Contents

Preface			vii
1.	D.C.	CIRCUITS	1.1–1.88
	1.1	Basic Definitions 1.1	
	1.2	Ohm's Law 1.3	
	1.3	Resistances in Series 1.4	
	1.4	Resistances in Parallel 1.4	
	1.5	Kirchhoff's Laws 1.5	
		1.5.1 Kirchhoff's Current Law or Point Law 1.5	
		1.5.2 Kirchhoff's Voltage Law (KVL) or Mesh Law 1.6	
	1.6	Star-Delta Transformation 1.12	
	1.7	Mesh Analysis or Maxwell's Loop Current Method 1.23	
		1.7.1 Concept of Supermesh 1.28	
	1.8	Nodal Analysis 1.30	
		1.8.1 Concept of Super Node 1.36	
	1.9	Source Transformation 1.39	
	1.10	Superposition Theorem 1.45	
	1.11	Thevenin's Theorem 1.57	
	1.13	Norton's Theorem 1.70	
	1.14	Maximum Power Transfer Theorem 1.77	
		Unsolved Problems 1.84	
2.	2. ELECTROMAGNETIC INDUCTION		2.1–2.10
	2.1	Direction of Induced emf and Current 2.1	
		2.1.1 Dynamically Induced emf 2.1	
		2.1.2 Statistically Induced emf 2.2	
	2.2	Magnetomotive Force (mmf) 2.3	
	2.3	Magnetic Field Strength 2.3	
	2.4	Reluctance 2.4	
	2.5	Co-efficients of Self Inductance 2.4	
	2.6	Co-efficient of Mutual Inductance 2.5	
	2.7	Coupling Co-efficient 2.6	
	2.8	Rise of Current in Inductive Circuits 2.7	
	2.9	Decay (Fall) of Current in Inductive Circuit 2.1	
3.	A.C. FUNDAMENTALS		3.1–3.28
	3.1	Introduction 3.1	

3.2 Generation of Alternating Voltages and Currents 3.3

- xii Basic Electrical and Electronics Engineering
- 3.3 Terminologies of Sinusoidal Functions 3.5
- 3.4 Important Value of Alternating Voltage and Current 3.8
 - 3.4.1 Average Value 3.8
 - 3.4.2 Effective or RMS Value 3.9
 - 3.4.3 Form Factor and Peak Factor 3.10
- 3.5 Vector Representation of Sinusoidal A.C. 3.21
- 3.6 Vector Representation Using RMS Values 3.22
- 3.7 Mathematical Operation of Vectors 3.22 Unsolved Examples 3.26

4. A.C. CIRCUITS

- 4.1 A.C. Through Pure Resistance 4.1
- 4.2 A.C. Through Pure Inductance 4.3
- 4.3 A.C. Through Pure Capacitance 4.5
- 4.4 Resistance and Inductance in Series 4.7
- 4.5 Resistance and Capacitance in Series 4.9
- 4.6 R-L-C Series Circuit 4.11
- 4.7 A.C. Parallel Circuits 4.27
- 4.8 Resonance in A.C. Circuits 4.38
 - 4.8.1 Series Resonant Circuit 4.39
 - 4.8.2 Parallel Resonant Circuit 4.48
 - 4.8.3 Comparison of Resonance in Series and Parallel Circuits 4.52

Unsolved Examples 4.55

5. THREE PHASE CIRCUITS

5.1-5.29

4.1 - 4.58

- 5.1 Generation of 3-Phase A.C. System 5.1
- 5.2 Inter Connection of Three Phases 5.2
- 5.3 Star or Y Connection 5.3
 - 5.3.1 Relation Between Phase and Line Voltages (Star Connection) 5.4
 - 5.3.2 Relation Between Line and Phase Currents (Star Connection) 5.5
 - 5.5.3 Power Consumed in Star Connected Load 5.5

5.3.4 Volt-Ampere and Reactive Volt-Ampere Relation in Star Connected Load 5.5

- 5.4 Delta or D Connection 5.6
 - 5.4.1 Relation Between Phase and Line Voltages in Delta Connected Load 5.6
 - 5.4.2 Relation Between Line and Phase Currents 5.7
 - 5.4.3 Power Consumed in Delta Connected Load 5.8
 - 5.4.4 Volt-Ampere and Reactive Volt-Ampere Relation in Delta Connected Load 5.8
- 5.5 Comparisons 5.15
 - 5.5.1 Comparison Between Star and Delta Connected Loads 5.15
 - 5.5.2 Comparison Between the Power Consumed in Star Connected Load and Delta Connected Load 5.16
- 5.6 Measurement of Power in 3-Phase Circuits 5.16
 - 5.6.1 One Wattmeter Method 5.17
 - 5.6.2 Three Wattmeter Method 5.18

Contents xiii

- 5.6.3 Two Wattmeter Method 5.18
 - 5.6.3.1 Star Connected Load 5.19
 - 5.6.3.2 Delta Connected Load 5.21
 - 5.6.3.3 Effect of Power Factor on Wattmeter Readings 5.22

Unsolved Examples 5.27

6. TRANSFORMER

- 6.1 Need of Transformer 6.1
- 6.2 Transformer Construction 6.1
- 6.3 Principle of Transformer 6.3
- 6.4 Ideal Two Winding Transformer 6.3
- 6.5 Phasor Diagram of Ideal Transformer on No-Load 6.7
- 6.6 Phasor Diagram of Ideal Transformer on Load 6.7
- 6.7 Ratings of Transformer 6.8
- 6.8 Practical Transformer 6.11
- 6.9 No Load Vector Diagram of Practical Transformer 6.11
- 6.10 Transformer Vector Diagram Under Load Conditions 6.12
- 6.11 Equivalent Circuit of a Transformer 6.146.11.1 Approximate Equivalent Circuit of Transformer 6.16
- 6.12 Open Circuit and Short Circuit Test on Transformer 6.17
- 6.13 Losses and Efficiency of a Transformer 6.21
- 6.14 Efficiency Calculation Using O.C/S.C. Test Results 6.23
- 6.15 Regulation 6.23
- 6.16 All Day Efficiency 6.31 Unsolved Examples 6.37

7. ROTATING ELECTRICAL MACHINE

- 7.1 D.C. Machines 7.1
 - 7.1.1 D.C. Generator Principle 7.2
 - 7.1.2 Parts of D.C. Machines 7.3
 - 7.1.2.1 Stator 7.3
 - 7.1.2.2 Rotor 7.4
 - 7.1.3 emf Equation of a D.C. Generator 7.6
 - 7.1.4 Representation of a D.C. Machine 7.7
 - 7.1.5 Types of D.C. Machines 7.87.1.5.1 Separately Excited D.C. Machine 7.87.1.5.2 Self Excited D.C. Machines 7.8
 - 7.1.6 D.C. Motors 7.10
 - 7.1.7 Comparison of Generator and Motor 7.10
 - 7.1.8 Back emf 7.11
- 7.2 3-Phase Induction Motors 7.12
 - 7.2.1 Construction of 3-Phase Induction Motors 7.12
 - 7.2.2 Production of Rotating Magnetic Field 7.13
 - 7.2.3 Principle of Operation 7.15

6.1-6.39

7.1–7.22

xiv Basic Electrical and Electronics Engineering

7.2.4 Slip and Rotor Speed 7.16

- 7.3 Single-Phase Induction Motors 7.16
 - 7.3.1 Constructional Features of Single-Phase Induction Motors 7.16
 - 7.3.2 Double Field Revolving Theory 7.16
- 7.4 Split-Phase Induction Motors 7.18
- 7.5 Shaded Pole Induction Motor 7.21

8. SEMICONDUCTOR DIODES AND THEIR APPLICATIONS 8.1–8.12

- 8.1 Classification of Materials 8.1
- 8.2 Semiconductors 8.1
- 8.3 Donor and Acceptor Impurities 8.2
- 8.4 Semiconductor Diode 8.2
- 8.5 Half-Wave Rectifier 8.5
- 8.6 Full-Wave Rectifier Circuit (with Centre Tap Transformer) 8.7
- 8.7 Full-Wave Bridge Rectifier 8.8
- 8.8 Filter Circuit (Capacitor Filter) 8.10
- 8.9 Zener Diode 8.11

9. TRANSISTORS

- 9.1 Naming the Terminals of Transistor 9.1
- 9.2 Operation of N-P-N Transistor 9.2
- 9.3 Transistor Symbol 9.3
- 9.4 Transistor Connection 9.4
- 9.5 Common Base Connection 9.4
- 9.6 Common Emitter Configuration 9.6

Appendix A: Multiple Choice Questions A.1–A.14 Appendix B: Solution To Unsolved Examples B.1–B.72 Appendix C: Some Useful Formulae C.1 9.1–9.8