial Pressure 244 Vasomotor Supply 244 Normal Values of Pulmonary Circulation 244 Functions of Pulmonary Circulation 245 Control of Pulmonary Circulation 245 Peculiarities of Pulmonary Circulation 246 Pulmonary Vascular Reflex 246 Circulatory Status in Different Cardiopulmonary Diseases 246 Mitral Stenosis 246 Emphysema 246 Pulmonary Embolism 246 Atelectasis 246 Removal of Lung 247 Diffuse Sclerosis of Lung Vessels 247 Pulmonary Fibrosis 247 Hepatic Circulation 247 Vascular Arrangement 247 Vasomotor Supply 247 Normal Values of Hepatic Circulation 247 Factors Modifying Hepatic Circulation 248 Peculiarities of Hepatic Circulation 248 Splenic Circulation 249 Control of Blood Flow 249 Renal Circulation 249 Capillary Circulation 249 Histology 249 Methods of Study of Capillary Circulation 249 Vasomotor Supply 249 Control of Capillary Circulation 250 Interchange in the Capillary Area 251 Cutaneous Circulation 251 Anatomy of Cutaneous Circulation 251

Rate of Blood Flow 251

xii

Regulation of Blood Flow: Nervous Control 251				
Vascular Response of Skin 252				
Auto-regulation of Skin Blood Flow 252				
Normal Colour of the Skin 252				
Skeletal Muscle Circulation 253				
Vascular Arrangement in Skeletal Muscle 253				
Rate of Blood Flow Through Muscle 253				
Basal Tone of Arterioles 253				
Control of Skeletal Muscle Blood Flow 253				
Exam-oriented Questions 254				

255

40. Physiology of Exercise

Introduction 255 Muscular Exercise 255 Changes in Cardiovascular System 256 Heart Rate Changes during Exercise 256 Circulatory Status during Exercise 257 Changes in Respiration 258 Blood Cell Changes during Exercise 258 Body Temperature 258 Body Fluid Changes during Exercise 259 Kidney Function in Exercise 259 Digestive System 259 Endocrine Status 260 Aerobic Training 260 Isometric and Isotonic Exercises 260 Cardiovascular and Cardiorespiratory Response to Isometric Exercise 260 Sedentary Lifestyle and Health Implication 261 Introduction 261 Health Implication in Sedentary Lifestyle 261 Role of Nutrition in Exercise 262 Over-exercising and Ill Effects on Health 262 Cardiorespiratory Changes under Different Environmental Conditions (Heat and Cold) 262 Exam-oriented Questions 262

41. Applied Cardiovascular Physiology: Haemorrhage, Heart Failure, Hypotension, Hypertension and Shock 263 Haemorrhage 263 Compensatory Changes after Haemorrhage 263 Heart Failure 264 Types of Heart Failure 264 Role of Compensatory Mechanisms in Heart Failure 265 Management and Prevention 265 Hypotension 265 Orthostatic Hypotension 265 Hypertension 265 Signs and Symptoms 265 Pathophysiology of Hypertension 266 Shock 267 Types of Shock 267 Clinical Features of Shock 267 Stages of Shock 267 Physiology of Treatment in Shock 270 Applied Physiology: Cardiovascular System 270 Cardiac Disorders 270 Exam-oriented Questions 271 Clinical Case Scenario 272 Cardiovascular System 272 Important Cardiovascular Research Study: Framingham Heart Study 273 First Cardiac Catheterization and Future Development of Technique 273 Open-heart Surgery 273

Recent Advances in Cardiovascular Research 273

Section V Respiratory System

42. Functional Organization of Respiratory System 276 Structure of the Respiratory Tract 276 Trachea 276 Functions of Respiratory Tract 276 Reflexes Help in Clearing Irritating agents from Respiratory Passage 277 Respiratory Units 277 Broncho-pulmonary Anastomosis 277 Pulmonary Alveoli 277 Respiratory Functions of Lung 278 Pleural Cavity and Intra-pleural Pressure 279 Intra-pleural Pressure 279 Surface Tension at the Fluid-Air Interface within the Alveoli and the Role of Surfactant 279 Pressure Changes in the Pleural Cavity and its Relation to Volume Changes in the Lungs 280 Exam-oriented Questions 280 43. Mechanics of Breathing 281

Introduction 281 Diaphragm 281 Intercostal Muscles 282 Motion of the Ribs during Inspiration and Expiration 282 Accessory Muscles of Respiration 283 Resistance to Breathing 283 Elastic Resistance 283 Lung Compliance 283 Measurement of Lung Compliance and Pressure-Volume Curve 283 Viscous or Non-elastic Resistance 284 Elastic Forces and Characteristics of Compliance Pressure-Volume Curve 284 Elastic Forces of Lung Tissue 284 Alveolar Radius and its Relation to Surface tension 284 Energy Utilization for Respiration 285 Applied Physiology 285 Exam-oriented Questions 286

44. Pulmonary Volumes and Capacities (Spirometry) 287

Introduction 287 Lung Volumes 288 Tidal Volume (TV = 500 ml) 288 Respiratory Minute Volume (RMV) 288 Inspiratory Reserve Volume (IRV) 288 Expiratory Reserve Volume (ERV) 288 Residual Volume (RV) 288 Lung Capacities 288 Inspiratory Capacity (IC) 288 Functional Residual Capacity (FRC) 288 Total Lung Capacity (TLC) 288 Vital Capacity (VC) 288 Forced Expiratory Volume (FEV) 289 Functional Residual Capacity (FRC) 290 Forced Vital Capacity (FVC) 291 Forced Expiratory Volume in 1 (FEV₁) Second 291 FEV₁/FVC Ratio (FEV₁%) 291 Forced Expiratory Flow (FEF) 291 Peak Expiratory Flow (PEF) 291 Breathing Reserve (BR) 292 Applied Physiology: Obstructive and Restrictive Lung Disease 292 Exam-oriented Questions 292

Contents

45. Alveolar Ventilation and Gases Exchange in Lungs

Alveolar Ventilation 293 Respiratory 'Dead Space' 293 Definition 293 Measurement of Dead Space Volume 293 Nitrogen Meter Method 293 Intrapulmonary Gas-mixing or Even Distribution of Inspired Air 294 Methods of Detection of Uneven Ventilation 294 Alveolar Air 294 Composition of Alveolar Air 294 Partial Pressure of Gases in Inspired Air, Expired Air and Alveolar Air 295 Effect of Voluntary Hyperphoea on Alveolar Air 295 Breath-holding Time 295 Effects of High Altitude on Alveolar Oxygen 296 Factors Controlling Alveolar pCO₂ 296 Anatomical Shunt 296 Physiological Shunt 297 Applied Physiology 297 Hyperventilation and Hypoventilation 297 Exam-oriented Questions 297

46. Ventilation and Perfusion in Lungs 298

Diffusion 298 Factors Controlling Diffusion 299 Summary of Factors Affecting Diffusion through Fluids and Respiratory Membrane 299 Diffusion through Respiratory Membrane 299 Pulmonary Diffusing Capacity for O₂ (DO₂) 299 Diffusion of CO_2 300 Perfusion 300 Applied Physiology 300 Exam-oriented Questions 300

47. Transport of Oxygen and Carbon **Dioxide in Blood**

Introduction 301 Oxygen Transport 301 Percentage Saturation of Haemoglobin 302 Dissociation Curve for Haemoglobin 302 Nature of the Curve 303 Explanation of the Sigmoid Shape of the Curve 303 Oxygen Exchange in the Lungs 304 Oxygen Transport in the Tissues 304 Applied Physiology 305 Carbon Dioxide Transport 305 CO2 Content and Tension of Blood 305 Transport 305 Carbon Dioxide Dissociation Curves 306 Summary: Transport of Oxygen and Carbon Dioxide in Blood 308 Exam-oriented Questions 308

48. Regulation of Respiration

Introduction 309 Respiratory Centre 309 Dorsal Respiratory Group (DRG) of Neurons and Inspiratory Ramp Signals 310 Ventral Respiratory Group of Neurons 310 Mechanism of Rhythmic Respiration 310 Role of Abdominal Muscles in Respiration 310 Role of Reflex in Respiration 310 Voluntary Control of Respiration 313 Chemical Control of Respiration 313 CO₂ and Respiration 313

Nervous Factors Influencing Respiration in Exercise 315 Periodic Breathing 315 Cheyne-Stokes Breathing 315 Factors Involved in Development of Cheyne-Stokes Breathing Pattern 315 Mechanism of Cheyne-Stokes Breathing 317 Kussmaul's Breathing 317 Exam-oriented Questions 317

49. Hypoxia

293

301

309

318 Definition 318 Classification of Hypoxia 318 Anoxic Hypoxia or Arterial Hypoxia 318 Causes of Arterial Hypoxia 318 Anaemic Hypoxia 319 Stagnant Hypoxia or Hypokinetic Hypoxia 319 Histotoxic Hypoxia 319 Altitude Hypoxia 319 Oxygen Therapy in Hypoxia 320 Dyspnoea 321 Dyspnoea due to Alteration in Chemical Composition of Blood 321 Factors Affecting Diffusion of Gases Across the Alveolo-capillary Membrane (Alveolo-capillary Block Syndrome) 321 Excessive Work of the Respiratory Muscles 322 Applied Physiology 322 Psychogenic or Emotional Dyspnoea 322 Exam-oriented Questions 322 50. Compressed Air Sickness and Deep Sea Diving 323 Dysbarism (Caisson Disease) 323 Exam-oriented Question 323 51. Respiration in Abnormal Conditions 324 Asphyxia 324 Definition 324 Classification 324 Essential Conditions of Asphyxia 324 Hyperpnoea 324 Causes 324 Effects of Voluntary Hyperpnoea 324 Orthopnoea 326 Cyanosis 326 Factors Causing Cyanosis 326 Applied Physiology 326 Exam-oriented Questions 327 52. Artificial Respiration or Resuscitation 328 Methods of Artificial Respiration 328 Manual Methods 328 Sylvester's Method 329 Holger-Nielsen Method 329 Mouth-to-mouth Method 329 Eve's Rocking Method 329 Instrumental Method 329 Drinker's Method 329 Resuscitator 329 In the Newborn Baby 329 Exam-oriented Questions 331 332 53. Acclimatisation Compensatory Changes at Moderately High Altitude 332 Changes in Acclimatisation 332 Natural Acclimatisation of Natives Residing at High Altitude 332

Acute Mountain Sickness 333

Human Physiology

xiv

Mountaineering 333 Atmosphere High Altitude Physiology 334 Hypoxia 334 Problem Faced by Aviators 334 Radiation Hazards 335 Dysbarism at High Altitude (Decompression Sickness) 335 Explosive Decompression 335 Effect of Centrifugal Acceleratory Forces 336 Protection of Body against Centrifugal Acceleratory Forces 336 Parachute Jump 337 Weightlessness in Space (Zero-G State) 338 Exam-oriented Questions 338

54. Underwater Physiology

Introduction 339 Nitrogen 339 Oxygen 339 Mechanism of Oxygen Poisoning 340 Carbon Dioxide 340 Helium 340 Underwater Respiration 340 SCUBA Diving 341 Exam-oriented Question 341

55. Vocalisation

Vocalisation 342 Articulation and Resonance 343 Exam-oriented Questions 343 Clinical Case Scenario 344 Respiratory System 344 Recent Advances 344

Section VI Gastro-intestinal Tract

Introd	luction 346	
An	natomical Consideration 346	
His	stological Structure 347	
	nervation of the Digestive Tract 347	
Fu	nctions of the Digestive System 348	
His	stology of Tongue 348	
Gland	ls 351	
Ne	erve Supply 351	
Fu	nctions 351	
Saliva	ry Glands 351	
His	stology of Salivary Glands 351	
Phary	nx or Throat Cavity 353	
Oesop	phagus 353	
His	stology 353	
Stoma	ich 354	
His	stology of Stomach 355	
	nctions of Stomach 356	
Small	Intestine 356	
Ve	rmiform Appendix 358	
Large	Intestine 358	
Ree	ctum 358	
An	nal Canal 358	
Brief S	Summary of the Chief Identifying Features of I	Differen
	Parts of the Digestive Tract 358	
Exam-	-oriented Questions 358	

57. Digestive Juices Introduction 359

359

339

342

Saliva 359 Characteristics 359 Composition 359

Functions 359 Gastric Juice 360 Composition 360 Characteristics 360 Functions 360 Pancreatic Juice 360 Characteristics 360 Succus Entericus 361 Characteristics 361 Composition 361 Intestinal Juice Enzymes 361 Carbohydrate Splitting 361 Functions 361 Biles 361 Introduction 361 Composition of Bile 362 Functions of Bile 362 Bile Salts 363 Variety and Chemistry 363 Synthesis of Bile Salts 363 Enterohepatic Circulation and Fate of Bile Salts 363 Functions of Bile Salts 363 Bile Pigments 364 Chemistry and Varieties 364 Origin and Formation 364 Site of Formation, Circulation and Fate 364 Exam-oriented Questions 366

58. Mechanism of Secretion of Various

367 **Digestive Juices** Introduction 367 Saliva 367 Nerve Supply of Salivary Glands 367 Significance of Double Nerve Supply 368 Salivary Secretion and Reflexes 368 Reflex Control of Rate of Flow and Composition of Saliva 369 Disturbances of Salivary Secretion 369 Gastric Secretions 369 Cephalic Phase 370 Gastric Phase 371 Gastric Phase Characteristic Features 371 Intestinal Phase 371 Action of Other Hormones on Gastric Secretion 372 Interrelation between the Different Phases 373 Gastric Function Test 373 Investigation of Gastric Secretion in Man 373 Other Functional Tests 374 Origin and Character of the Important Constituents of Gastric Juice 375 Hydrochloric Acid 375 Applied Physiology: Peptic Ulcer 375 Pepsin 376 Mucin 376 Intrinsic Factor 376 Neuropoietic Factor 376 Pancreas 376 Development 377 Mechanism of Pancreatic Secretions 377 Nervous Phase 377 Chemical Phase 378 Influence of Various Foodstuffs on Pancreatic Secretion 379 Applied Physiology 379 Liver 379 Anatomy 379 Gall Bladder: Structure and Functions 379

Contents

XV

Mechanism of Bile Secretion 380 Mechanism of Secretion 380 Mechanism of Expulsion of Bile 381 Factors Controlling Movements of Gall Bladder 381 Functions of Gall Bladder 382 Applied Physiology 382 Mechanism of Secretion of Succus Entericus (Intestinal Juice) 382 Mechanism 383 Applied Physiology 383 Summary of Secretions of the Various Digestive Juices 383 Exam-oriented Questions 384

385

397

404

59. Movements of Alimentary Canal

Introduction 385 Facts about Movement 385 Cause of Movements 385 Relation with Degree of Activity 385 Deglutition (Swallowing) 385 Common Disturbances in the Swallowing 387 Movements of Stomach 387 Applied Physiology 389 Vomiting (Emesis) 389 Movements of Small Intestine 391 Frequency 391 Movements of Villi 393 Applied Physiology 393 Movements of Large Intestine 393 Functions of Large Intestine 394 Rate of Progress of Barium Meal 394 Applied Physiology—Large Intestine 396 Defaecation 396 Mechanism 396 Exam-oriented Questions 396

60. Digestion and Absorption of Foodstuffs

Introduction 397 Digestion of Carbohydrates 397 Introduction 397 Different forms of Carbohydrates 397 Digestion of Proteins 398 Introduction 398 Different Forms of Protein 399 Digestion of Nucleoprotein 399 Digestion of Casein 399 Digestion of Milk 400 Digestion of Collagen and Gelatin 400 Digestion of Mucin 400 Digestion of Lipids 400 Digestion in the Pancreatic Juice 400 Absorption 401 Definition 401 Absorption of Carbohydrates 401 Absorption of Proteins 401 Fats Absorption 402 Process of Absorption 402 Water Absorption 402 Absorption of Electrolytes 402 Faeces 403 Contents and Characteristics 403 Exam-oriented Questions 403

61. Gastro-intestinal Hormones

Introduction 404 Gastrin 404

Cholecystokinin (CCK) or Pancreozymin 405 Regulation of Secretion of Cholecystokinin 405 Glucagon-like Peptide-1 405 Gastric Inhibitory Polypeptide (GIP) 405 Vasoactive Intestinal Peptide (VIP) 405 Urogastrone 405 Villikinin 405 Enterocrinin 406 Motilin 406 Neurotensin 406 Somatostatin 406 Gastrin Releasing Peptide 406 Ghrelin 406 Peptide YY 406 Substance P 406 Bombesin 406 Exam-oriented Questions 406 Clinical Case Scenario 407 Gastrointestinal Tract 407 Recent Advances: Treatment of Peptic Ulcer 407 Recent Advances: Capsule Endoscopy 408

Section VII Renal Physiology

62.	Functional Anatomy of Excretory System	410
	Introduction 410	
	Kidneys 410	
	Characteristic Features 410	
	Nephron 411	
	Uriniferous Tubules 412	
	Types of Nephrons 412	
	Renal Tubules 415	
	Proximal Convoluted Tubule (PCT) 415	
	Henle's Loop 415	
	Distal Convoluted Tubule (DCT) 416	
	Collecting Tubule 417	
	Juxtaglomerular Apparatus 417	
	Regulation of Renin Secretion 418	
	Renal Circulation 419	
	Peculiarities 419	
	Peculiarities of Renal Circulation 421	
	Exam-oriented Questions 422	
63.	Urine Formation by Kidneys: Renal Blood Flow and their Control	423
	Introduction 423	
	Autoregulation of Renal Blood Flow 423	
	Nervous Control 424	
	Other Factors 425	
	Blood Glucose Level 425	
	Hormones Influencing Renal Functions 425	
	Measurement of Renal Blood Flow 425	
	Functions of Kidney and Glomerulus 426	
	Functions of Kidney 426	
	Exam-oriented Questions 426	
64.	Urine Formation by the Kidney: Glomerular Filtration Rate and their Control	497
		427
	Introduction 427	
	Key Points 427	
	Glomeruli as Ultrafilter 429	
	Functions of Glomerulus 429	

Applied physiology: Chronic Kidney Disease and Glomerular Filtration Rate 431

xvi

Human Physiology

65. Tubular Reabsorption and Tubular Secretion (Urine Formation): Water and Electrolytes Balance and **Counter-current Mechanism** 432 Introduction 432 Methods of Study of Tubular Functions 432 Selective Reabsorption 432 Glucose 432 Water 433 Sodium and Chloride 435 Potassium 435 Bicarbonate 437 Phosphate 438 Reabsorption of other Substances 438 Tubular Secretion 438 Formation of Some New Substances 438 Exam-oriented Questions 440 66. Renal Function Test, Urine, Urinary **Characteristic and its Mechanism of Formation** 441 Introduction 441 Assuming 441 I. Test for measurement of GFR 442 Inulin Clearance (A Measure of Glomerular Filtration Rate) 442 Creatinine Clearance Test 442 II. Test to Measure Excretory Function 442 Urea Clearance Test (Van Slyke) 442 III. Test to Estimate Tubular Secretion Capacity 443 IV. Test to Measure Renal Blood Flow 443 Urine, Urinary Characteristic and its Mechanism of Formation 443 Introduction 443 Other Characteristics 444 Colour 444 Reaction 444 Specific Gravity 444 Turbidity 444 Odour 444 Osmotic Pressure 444 Composition of Urine 444 Normal Constituents of Urine 444 Abnormal Constituent of Urine 445 Protein 445 Glucose 446 Ketone Bodies 446 Presence of Blood in Urine 446 Pigments 446 Calculi and Casts 446 Pus 446 Hormones 446 Factors Affecting Formation of Urine 447 Reaction of Urine 447 Mechanism of Regulation of Blood Reaction by the Kidneys 447 Bicarbonate Mechanism 447 Phosphate Mechanism 448 Ammonia Mechanism 449 Elimination of Acids 449 Elimination of Alkalis 450 Glycosuria 450 Glycosuria due to Hyperglycaemia 450 Glycosuria due to Less Tubular Reabsorption 451 Factors Controlling Volume of Urine 451 Abnormal Volume of Urine 452 Applied Physiology 452 Exam-oriented Questions 453

67. Micturition

Introduction 454 Structure of Urinary Bladder 454 Mechanism of Filling of Bladder 455 Mechanism of Micturition 455 Kev Features 455 Micturition Reflex 456 Centres of Micturition 457 Effect of Lesion of Autonomic Nerves 457 Applied: Pathological Conditions involving Bladder Control Physiology 458 Artificial Kidney 459 Exam-oriented Questions 459 68. Skin, Body Temperature and its Regulation 460 Introduction 460 Structure 460 Epidermis 460 Dermis (Cutis Vera or True Skin) 461 Functions of Skin 461 Glands in the Skin 462 Mechanism of Secretion of Sweat 462 Composition of Sweat 463 Sebaceous Glands 463 Composition of Sebum 463 Control 463 Special Structures of Skin 465 Nails (Ungues) 465 Hair (Pili) 465 Body Temperature and its Regulation 466 Introduction 466 Factors Affecting Body Temperature 466 Regulation of Body Temperature 467 Mechanisms of Heat Production (Thermogenesis) 467 Mechanisms of Heat Loss (Thermolysis) 468 Nervous System and Thermotaxis 468 Interaction of Central and Peripheral Factors 469 Role of Endocrines 470 Temperature Regulation in the Newborn Infant 470 Mechanism of Regulation of Body Temperature 470 Decreased Body Temperature and Responses 470 Other Factors 470 Effects of Exposure to High and Low Atmospheric Temperature 470 Physiological Alterations of Body Mechanisms on Exposure to Hot Atmosphere 470 Life in Deserts 471 Physiological Alterations of Body Mechanisms on Exposure to Cold Atmosphere 472 Effect of Sudden Change of Atmospheric Temperature 472 Pyrexia 472 Physiological Responses due to Pyrexia (Fever) 472 Hypothermia 472 Physiological Responses to (Deliberate) Hypothermia 472 Applied Physiology 473 Exam-oriented Ouestions 474

69. Regulation of Reaction of Blood and Disturbances in Acid–Base Regulation

Introduction 475 Respiratory H⁺ 475 Metabolic H⁺ 475 Acid–base, Hydrogen Ion Concentration and pH 475 Contents

xvii

475

454

Acid and Base 475 Hydrogen Ion Concentration 476 pH 476 Calculation of pH 476 Calculation of [H+] Ion Concentration 476 The pH Scale 476 Physiological Importance of Maintenance of pH 477 Buffers, Lungs and Kidney 478 Buffer Action 478 Bicarbonate Buffer System 478 Bicarbonate Buffer System and its importance as Extracellular Buffer 478 Role of Kidney and Lung 478 Role of Respiration in Acid–Base Balance 480 Role of Kidneys in Acid–Base Balance 480 Disturbances in Acid–Base Regulation 481 Respiratory Acidosis 481 Definition 481 Pathophysiology 481 Compensatory Mechanism 481 Metabolic Alkalosis 481 Definition 481 Respiratory Compensation 482 Renal Compensation 482 Metabolic Acidosis 482 Definition 482 Compensation 482 Respiratory Alkalosis 482 Definition 482

Renal Compensation 483 Assessment of the Acid–Base Status 483 Exam-oriented Questions 483 Clinical Case Scenario 484 Kidney 484 Applied Physiology 485 Peritoneal Dialysis 485 Renal Transplantation 485

Multiple Choice Questions and Viva Voce

General Physiology 488 Blood 492 Nerve and Muscle 496 Cardiovascular System 500 Respiratory System 504 Gastro-intestinal Tract 507 Renal System 511 References 515 Viva Voce and Frequently Asked Critical Exam Questions Recap: Questions and Answers 516 General Physiology 516 Homeostasis 518 Transport Across Cell Membrane 519 Topic Action Potential 519 Blood 522

Index

1–11

Human Physiology

Index of Competencies Competency Based Curriculum for the Indian Medical Graduate

Code	Competency	Chapter	Page number	
Code Ceneral P	Competency bysiology	Chapter	rage number	
General P PY1.1		1	2.6	
	Describe the structure and functions of a mammalian cell	1	2-6	
PY1.2	Describe and discuss the principles of homeostasis	2	14-17	
PY1.3	Describe intercellular communication	1	7,8	
PY1.4	Describe apoptosis-programmed cell death	1	9, 10	
PY1.5	Describe and discuss transport mechanisms across cell membranes	3	18-26	
PY1.6	Describe the fluid compartments of the body, its ionic composition and measurements	5	34–38	
PY1.7	Describe the concept of pH and Buffer systems in the body	App 1	485-487	
PY1.8	Describe and discuss the molecular basis of resting membrane potential and	4	27–33	
DV1 0	action potential in excitable tissue	1	10 12	
PY1.9	Demonstrate the ability to describe and discuss the methods used to	1	10-13	
	demonstrate the functions of the cells and its products, its communications			
	and their applications in clinical care and research			
	ogy (Blood)			
PY2.1	Describe the composition and functions of blood components	6	42-44	
PY2.2	Discuss the origin, forms, variations and functions of plasma proteins	8	46-47	
PY2.3	Describe and discuss the synthesis and functions of Haemoglobin and explain its	13	69–72	
	breakdown. Describe variants of haemoglobin			
PY2.4	Describe RBC formation (erythropoiesis and its regulation) and its functions	12	63–68	
PY2.5	Describe different types of anaemias	15	76-80	
PY2.6	Describe WBC formation (granulopoiesis) and its regulation	16	81–86	
PY2.7	Describe the formation of platelets, functions and variations	16	87-88	
PY2.8	Describe the physiological basis of hemostasis and, anticoagulants. Describe bleeding	10	50–58	
	and clotting disorders (Hemophilia, purpura)			
PY2.9	Describe different blood groups and discuss the clinical importance of blood grouping,	17	90–93	
	blood banking and transfusion	10		
PY2.10	Define and classify different types of immunity. Describe the development of immunity	19	104–111	
DVO 44	and its regulation			
PY2.11	Estimate Hb, RBC, TLC, RBC indices, DLC, Blood groups, BT/CT		al of Practical Physiology	
PY2.12	Describe test for ESR, Osmotic fragility, Hematocrit. Note the findings and interpret the	Refer to Manua	al of Practical Physiology	
DV0 10	test results, etc. (Note ESR: Chapter 9, pages 62–64)	Defecte Marc		
PY2.13	Describe steps for reticulocyte and platelet count (Refer to Chapter 12, page 83)	Refer to Manua	al of Practical Physiology	
Nerve and	Muscle Physiology			
PY3.1	Describe the structure and functions of a neuron and neuroglia;	20	118–121	
	Discuss nerve growth factor and other growth factors/cytokines			
PY3.2	Describe the types, functions and properties of nerve fibers	20	122–131	
PY3.3	Describe the degeneration and regeneration in peripheral nerves	21	129–130	
PY3.4	Describe the structure of neuromuscular junction and transmission of impulses	22	132–134	
PY3.5	Discuss the action of neuromuscular blocking agents	22	134–135	
PY3.6	Describe the pathophysiology of Myasthenia gravis	22	134	
PY3.7	Describe the different types of muscle fibres and their structure	24	138–142	
PY3.8	Describe action potential and its properties in different muscle types	26, 28	143–145, 161–163	
	(skeletal and smooth)			
PY3.9	Describe the molecular basis of muscle contraction in skeletal and in smooth muscles	25, 28	143–149, 161–165	
PY3.10	Describe the mode of muscle contraction (isometric and isotonic)	26	154	
PY3.11	Explain energy source and muscle metabolism	25	145–148	
PY3.12	Explain the gradation of muscular activity	26	151	
PY3.13	Describe muscular dystrophy: myopathies	25	149	
PY3.14	Perform Ergography	Refer to Manua	al of Practical Physiology	
PY3.15	Demonstrate effect of mild, moderate and severe exercise and record changes in	Refer to Manua	al of Practical Physiology	
	cardiorespiratory parameters	Refer to Practic	cal Manual	
PY3.16	Demonstrate Harvard Step test and describe the impact on induced physiologic	Refer to Manua	al of Practical Physiology	
	parameters in a simulated environment	24		
PY3.17	Describe Strength-duration curve	21	124	
PY3.18	Observe with Computer assisted learning (i) amphibian nerve-muscle experiments	Refer to Manua	al of Practical Physiology	
	(ii) amphibian cardiac experiments			
Gastro-intestinal Physiology				
PY4.1	Describe the structure and functions of digestive system	56	346-358	
PY4.2	Describe the composition, mechanism of secretion, functions, and regulation	57	359-366	
	of saliva, gastric, pancreatic, intestinal juices and bile secretion	58	367–384	
PY4.3	Describe GIT movements, regulation and functions. Describe defecation reflex.	59	385–396	
	Explain role of dietary fibre.			
PY4.4	Describe the physiology of digestion and absorption of nutrients	60	397-403	
PY4.5	Describe the source of GIT hormones, their regulation and functions	61	404-406	
	_			

Code	Competency	Chapter	Page number
PY4.6	Describe the gut-brain axis	56	358
PY4.7	Describe and discuss the structure and functions of liver and gall bladder	58	379–381
PY4.8	Describe and discuss gastric function tests, pancreatic exocrine function	58	375-378
	tests and liver function tests		
PY4.9	Discuss the physiology aspects of: Peptic ulcer, gastrooesophageal reflux disease,	58	381-382
PY4.10	vomiting, diarrhoea, constipation, Adynamic ileus, Hirschsprung's disease Demonstrate the correct clinical examination of the abdomen in a normal	59 Refer to Manual o	389–396 f Practical Physiology
114.10	volunteer or simulated environment	Refer to Manual O	i i racticai i nysiology
Cardiovascular Physiology (CVS)			
PY5.1	Describe the functional anatomy of heart including chambers, sounds; and	29	170–179
	Pacemaker tissue and conducting system.	2.5	170 175
PY5.2	Describe the properties of cardiac muscle including its morphology, electrical,	31	183–186
DI/E O	mechanical and metabolic functions	2.2	105 100
PY5.3 PY5.4	Discuss the events occurring during the cardiac cycle Describe generation, conduction of cardiac impulse	32 30	187–192 180–182
PY5.5	Describe generation, conduction of cardiac impuse Describe the physiology of electrocardiogram (ECG), its applications and the cardiac axis	34	202–208
PY5.6	Describe abnormal ECG, arrhythmias, heart block and myocardial Infarction	34	209–212
PY5.7	Describe and discuss haemodynamics of circulatory system	33	193-201
PY5.8	Describe and discuss local and systemic cardiovascular regulatory mechanisms	37	227-233
PY5.9 PY5.10	Describe the factors affecting heart rate, regulation of cardiac output and blood pressure Describe and discuss regional circulation including microcirculation, lymphatic circuation,	35, 36, 37 39	213–217, 218–222 237–254
115.10	coronary, cerebral, capillary, skin, foetal, pulmonary and splanchnic circulation	55	237-234
PY5.11	Describe the patho-physiology of shock, syncope and heart failure	41	263-271
PY5.12	Record blood pressure and pulse at rest and in different grades of exercise	Refer to Manual of	f Practical Physiology
PY5.13	and postures in a volunteer or simulated environment Record and interpret normal ECG in a volunteer or simulated environment	Refer to Manual o	f Practical Physiology
PY5.14	Observe cardiovascular autonomic function tests in a volunteer or simulated environment		f Practical Physiology
PY5.15	Demonstrate the correct clinical examination of the cardiovascular system in a normal		f Practical Physiology
	volunteer or simulated environment		, ,,
PY5.16	Record arterial pulse tracing using finger plethysmography in a volunteer or	Refer to Manual of	f Practical Physiology
	simulated environment		
Respiratory		10	276 200
PY6.1 PY6.2	Describe the functional anatomy of respiratory tract Describe the mechanics of normal respiration, pressure changes during	42 42	276–280 281–286
110.2	ventilation, lung volume and capacities, alveolar surface tension, compliance,	43, 44	287–297
	airway resistance, ventilation, V/P ratio, diffusion capacity of lungs	- /	
PY6.3	Describe and discuss the transport of respiratory gases: Oxygen and carbon dioxide	47	301-308
PY6.4	Describe and discuss the physiology of high altitude and deep sea diving	53 54	332–338 339–341
PY6.5	Describe and discuss the principles of artificial respiration, oxygen therapy,	52	328-331
11015	acclimatization and decompression sickness.	53, 54	332–338, 339–341
PY6.6	Describe and discuss the pathophysiology of dyspnoea, hypoxia,	49	318-322
$\mathbf{D}\mathbf{V}\mathbf{C}$ 7	cyanosis asphyxia; drowning, periodic breathing	51	324-327
PY6.7 PY6.8	Describe and discuss lung function tests and their clinical significance Demonstrate the correct technique to perform and interpret Spirometry	44 Refer to Manual o	287–292 f Practical Physiology
PY6.9	Demonstrate the correct clinical examination of the respiratory system in a		f Practical Physiology
	normal volunteer or simulated environment	, ,,	
PY6.10	Demonstrate the correct technique to perform measurement of peak expiratory	Refer to Manual of	f Practical Physiology
	flow rate in a normal volunteer or simulated environment		
Renal Physic		()	410 417
PY7.1 PY7.2	Describe structure and function of kidney Describe the structure and functions of juxtaglomerular apparatus and	62 62	410–417 417–419
	role of reninangiotensin system		
PY7.3	Describe the mechanism of urine formation involving processes of filtration,	63, 64 and 65	424-445
DV7 4	tubular reabsorption and secretion; concentration and diluting mechanism	66	441 442
PY7.4 PY7.5	Describe and discuss the significance and implication of renal clearance Describe the renal regulation of fluid and electrolytes and acid–base balance	66 65, 69	441–443 432–438, 447–453
PY7.6	Describe the innervations of urinary bladder, physiology of micturition and its abnormalities	67	504-509
PY7.7	Describe artificial kidney, dialysis and renal transplantation	67, 69	459, 485
PY7.8	Describe and discuss renal function tests	66	441-453
PY7.9	Describe cystometry and discuss the normal cystometrogram	67	455–456
Integrated P		()	460 474
PY11.1 PY11.2	Describe and discuss mechanism of temperature regulation Describe and discuss adaptation to altered temperature (heat and cold)	68 68	460–474 470–473
PY11.3	Describe and discuss adaptation to antered temperature (near and cold) Describe and discuss mechanism of fever, cold injuries and heat stroke	68	470-474
PY11.4	Describe and discuss cardio-respiratory and metabolic adjustments during	40	256-258
	exercise; physical training effects		CI 110 (010)
PY11.5 PY11.6	Describe and discuss physiological consequences of sedentary lifestyle	Refer to Vol 2 Refer to Vol 2	Ch 112 (913)
PY11.6 PY11.7	Describe physiology of infancy Describe and discuss physiology of aging; free radicals and antioxidants	Refer to Vol 2	Ch 84 (696–701) A1
PY11.8	Discuss and compare cardio-respiratory changes in exercise (isometric and isotonic) with	40	260–261
	that in the resting state and under different environmental conditions (heat and cold)	Refer to Manual of	f Practical Physiology
PY11.9	Interpret growth charts		f Practical Physiology
PY11.10 PY11.11	Interpret anthropometric assessment of infants Discuss the concept, criteria for diagnosis of Brain death and its implications		f Practical Physiology f Practical Physiology
PY11.12	Discuss the physiological effects of meditation		ation Lectures Section
PY11.13	Obtain history and perform general examination in the volunteer/simulated environment	Refer to Manual of	f Practical Physiology
PY11.14	Demonstrate Basic Life Support in a simulated environment (Appendix 7, Vol 2)		f Practical Physiology

Human Physiology

XX